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The quantization of Galilean Duffin-Kemmer-Petiau field
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We study the quantization of the Galilean covariant Duffin-Kemmer-Petiau (DKP) field in a five-dimensional
manifold. The quantization is performed both in the canonical and in the path-integral scenario. It is considered a
representation of the Duffin-Kemmer-Petiau matrices which provides the scalar sector of the model, generating
the manifestly Galilei-covariant version of the quantized Schrödinger field in a consistent way. Besides, an
analysis of the Green’s function is done, as well as the basis of the interacting DKP field.
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1. INTRODUCTION

The Duffin-Kemmer-Petiau (DKP) formalism was intro-
duced about seven decades ago, and it is based on a first or-
der wave equation for the description of relativistic scalar
and vector fields [1, 2]. It remains currently attracting deal
of interest in many different contexts [3–13]. In particular, in
Ref. [5] is presented a discussion concerning the quantiza-
tion of the DKP field, being proved the equivalence between
the DKP and Klein-Gordon theories for charged scalar par-
ticles interacting with external or quantized electromagnetic
field.

On the other hand, considering the non-relativistic sce-
nario, there are in literature examples which prove the viabil-
ity of the construction of Galilei-covariant first-order wave
equations, these being associated to the covariant version
of the Schrödinger and non-relativistic vector field equa-
tions [10–13]. An interesting physical motivation for this
context is the study of condensed matter physics, as the
Bose−Einstein condensation in dilute gases [14, 15] and
non-relativistic systems such as fluids [16].

In general, Galilean covariance is based on the fact that the
Galilean space-time can be implemented as an embedding in
a five dimensions space-time, G , such that the coordinates
x = (x,x4,x5) = (x, t,s) transform by [17–19]

x′ = Rx+vt +a, (1)
t ′ = t +b, (2)

s′ = s+(Rx) ·v+
1
2

v2t, (3)

where v,R,a and b represent the relative velocity, rota-
tion, spatial and time translations between different reference
frames, respectively. The coordinate s is defined in the inter-
val [0, l], and it can be seen on physical grounds as canonical
conjugate to the mass, up to a constant to fix the unit [17–19].

It is easy to note that the invariant scalar product under
the transformations in Eq. (1) is gµνxµxν, where gµν is the
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Galilean metric given by

(gµν) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0

 . (4)

A natural question is about the of construction of quantum
theory of the Galilean covariant DKP field, similarly to the
relativistic context. In this work, we perform the quantiza-
tion of the nonrelativistic DKP formalism in two ways: in
the canonical and in the path-integral scenarios. Both cases
are discussed in a representation of the DKP matrices which
provides the scalar sector of the model, generating the mani-
festly Galilei-covariant version of the quantized Schrödinger
field.

The paper is organized as follows. Section 2 is devoted to
develop the Hamiltonian canonical approach for the Galilean
DKP theory, as well as an analysis of the surface’s struc-
ture of constraints is obtained. This is done by making use
of a particular representation of the DKP matrices, which
allows us to work in the component form. The equal-time
commutation relations that define the quantization rules are
also obtained, and the propagator of the free DKP field is
defined and analyzed. In Section 3, the construction of the
path-integral formalism in a matrix form is discussed, as well
as the basis of the interacting DKP field. Finally, Section 4
presents some concluding remarks.

2. CANONICAL QUANTIZATION

2.1. Hamiltonian Formulation

Let us start with the Lagrangian density for the Galilean
covariant free DKP field, defined as

L =
1
2

Ψβ
µ
∂µΨ− 1

2
(∂µΨ)βµ

Ψ+ kΨΨ, (5)

where βµ are matrices that satisfy the fundamental algebra,

β
µ
β

ν
β

ρ +β
ρ
β

ν
β

µ = gµν
β

ρ +gρν
β

µ (6)

with the indices µ,ν running from 1 to 5; Ψ is the spinor rep-
resenting the DKP field; and Ψ = Ψ†η is the adjoint spinor,
with η = [(β4 +β5)2 +1] as usual [10–13]. The equivalence
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of DKP and Schrodinger equations is dicussed in Appendix
A.

We choose the spinors Ψ and Ψ expressed in a form such
that ΨΨ = ψ∗µψµ−ψ∗6ψ6. In this context, the chosen six-
dimensional representation for the βµ matrices (shown in Ap-
pendix B) describes a spin-0 representation of the DKP field.
So, the Lagrangian density in Eq. (5) can be written in the
component form as

L =
1
2

ψ
∗µ

∂µψ6−
1
2

ψ
∗
6∂µψ

µ− 1
2
(∂µψ

∗µ)ψ6

+
1
2
(∂µψ

∗
6)ψ

µ + k(ψ∗µψµ−ψ
∗
6ψ6). (7)

From Eq. (7) it is possible to derive the canonical conjugate
momenta,

pi =
∂L
∂ψ̇i = 0, p4 =

∂L
∂ψ̇4 =−1

2
ψ
∗
6,

p5 =
∂L
∂ψ̇5 = 0, p6 =

∂L
∂ψ̇6

=
1
2

ψ
∗4,

p∗i =
∂L

∂ψ̇∗i
= 0, p∗4 =

∂L
∂ψ̇∗4

=−1
2

ψ6,

p∗5 =
∂L

∂ψ̇∗5
= 0, p∗6 =

∂L
∂ψ̇∗6

=
1
2

ψ
4. (8)

The next step is to construct the Hamiltonian density H ,

H = pµψ̇
µ + p∗µψ̇

∗µ + p6ψ̇6 + p∗6ψ̇
∗
6−L

= −1
2

ψ
∗i

∂iψ6−
1
2

ψ
∗5

∂5ψ6 +
1
2

ψ
∗
6∂iψ

i

+
1
2

ψ
∗
6∂5ψ

5 +
1
2
(∂iψ

∗i)ψ6 +
1
2
(∂5ψ

∗5)ψ6

−1
2
(∂iψ

∗
6)ψ

i− 1
2
(∂5ψ

∗
6)ψ

5− k(ψ∗µψµ−ψ
∗
6ψ6).

(9)

The constraints from Eq. (8) are written using combinations
between them, resulting in m1 = 10 primary constraints given
by

Φ
(1)
1 = p6− 1

2 ψ∗4, Φ
(1)
2 = p4 + 1

2 ψ∗6,

Φ
(1)
3 = p∗6−

1
2 ψ4, Φ

(1)
4 = p∗4 + 1

2 ψ6, (10)

Φ
(1)
5i = p∗i + p∗5, Φ

(1)
6i = pi + p5,

where i = 1,2,3. In this scenario, we note that the subset(
Φ

(1)
1 ,Φ

(1)
2 ,Φ

(1)
3 ,Φ

(1)
4

)
is formed of second-class constrains,

while
(

Φ
(1)
5i ,Φ

(1)
6i

)
are of first-class ones. Therefore, the ma-

trix of the Poisson brackets for the primary constraints (10),

denoted as
{

Φ
(1)
α ,Φ

(1)
β

}
, has a vanishing determinant and

ρ1 ≡ rank
({

Φ
(1)
α ,Φ

(1)
β

})
= 4.

Following the prescription of the well known method of
quantization of constraint theories [21], let us introduce the
modified Hamiltonian density,

H (1) = H +λ
α

Φ
(1)
α , (11)

where λα are parameters to be determined. Since the primary
constraints must be time-independent, it implies that the time
derivative of the constraints must vanish, i.e.

Φ̇
(1)
α =

{
Φ

(1)
α ,H (1)

}
=

{
Φ

(1)
α ,H

}
+

{
Φ

(1)
α ,Φ

(1)
β

}
λ

β = 0.

Thus, as a consequence of this conservation conditions for
the set of second-class constraints in Eq. (10), we have

λ
4 = −∂iψ

∗i−∂5ψ
∗5− kψ

∗
6,

λ
3 = −kψ

∗
4

λ
2 = −∂iψ

i−∂5ψ
5− kψ6,

λ
1 = −kψ4. (12)

Notice that the other eight λ-functions are undetermined
in the first stage, because m1−ρ1 = 6. Then, the conserva-
tion conditions for the set first-class constraints in Eq. (10)
provide the secondary constraints in the second stage,

Φ
(2)
γ =

(
Φ

(2)
1i ,Φ

(2)
2i

)
(13)

where γ = 1,2, and

Φ
(2)
1i = ∂iψ6 + kψi +∂5ψ6 + kψ5,

Φ
(2)
2i = ∂iψ

∗
6 + kψ

∗
i +∂5ψ

∗
6 + kψ

∗
5. (14)

The constraints given by Eqs. (10) and (14) constitute a set
of second-class constrains. In this context, the total number
of constraints is necessarily even. This follows from the fact
that a nonsingular antisymmetric matrix always has an even
rank [21]. Then, the conservation conditions that we must
use for this second-class constraints are

Φ̇k =
{

Φk,H (1)
}

=
{

Φk,H
}

+{Φk,Φk′}λ
k′ = 0, (15)

where

Φk =
(

Φ
(1)
1 ,Φ

(1)
2 ,Φ

(1)
5 ,Φ

(1)
6 ,Φ

(1)
3 ,Φ

(1)
4 ,Φ

(2)
1i ,Φ

(2)
2i

)
. (16)

The matrix composed of Poisson brackets of the con-
straints given by Eqs. (10) and (14) has the form
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({Φk,Φk′}) =



0 0 0 0 0 −∂i−∂5 0 −1
0 0 0 0 0 k 1 0
0 0 0 0 0 −k 0 0
0 0 0 0 −k 0 0 0
0 0 0 k 0 0 ∂i +∂5 −k

∂i +∂5 −k k 0 0 0 0 0
0 −1 0 0 −∂i−∂5 0 0 0
1 0 0 0 k 0 0 0


(17)

where ρ2 ≡ rank({Φk,Φk′}) = 8. Therefore, we can use Eq.
(17) in (15) to obtain the λ-functions,

λ
1 = −∂iψ6− kψi−∂5ψ6− kψ5− kψ4,

λ
2 = −∂i +∂5

k
[∂iψ6 + kψi +∂5ψ6 + kψ5]

+∂iψ
i +∂5ψ

5 + kψ6,

λ
3 = −∂iψ

i−∂5ψ
5− kψ6 +(∂i +∂5)ψ4,

λ
4 = ∂iψ

∗i +∂5ψ
∗5 + kψ

∗
6 +(∂i +∂5)ψ

∗
4,

λ
5 = −1

k
[∂iψ6 + kψi +∂5ψ6 + kψ5] , (18)

λ
6 =

1
k

[∂iψ
∗
6 + kψ

∗
i +∂5ψ

∗
6 + kψ

∗
5] ,

λ
7 = −∂iψ

∗
6− kψ

∗
i −∂5ψ

∗
6− kψ

∗
5− kψ

∗
4,

λ
8 = −∂i +∂5

k
[∂iψ

∗
6 + kψ

∗
i +∂5ψ

∗
6 + kψ

∗
5]

+∂iψ
∗i +∂5ψ

∗5 + kψ
∗
6.

After that, we can write the new Hamiltonian density as

H̃ (1) = H +Φkλ
k,

and the equations of motion for ψ6 and ψ∗6 as

ψ̇6 =
{

ψ6,H̃ (1)
}

=−∂iψ6− kψi−∂5ψ6− kψ5− kψ4,

ψ̇
∗
6 =

{
ψ
∗
6,H̃ (1)

}
=−∂iψ

∗
6− kψ

∗
i −∂5ψ

∗
6− kψ

∗
5− kψ

∗
4.

(19)

Now we make use of secondary constraints in Eq. (14) to
rewrite Eq. (19) in the form

∂µψ6 + kψµ = 0, ∂µψ
∗
6 + kψ

∗
µ = 0. (20)

Similarly, the equations of motion for ψ4 and ψ∗4 are

ψ̇
4 =

{
ψ

4,H̃ 1
}

=−∂iψ
i−∂5ψ

5− kψ6,

ψ̇
∗4 =

{
ψ
∗4,H̃ 1

}
=−kψ

∗
6−∂iψ

∗i−∂5ψ
∗5. (21)

Then, the use of Eq. (14) in (21) yields

∂
µ
ψµ + kψ6 = 0, ∂

µ
ψ
∗
µ + kψ

∗
6 = 0. (22)

Finally, after combining Eqs. (20) and (22), we obtain

∂
µ
∂µψ6− k2

ψ6 = 0, ∂
µ
∂µψ

∗
6− k2

ψ
∗
6 = 0. (23)

Thus, we see that the components ψ6 and ψ∗6 of the DKP
field satisfy a Klein-Gordon-like equation. However, in our
context we consider that they obey the ansatz [17–19],

ψ6(x) =
1√

l
e−ims

ψ6(x, t), ψ
∗
6(x) =

1√
l
eims

ψ
∗
6(x, t),

(24)
which allows us to interpret Eq. (23) as the manifestly
Galilean covariant Schrödinger wave equations.

2.2. Quantization and the Green’s function

The canonical quantization of a constrained classical the-
ory is more difficult because the canonical coordinates be-
come operators acting in the Hilbert space H , and these op-
erators possess nontrivial commutation relations among each
other. To implement the canonical quantization of a theory
with second-class constraints, we consider that the canonical
variables are

(ψ6, p6,ψ4, p4,Ωk) , (25)

where Ωk is the canonical set of constraints, being equivalent
to the constraints Φk defined by Eq. (16).

Taking into account that the constraint surface is described
by equations Ωk = 0, the equal-time commutation relations
that define the quantization rules are obtained from the Dirac
brackets, i.e. { , }D(Ω)→ [ , ], resulting in

[
ψ̂6(x), p̂6(x′)

]
= ieim(x5−x′5)

δ(x−x′)1̂,[
ψ̂

4(x), p̂4(x′)
]
= ieim(x5−x′5)

δ(x−x′)1̂,

Ω̂k = 0. (26)

At this point we are able to construct the two-point func-
tion of the Galilean covariant DKP field. As the first step, we
write the operator solutions of the DKP equation for a free
particle as

Ψ̂(x) =
Z d3 p

(2π)3/2

{
â(p)u(−)(p)e−ip.x + b̂†(p)u(+)(p)eip.x

}
,

Ψ̂(x) =
Z d3 p

(2π)3/2

{
â†(p)u(+)(p)eip.x + b̂(p)u(−)(p)e−ip.x

}
,

(27)

where p represents the five-momentum pµ = (p,m,E)(m and
E being the mass and energy, respectively), and the operators



238 L.M. Abreu et al.

â(p), â†(p), b̂(p) and b̂†(p) satisfy the following commuta-
tion relations,[

â(p), â(p′)
]

=
[
â†(p), â†(p′)

]
= 0,[

b̂(p), b̂(p′)
]

=
[
b̂†(p), b̂†(p′)

]
= 0,[

â(p), â†(p′)
]

=
[
b̂(p), b̂†(p′)

]
= (2π)3

δ
(3)(p−p′),[

â(p), b̂(p′)
]

=
[
â(p), b̂†(p′)

]
= 0,[

â†(p), b̂(p′)
]

=
[
â†(p), b̂†(p′)

]
= 0. (28)

Also, since the spinors u(+) and u(−) satisfy

(βµ pµ + k)u(±)(p) = 0, (29)

their normalized solutions may be express as [10]

u(+)(p) =
√

2
2k


−p1
−p2
−p3

E
m
k

 , u(−)(p) =
√

2
2k


p1
p2
p3
−E
−m

k

 . (30)

Therefore, Eq. (30) shows that a covariant Galilean field
theory is in principle compatible with the idea of particles
with energy ±E and ±m, which is in agreement with Refs.
[23, 24]. Nevertheless, since the particles with negative en-
ergy -the antiparticles- are not physical significance in our
Galilean context, we can use the solutions with negative en-
ergy in the intermediate steps of our model, and the predicted
physical results cannot carry them.

From Eq. (30) it is possible to obtain the scalar products,(
u(+)(p),u(+)(p)

)
= u(+)(p)u(+)(p) = 1,(

u(−)(p),u(−)(p)
)

= u(−)(p)u(−)(p) =−1,(
u(−)(p),u(+)(p)

)
=

(
u(+)(p)u(−)(p)

)
= 0. (31)

Noticing that these scalar products can be written in the form

u(−)(p)u(−)(p) = β
µ pµ +

(βµ pµ)2

k
,

u(+)(p)u(+)(p) = −β
µ pµ +

(βµ pµ)2

k
, (32)

then the projection operators for particle and anti-particle
may be defined as

Λ+ =
u(+)(p)u(+)(p)

2k
, Λ− =

u(−)(p)u(−)(p)
2k

. (33)

Let us introduce the Green’s function of the Galilean DKP
theory, GDKP (x − x′ ), such that it must satisfy the equation

(βµ∂
µ + k)GDKP(x− x′) = δ

(5)(x− x′), (34)

where the Dirac delta function in G(4+1) is defined as [23, 24]

δ
(5)(x− x′) =

1
l

e−im(x5−x′5)
δ(x−x′)δ(x4− x′4). (35)

It is interesting to note that the Fourier expansion of the
GDKP-function in Eq. (34) is written as

GDKP(x′− x) =
1

(2π)5l

Z
d5 pe−ip.(x′−x)

×GDKP(p)
[
2πδ(p4−m)

]
, (36)

while the delta-function in Eq. (35) has the form

δ
5(x− x′) =

1
(2π)5l

Z
d5 pe−ip.(x−x′) [2πδ(p4−m)

]
. (37)

Then, using Eqs. (36) and (37) in (34) we find

GDKP(p) =
1

pµ pµ + k2

[
−βµ pµ +

(βµ pµ)2

k

]
, (38)

which is in agreement with Ref. [5]. So, taking into account
Eqs. (38) and (33), we can rewrite the GDKP-function in Eq.
(36) as

GDKP(x− x′) = e−im(x5−x′5) 1
(2π)4l

Z
d3 p

Z
d p5

×ei[p.(x−x′)−p5(x4−x′4)]

p5−K0 + i ε

2m
Λ+, (39)

where K0 ≡ (p2/2m)− (k2/2m). Finally, with the change of
variable p5→ p5−K0 and the integration over p5, we obtain

GDKP(x− x′) = −e−im(x5−x′5)
θ(x4− x′4)

i
(2π)3l

×
Z

d3 p
eip.(x−x′)

eiK0(x4−x′4)
Λ+. (40)

Hence, as expected, we clearly see that the Green’s function
is associated to the 2-point function (the Feynman propagator
of DKP formalism), i.e.

GDKP(x− x′) = 〈0|T [Ψ̂(x)Ψ̂(x′)]|0〉, (41)

where |0〉 is the ground state of the Fock space and T [·] is the
time-ordering operator.

The physical significance of the expression explicit in Eq.
(41) can be clarified if we consider the component [GDKP]66
of the expression in Eq. (40), which gives

[GDKP]66 (x− x′) = 〈0|T [ψ̂6(x)ψ̂
†
6(x
′)]|0〉

= −e−im(x5−x′5)
θ(x4− x′4)

i
(2π)3l

×
Z

d3 p
eip.(x−x′)

eiK0(x4−x′4)

≡ ∆F(x− x′), (42)

where ∆F(x − x′) is the Galilean covariant version of
the Green’s function (the Feynman propagator) of the
Schrödinger field, as it is remarked in Ref. [23]. This re-
sult proves the equivalence between the quantized Galilean
DKP theory for free scalar particles developed here and the
Schrödinger formalism for a non-relativistic Bose gas. Be-
sides, one can notice that the absence of a term carrying the
projector Λ− in Eq. (40) forbids the simultaneous existence
of particles and antiparticles, which is consistent with the
non-relativistic scenario.
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3. GENERATING FUNCTIONAL FOR GREEN’S
FUNCTIONS

3.1. The non-interacting formalism

The aim of this Section is the development of the func-
tional quantization of the Galilei-covariant DKP theory. Let
us to use the DKP action given by Eq. (5) in matrix form
for convenience. In this scenario, the canonical conjugate
momenta are

P =
∂L

∂Ψ̇

=−1
2

β
4
Ψ, (43)

P =
∂L
∂Ψ̇

=−1
2

Ψβ
4, (44)

and the Hamiltonian density is

H = PΨ̇+PΨ̇−L

= −1
2

Ψβ
i(∂iΨ)− 1

2
Ψβ

5(∂5Ψ)+
1
2
(∂iΨ)βi

Ψ

+
1
2
(∂5Ψ)β5

Ψ− kΨΨ. (45)

Now we can write the first-stage constraints in matrix
form,

Θ
(1) = P− 1

2
Ψβ

4, (46)

Θ
(1) = P+

1
2

β
4
Ψ, (47)

and the second-stage constraints are,

Θ
(2) = M

(
β

i
∂i +β

5
∂5 + k

)
Ψ (48)

Θ
(2) = Ψ

(
β

i←−
∂ i +β

5←−
∂ 5− k

)
N, (49)

where M = 1+β4β5 and N = 1+β5β4.
Let us consider in this Section the development of the

functional quantization of the Galilei-covariant DKP theory.
To do this, it is important to take into account the surface’s
constraints of the theory [22]. As can be seen from Eq. (8),
the Lagrangian density is independent of the subset of veloc-
ities {ψ̇i, ψ̇

∗
i , ψ̇5, ψ̇

∗
5}, making their equations in terms of the

set {pi, p∗i , p5, p∗5,} undetermined. Such a case forces the use
of secondary constraints, given by Eq. (49), to determine the
physical subspace of the path integral measure.

Thus, following the usual path-integral formalism of quan-
tum field theory, we define the generating functional as

Z
[
J ,J

]
= Z−1

0

Z
DPDPDΨDΨ

×
2

∏
a=1

δ(Θ(a))δ
(

Θ
(a)

)
det

{
Θ

(a),Θ(b)
}1/2

×exp
{

i
Z

d5x
[
PΨ̇+PΨ̇−H

+J Ψ+ΨJ
]}

, (50)

where Z0 = Z[0,0] and we set det
{

Θ(a),Θ(b)
}1/2

= 1. Inte-
grating over the momenta we obtain

Z
[
J ,J

]
= Z−1

0

Z
DΨDΨδ(Θ(2))δ

(
Θ

(2)
)

×exp
{

i
Z

d5x
[

1
2

Ψβ
µ
∂µΨ− 1

2
(∂µΨ)βµ

Ψ

+kΨΨ+ J Ψ+ΨJ
]}

. (51)

We can introduce the auxiliary fields χ and χ to exponen-
tiate the constraints, generating

Z
[
J ,J

]
= Z−1

0

Z
DΨDΨDχDχ

×exp
{

i
Z

d5x
[

1
2

Ψβ
µ
∂µΨ− 1

2
(∂µΨ)βµ

Ψ

+kΨΨ+
(
J +χM (βµ

∂µ + k)
)

Ψ

+Ψ

(
J +

(
β

µ←−
∂ µ− k

)
M

)]}
, (52)

where we have used the fact Mβ4 = β4N = 0. So, performing
the functional integration over the fields Ψ, Ψ, χ and χ, and
considering only physically relevant terms [27], we obtain

Z
[
J ,J

]
= exp

{
−i

Z
d5xd5x′J (x)GDKP(x− x′)J (x′)

}
, (53)

where GDKP(x− x′) is given by Eqs. (34) and (36). Hence,
from Eq. (53) we obtain the two-point function,

1
−i

δ2Z
[
J ,J

]
δJ (x)δJ (x′)

∣∣∣∣∣
J ,J =0

= GDKP(x− x′). (54)

We notice that Eq. (54) is identical to (41), which shows the
consistency of the functional formalism to obtain the two-
point function of Galilean DKP field.

In a general way, we can define the n-point function of the
Galilean DKP field as

1
(−i)n

δ2Z[J ,J ]
δJ (x1)...δJ (xn)δJ (x′1)...δJ (x′n)

∣∣∣∣
J ,J =0

= τDKP(x1, . . . ,xn,x′1, . . . ,x
′
n). (55)

After the analysis of the free quantized Galilean DKP for-
malism, we can conclude this study with the construction of
the general aspects of the interacting theory.

3.2. The generating functional for the interacting formalism

In the situation of an interacting DKP formalism, we as-
sume a Lagrangian density given by

L ′ = L +Lint
(
Ψ,Ψ

)
, (56)

where L is given by Eq.(7) and Lint is the interaction term,
depending only on Ψ e Ψ (without field derivatives).

Then, using standard methods, the modified generating
functional has the form

Z′
[
J ,J

]
∝ exp

{
−i

Z
d5xLint

[
1
i

δ

δJ∗
,

1
i

δ

δJ

]}
Z

[
J ,J

]
, (57)
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So, the n-point functions of the Galilean DKP field can be
derived from Eq. (55) by replacing Z

[
J ,J

]
with Z′

[
J ,J

]
.

The scattering amplitude can be determined by taking the
ket |p1, p2, . . . , pn〉 as representing the initial state of n parti-
cles and |p′1, p′2, . . . , p′n〉 the final state, then the amplitude is
defined by

S f i =
〈

p′1, p′2, . . . , p′n|S|p1, p2 . . . , pn
〉
.

The operator S is given by

S = : exp
{Z

d5x
[

Ψ̂in (x)Ox
δ

δJ (x)
+ Ψ̂

†
in (x)Ox

δ

δJ (x)

]}
:

×Z′
[
J ,J

]
|J =J =0

, (58)

where Ψ̂in are the DKP operator fields given by Eq. (27)
in the initial configuration, Ox = βµ∂µ + k and :: denotes the
normal ordering. By expanding the exponential of Eq. (58)
and after some manipulations, the n-th order leads to the term
in which we are interested,

S(n) =
1
l

n
2

Z n

∏
i=1

d5xid5x′i e−i(pi·xi−p′i·x′i)

×Ψ̂
†
(xi)
−→
O xi τDKP(x1, . . . ,xn,x′1, . . . ,x

′
n)
←−
O x′i Ψ̂

(
x′i

)
,

(59)

where the τDKP-function is defined in Eq. (55). Thus, with
the use of the Lehmann-Symanzik-Zimmermann (LSZ) re-
duction method and the formalism discussed in Ref. [23],
we are able to calculate scattering amplitudes S f i of interact-
ing processes; the equivalence between the obtained result
and the Schrödinger formalism is reached by taking into ac-
count the component [S f i]66, as it is similarly remarked at the
end of Section 2.

4. CONCLUDING REMARKS

The purpose of this paper has been to implement the quan-
tization of the the scalar sector of the Galilean covariant DKP
in both canonical and path-integral approaches. We have
shown that this formulation generates a consistent Galilei-
covariant version of the quantized Schrödinger field.

In the canonical quantization approach, an analysis of the
surface’s structure of constraints has been performed, yield-
ing the correct equal-time commutation relations that define
the quantization rules. The propagator of the free Galilean
DKP field has been determined, which is consistently equiv-
alent to the Schrödinger formalism for a non-relativistic Bose
gas.

In addition, the path-integral formalism in a matrix form
has been discussed, being possible to derive the n-point func-
tion of Galilean DKP field from the generating functional.
Finally, we have developed the basis for the construction of
an interacting DKP theory to study scattering processes.

Interesting topics related with the formalism studied above
deserve future investigation. A natural question is to analyze
the DKP field in a interacting context, as the presence of non-
relativistic vector field and a version of the formalism which
reproduces the physics of nonlinear Schrödinger equation.
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APPENDIX A: THE EQUIVALENCE BETWEEN THE
NONRELATIVISTIC DKP AND THE SCHRODINGER

EQUATIONS

In this Appendix we briefly show the equivalence of the
nonrelativistic DKP and the Schrodinger equations. The
equation of motion obtained from Lagrangian (5), which we
simply call it as DKP equation, is given by

(βµ
∂µ + k)Ψ = 0. (A1)

Notice that the multiplication of the DKP equation (A1) by
the operator ∂αβαβν from the left, and after contracting it
with ∂ν, yields

(
∂

µ
∂µ− k2)

Ψ = 0. (A2)

Thus, each component of the spinor Ψ must obey a Klein-
Gordon-like equation. However, considering that the DKP
fields must obey the prescription [10, 11, 13, 17–19]

Ψ(x) =
1√

l
e−ims

Ψ(x, t),

then Eq. (A2) can be rewritten as

i∂tΨ(x, t) =
(

1
2m

∇
2 + k2

)
Ψ(x, t),

which shows that each component of Ψ(x, t) obeys a
Schrödinger equation, with m being the mass of particle and
k is a irrelevant constant. Thus, Eq. (A2) can be understood
as a Galilean covariant version of the Schrödinger equation,
which is the right field equation of the nonrelativistic regime.
Hence, in this scenario we interpret Eq. (A1) as the non-
relativistic DKP equation, and Ψ(x) the nonrelativistic DKP
field.

APPENDIX B: SPIN 0 REPRESENTATION FOR THE
GALILEAN DKP THEORY

In this Appendix we explicit a possible choice for a 6-
dimensional representation of the β matrices:
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β
1 =


0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

 ,β2 =


0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0

 ,

β
3 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0

 ,β4 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 −1 0



β
5 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 −1 0 0

 (B1)
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