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Istituto Nazionale Fisica Nucleare, Italy
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To perform a more transparent analysis of the problems raised by contrary inferences within Consistent History
approach to Quantum Theory, we extend the formalism of the conceptual basis. According to our analysis, the
conceptual difficulties arising from contrary inferences are ruled out.

1 Introduction
Consistent History Approach to quantum theory, introduced
in explicit form by Griffiths [1], provides an extension of the
interpretation of the formalism of quantum mechanics. While
standard quantum theory is based on the concept of event,
represented by a projection operator E of the Hilbert spaceH
describing the system, CHA is based on the concept of his-
tory, which is a finite ordered sequence h = (E1, E2, ..., En)
of events. Suitable families of histories can be selected by
means of a criterion of consistency. According to CHA, only
the histories of a consistent family have physical meaning.
The occurrences of histories are the empirical facts the the-
ory is concerned with.

One of the aims of CHA is to solve some conceptual diffi-
culties of standard quantum mechanics. Griffiths and Omnès
[2] argue that the famous quantum measurement problem [3]
is solved by the extended interpretation provided by CHA.

However, the new theory raised some criticisms. One of
the most debated problems is linked to the so called contrary
inferences, illustrated in section 3 below. The debate pro-
voked by this problem did not reach a shared conclusion. We
think that a better clarity can be obtained if some natural con-
cepts of CHA are better formalized, so that to allow a more
transparent analysis of the debated questions.

We do this by extending the formalism of the concep-
tual basis of CHA with the introduction of the notion of sup-
port. Starting from it, new tools can be developed allowing a
deeper analysis of some questions. Also the problem of con-
trary inferences can be submitted to such an analysis. Our
result is that contrary inferences do not entail conceptual dif-
ficulties.

The plan of the paper is the following. In section 2 the ba-
sic concepts of CHA are outlined. The problem of contrary
inferences is described is section 3. The notion of support of
a family of histories is introduced in section 4, where the for-
malism stemming from this notion is developed. In section
4.2 some general implications of the extended formalism are
derived. A deeper undestanding of CHA notion of compati-
ble families is obtained in section 4.3.

Finally, the problem of contrary inferences is analyzed in
section 5 on the basis of the extended formalism, showing

that the related difficulties are ruled out.

2 Basic concepts of CHA
Let H be the Hilbert space which describes the physical sys-
tem according to standard quantum theory. Throughout this
paper we assume that H has a finite dimension N ; moreover,
the Heisenberg picture is adopted. Fixed a finite sequence of
times t1, t2, ..., tn, let us consider for each time tk a decom-
position of the identity Ek = {E(1)

k , E
(2)
k , ..., E

(ik)
k } which

is a finite set of projection operators of Hilbert space H, with
E

(i)
k ⊥ E

(j)
k if i 6= j and

∑ik

i=1 E
(i)
k = 1. A family C of his-

tories, generated by E1,E2, ...,En, is the set of all sequences
h = (E1, E2, ..., En) such that Ek =

∑
some i

E
(i)
k . Projec-

tion operator Ek in a history h represents an event susceptible
of occurring at time tk. When every event Ek constituting a
history h is just an event of Ek, i.e. if Ek ∈ Ek for all k =
1, 2, ..., n, then h is called elementary history. Hence the set
E of all elementary histories of C is the cartesian product E =
E1×E2×· · ·×En. For every history h = (E1, E2, ..., En),
by h we denote the following subset of elementary histories:
h = {ĥ = (Ê1, Ê2, ..., Ên) ∈ E | Êk ≤ Ek}. Two histories
h1 = (E1, E2, ..., En), h2 = (F1, F2, ..., Fn) ∈ C are sum-
mable if they differ in only one place, say k, hence Ej = Fj

for all j 6= k, and Ek ⊥ Fk; in such a case their sum is
h1 + h2 = (E1, E2, ..., Ek + Fk, ..., En) ∈ C. The histo-
ries h1 and h2 are said to be alternative if there is k such that
Ek ⊥ Fk.

Let h = (E1, E2, ..., En) be a commutative history, i.e.
such that all Ek commute with each other. According to
quantum theory, the statement “h occurs” means that all
events E1, E2, ..., En occur. Therefore, h is identified with
the single event E1 · E2 · · ·En = E1 ∧ E2 ∧ · · · ∧ En.
Though the mathematical notions of CHA are given within
the usual quantum theoretical formalism, standard quantum
theory is unable to consider and describe the occurrence of
a history when it is not commutative. However, in the case
that C is weakly decohering, i.e. if Re(Tr(Ch1C

∗
h2

)) = 0
for all h1, h2 ∈ E , h1 6= h2, the functional pC : C → [0, 1],
pC(h) = 1

N Tr(ChC∗h) behaves as a probability which ex-
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tends the probability predicted by standard quantum theory
for commutative histories [4]. The basic principle of CHA
establishes that when family C satisfies the mathematical cri-
terion of being weakly decohering then it is consistent, i.e.

(I) the set of all elementary histories of C is a “sample
space of mutually exclusive elementary events, one and
only one of which occurs” [8].

The occurrence of history h means that an elementary history
ĥ ∈ h occurs. Here the physical meaning of the notion of
occurrence of a history, involved in (I), is the following

(O) A given history h = (E1, E2, ..., En) occurs if all
events E1, E2, ..., En objectively occur at respective
times t1, t2, ..., tn. The occurrence of a history is an ob-
jective physical fact, independent of the performance
of a measurement which reveals this occurrence.

Accordingly, if C is consistent, any occurrence (or non-
occurrence) of an elementary history in C must be referred
to an individual, concrete sample of the physical system.

Remark 1. The probability of occurrence of a history h,
pC(h) = 1

N Tr(ChC∗h), is clearly independent of the con-
sistent family it belongs to. However, the symbol C is kept in
the formula for future convenience, as explained in remark 2
below.

3 Contrary inferences
To make predictions about occurrences of histories, the ini-
tial data, i.e. the known information about the physical sys-
tem, are expressed as sentences involving histories of a con-
sistent family C, and assumed as true, i.e. objectively real-
ized sentences. Conclusions can be derived by means of log-
ical reasonings in which histories of C are regarded as events
of a classical sample space and by interpreting the number
pC(h) = 1

N Tr(ChC∗h) as the probability of occurrence of
history h. These conclusions are the theoretical predictions
to be regarded as objectively realized sentences.

However, the histories needed to express the same ini-
tial data belong, in general, also to another consistent family
C′. Therefore, another set of conclusions can be obtained by
using C′ instead of C. A conclusion of this new set could
contradict some conclusion derived from C. To avoid these
conflicts, CHA introduces the following rule.

Single Family Rule. All valid physical inferences are those
obtained by using a single consistent family C. In general,
different conclusions drawn by using distinct consistent fam-
ilies do not hold together.

The possibility of contrary inferences is the main criti-
cism opposed to CHA. They are a particularly effective ex-
ample of the conflicts described above. Let us briefly de-
scribe them. Suppose that C1 and C2 are two different weakly
decohering families such that h1 = (E0, E1, E2) ∈ C1

and h2 = (E0, F1, E2) ∈ C2, with E1 ⊥ F1, and h0 =
(E0,1, E2) ∈ C1 ∩C2. A. Kent [5] was able to find examples
in which the conditional probabilities pC1(h1 | h0) = pC1 (h1)

pC1 (h0)

and pC2(h2 | h0) = pC2 (h2)

pC2 (h0)
are both 1. Therefore, according

to CHA we may state that if h0 occurs, then also E1 occurs
within the family C1, but then also F1 occurs within the fam-
ily C2; on the other hand, E1 ⊥ F1 means that the occurrence
of E1 excludes the occurrence of F1: then we have two infer-
ences which are contrary to each other. Contrary inferences
do not entail logical incoherence for CHA because they take
place in different consistent families, and thus the contradic-
tion arises only by violating the single family rule.

The presence of contrary inferences in CHA is at the root
of a rather lively debate. According to Kent, their occurrence
makes it “hard to take it [CHA] seriously as a fundamen-
tal theory in its present form” [5]. And about single family
rule, which formally prevents contrary inferences from yield-
ing theoretical contradiction [6], “any formalism [...] can be
made free from contradiction by such a restriction” [7]. The
replies of Griffiths are essentially based on the following ar-
guments.

1. The derivation of the contradiction violates the sin-
gle family rule. In particular, the problem arises be-
cause Kent assigns to ‘contrary’ histories h1 and h2 the
classical-logic meaning of word contrary, i.e. that the
occurrence of h1 always implies the non-occurrence of
h2. But this cannot be done because h1 and h2 cannot
be compared without violating single family rule 3.

2. “The conceptual difficulty goes away if one supposes
that the two incompatible frameworks are being used
to describe two distinct physical systems that are de-
scribed by the same initial data” [9].

The critics of CHA were not satisfied by these arguments.
To synthetically explain the reason for such a disagreement,
let us consider the example of contrary inferences above out-
lined and two physicists, Alice and Bob. Suppose that the
known data about a single physical system s are that E0 and
E2 occur, i.e. h0 occurs. In order to establish whether E1

occurs or not, Alice uses family C1 and, in accordance with
CHA, she finds that E1 occurs. Bob, for the same individ-
ual system s, chooses C2, and he concludes that F1 occurs.
The fact that E1 occurs or F1 occurs seems to depend on the
physicist. But, according to CHA itself, the occurrence of a
history, once established by means of the theory, is to be con-
sidered an objective fact. As a consequence, both E1 and F1

should occur. But everybody rejects this conclusion because
E1 ⊥ F1.

4 Extended formalism
Now we introduce the notion of support of a family of his-
tories. In such a way we give formal content to some con-
cepts, naturally stemming from the basic principles of CHA
reflected by (I) and (O), which are not formalized in the stan-
dard formulation of CHA. Two basic axioms (1 and 2) shall
be formulated as statements which arise from the physical
meaning of support. Such an extension of the formalism sup-
plies us with new tools which make possible a conceptually
transparent analysis of some questions in CHA. According to
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the results of this analysis, the conceptual difficulties linked
to contrary inferences are ruled out.

4.1 The notion of support
Given a family C and a concrete specimen s of the physi-
cal system, there are two mutually exclusive possibilities: for
this particular s either

i) one elementary history h of C occurs and all other ele-
mentary histories do not occur,

or

ii) no one of the elementary histories of C occurs.

In case (i) we say that the histories of C make sense for this s;
in case (ii) we say that the histories of C do not make sense.

For instance, if the physical system is a silver atom en-
tering a Stern and Gerlach apparatus, we may consider two
families of histories.
Family C(a), which is the family generated by the following
elementary histories

h
(a)
1 = “the atom emerges from the apparatus with spin up”

h
(a)
2 = “the atom emerges from the apparatus with spin

down”.

Family C(b), which is the family generated by the following
elementary histories

h
(b)
1 = “the atom is democratic”

h
(b)
2 = “the atom is republican”.

For this particular s family C(a) makes sense. On the con-
trary, family C(b) does not.

By support of C we mean the set b(C) of all concrete spec-
imens of the physical system for which C makes sense. The
introduction of set b(C) allows us to formally express the con-
sistency of a family by means of a simple definition which
reflects the meaning of consistency expressed by (I) and (O).

Definition 1. A family C is consistent if and only if b(C) 6= ∅.

As an evident insight, the (sufficient) condition which makes
the conclusions of logical reasonings based on a family C
valid for a specimen s of the physical system is

s ∈ b(C). (1)

Remark 2. As a consequence, also the number pC(h) =
1
N Tr(ChC∗h) can be interpreted as probability of occurrence
of h only if s ∈ b(C). For this reason it makes sense to keep
symbol C in this formula.

Now we deduce a natural implication for the supports of two
families C1 and C2 such that C1 ⊆ C2. We consider the case
in which b(C2) 6= ∅. For every s ∈ b(C2), there is only one
elementary history h2(s) of C2 which occurs, and all other
elementary histories of C2 do not occur. From C1 ⊆ C2 it fol-
lows that all elementary histories of C1 form a set, denoted by

E1, of albeit non-elementary histories of C2. Only one history
h1 ∈ E1 occurs, because there is a unique h1 ∈ E1 such that
h2(s) ∈ h1. Analogously we find that all other h ∈ E1 do not
occur. Therefore, it is possible to state that only one elemen-
tary history of C1 occurs and all other h ∈ E1 do not occur
for this individual system s; thus, by definition 1, s ∈ b(C1).
We state the result of this argument as the following axiom.

Axiom 1. Let C1, C2 be two families of histories. Then

C1 ⊆ C2 implies b(C2) ⊆ b(C1).

Now we proceed to state another axiom. If h ∈ C, by b1(h; C)
(resp., b0(h; C)) we denote the subset of b(C) whose elements
are the specimens for which h occurs (resp., does not occur).
It is obvious to assume that

b0(h; C) = b(C) \ b1(h; C) and b(C) = ∪h∈E b1(h; C). (2)

According to (O), the occurrence of h = (E1, E2, ..., En) is
equivalent to the occurrences of all events E1, E2, ...En at
the respective times t1, t2, ...,tn, and then it is independent
of the family which h belongs to. Therefore, we can state the
following axiom.

Axiom 2. If h ∈ C ∩ C′, then b1(h; C) ∩ b0(h; C′) =
b1(h; C′) ∩ b0(h; C) = ∅.

Axiom 2 establishes that a history h cannot occur as history
of C and do not occur as history of C′, for the same specimen
s.

4.2 General implications
Let X be any set of histories. The family generated by X
is C(X) = ∩{C|X⊆C}C. By axiom 1 we have that h ∈ C
implies b(C) ⊆ b(C({h})) = ∪h∈C (C). Therefore, b(h) ≡
b(C({h})) is the set of all specimens of the physical system
for which single history h occurs or does not occur (h makes
sense). By b1(h) (resp., b0(h))we denote the subset of those
systems for which h occurs (resp., does not occur). Of course

b0(h) = b(h) \ b1(h), b1(h) = b(h) \ b0(h). (3)

According to the present approach, the fact that a given his-
tory h0 occurs (or does not occur) for a physical system s0

means that a family C0 exists such that

h0 ∈ C0 and s0 ∈ b(C0). (4)

Family C0 = C({h0}) fullfils these requirements. All histo-
ries of C0 make sense for s0. However, the eventuality that
for a given system s history h ∈ C occurs but s /∈ b(C) is
logically possible. Therefore, the fact that a family C is con-
sistent, and h ∈ C does not imply that the inferences obtained
by means of reasonings based on C hold for an arbitrary phys-
ical system s for which h occurs.

Suppose that the following statement holds for s: “his-
tory h0 occurs” (initial data). Then s ∈ b1(h0), and hence
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s ∈ b(C({h0})), are true statements. Thus, all sentences ob-
tained by logical deductions based on C({h0}) hold for s.

Family C({h0}) admits several refinements, i.e. vari-
ous families C may exist such that C({h0}) ⊆ C. Deduc-
tions based on a refinement C in general do not hold for
s ∈ c(C({h0})); indeed, as already argued, C({h0}) ⊆ C
implies, by Axiom 1, b(C) ⊆ b(C({h0})), and therefore
s ∈ b(C) does not necessarily follow. Since C({h0}) ⊆ C,
all inferences obtained by reasoning with C({h0}) can be
obtained with C; this implies that the two set of sentences
cannot contradict with each other; but inferences involving
histories in C \ C({h0}) in general do not make sense if
s ∈ b(C({h0})) \ b(C).

Here is a profound difference between the “coarsest” fam-
ily C(X) compatible with the available initial data relative
to a physical system s and any refinement C of C(X): con-
clusions drawn by using C(X) are true, i.e. objective facts,
whereas the truth of conclusions obtained from a refinement
is not ensured by the truth of the data (X) alone. As a conse-
quence, in the present approach Griffiths’ prescription: “Use
the smallest, or coarsest framework which contains both the
initial data and the additional properties of interest in order to
analyse the problem.” [9] is not always valid.

4.3 Compatibility of families
Now we come to analyze the notion of compatibility of fam-
ilies.

Definition 2. Two consistent families C1 and C2 are compat-
ible if a third consistent family C exists such that C1∪C2 ⊆ C.

According to standard CHA, the conclusions drawn in dif-
ferent families hold together in the case that these families
are compatible. By axiom 1, compatibility implies b(C) ⊆
b(C1) ∩ b(C2); therefore, the conclusions drawn from C1 and
C2 certainly hold together for the systems s ∈ b(C). How-
ever, if s ∈ b(C1) ∩ b(C2), then the predictions drawn in C1

and C2 hold together for this system s, no matter whether C1

and C2 are compatible or not. It is true that single family rule
of CHA guarantees from conflicting inferences, but it makes
the theory unable to describe this possibility.

Moreover, if s ∈ b(C1) and s /∈ b(C2), then a conclusion
drawn from C2 does not necessarily hold for this s.

5 Analysis of contrary inferences
Contrary inferences were discovered by Kent within the
framework of standard CHA. To can discuss them on the ba-
sis of our extended formalism, we make coincide the concept
of consistency of definition 1 with that of standard CHA. This
identification is formally realized by means of the following
axiom.

Axiom CHA. A family C is consistent, in the sense of defi-
nition 1, if and only if it is weakly decohering. In this case
pC(h) = 1

N Tr(ChC∗h) is the probability of occurrence of
history h.

We begin our analysis of contrary inferences by formally

showing, within our approach, that two mutually orthogonal
projections represent events which cannot occur simultane-
ously.

Let E and F be two mutually orthogonal projections. The
family generated by E and F , i.e. C({E, F}), has 3 elemen-
tary (one-event) histories: E = {E, F, G = 1−(E+F )}; it is
the smallest family containing E and F . Then, following the
argument of section 4.2, whenever both E and F make sense,
all histories in C({E,F}) must make sense too. Therefore,
the following proposition holds.

Proposition 1. If E ⊥ F , then s ∈ b(E) ∩ b(F ) implies
s ∈ b(C({E,F})) and, therefore, b1(E) ∩ b1(F ) = ∅.

If families C1 and C2 in Kent’s example of contrary infer-
ences were compatible families, then we would have a con-
tradiction.

b(   )

b(   )

b(  )
s

C
C

C

2

1

Figure 1. Compatible families.

Indeed, in this case a consistent family C would exist such
that C1 ∪ C2 ⊆ C. By axiom 1 we get

b(C) ⊆ b(C1) ∩ b(C2). (5)

Furthermore h0 = (E0,1, E2) ∈ C, because h0 ∈ C1 ∩ C2.
Since pC(h0) 6= 0, there would exist a specimen ŝ ∈
b1(h0)∩b(C), and hence ŝ ∈ b(C1)∩b(C2) by (5). Therefore,
we should conclude ŝ ∈ b1(E1) and ŝ ∈ b1(F1), because
pC1(h1 | h0) = pC2(h2 | h0) = 1. Thus we would have a
contradiction with b1(E1) ∩ b1(F1) = ∅ which follows from
proposition 1, since E1 ⊥ F1.
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Figure 2. Non compatible families.

However, C1 and C2 in contrary inferences example are
not compatible families, therefore previous argument does
not apply. We can show that the occurrence of history h0 =
(E0,1, E2) does not give rise to conceptual difficulties. The
foregoing argument shows that the condition to be satisfied to
avoid the contradiction is

b1(h0) ∩ b(C1) ∩ b(C2) = ∅. (6)

If C1 and C2 are not compatible, (6) is logically consistent
with the occurrence of h0. Indeed, from

h0 ∈ C1 ∩ C2, (7)

by axiom 1 we are simply led to

b(C1) ∪ b(C2) ⊆ b(h0).

This relation is consistent with (6), contrary to what happen
if C1 and C2 were compatible. Indeed, when h0 occurs, i.e.
if s ∈ b1(h0) ⊆ b(h0), we have 3 mutually exclusive and
exhaustive possibilities:

p) s ∈ b(C1). In this case pC1(h1 | h0) = 1 must hold
(see remark 2) and this entails that E1 occurs. The
consistency with (6) merely requires that s /∈ b(C2) so
that pC2(h2 | h0) = 1 (‘h0 occurs implies F1 occurs’),
does not hold for this s. Regards to the occurrence of
F1 there are two possibilities:

p1) s ∈ b(F1) \ b(C2). This possibility is consistent be-
cause F1 ∈ C2 implies b(C2) ⊆ b(F1). In this case
axiom 2 and proposition 1 imply that F1 does not oc-
cur, i.e. s ∈ b0(F1);

p2) s /∈ b(F1), therefore F1 does not make sense, i.e. it
neither occurs nor does not occur.

q) s ∈ b(C2). In this case pC2(h2 | h0) = 1 holds, and
then F1 occurs. We have for E1 the same conclusions
of item (p) above for F1.

r) s /∈ b(C1) ∪ b(C2). In this case no conclusion about E1

or F1 can be obtained with the available data.

Which of these alternatives (p), (q) and (r) is actually realized
with our initial data (s ∈ b1(h0)) is a question which cannot
be predicted without further data. However, no contradiction
is implied.
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