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The material presented here consists of lecture notes written for a five two-hour sections course given during
the 2004 edition of the Brazilian School on Statistical Mechanics. The topics covered are 1. Bose-Einstein
condensation of trapped ideal gases; 2. Effective two-body interactions and exact results in the Gross-Pitaevski
limit; 3. Atomic structure effects, including “Feshbach resonances” and hybrid condensates; 4. Elementary
excitations in the Bogoliubov approximation and beyond; and 5. Splitt traps, interference phenomena and
condensate arrays.

Prologue

The five lectures (or Chapters) which follow are intended
as a pedagogical, theoretically oriented introduction to the
presently very active field involving the physics of Bose-
Einstein condensation in trapped atomic gases. The lectures
have been prepared for the 2004 Brazilian School on Sta-
tistical Mechanics, having in mind an audience of graduate
and advanced undergraduate students possibly, and perhaps
even typically, not concentrating in the subject. Needless to
say, this makes them quite distinct from a review article on
the subject, chiefly as considerations of impedance matching
with the intended audience plays the dominant role in the
choice and development of topics. This particular School is
perhaps a somewhat peculiar setting for these lectures, since
the systems which will be considered are orderly enough
to be quite well described, for several relevant purposes,
even in terms of a single one-body wavefunction. This will
be discussed in lecture 2, after the statistical mechanics of
the condensation phenomenon for anideal Bose gas is dis-
cussed in lecture 1. A fortunate circumstance in this con-
nection is that the condensation of an ideal gas is today no
longer just a simplifying idealization, but an experimentally
studied (i.e.,real) phenomenon (see section 1.2). This will
be discussed in some detail in lecture 3, together with the
just now fashionable theme of molecular hybridization of di-
lute Bose-Einstein condensates and Bose-Einstein conden-
sation of diatomic molecules formed in very cold fermionic

gases. Lecture 4 will carry us slightly beyond the basic “sin-
gle one-body wavefunction” description of real condensates,
and lecture 5 will introduce experimental results on the op-
tical fracturing of condensates as well as some of the ideas
and simplified models used in connection with such situa-
tions.

In preparing these lectures, I have tried my best to avoid
being trapped in what has been called by the former brazil-
ian minister Pedro Malan in a newspaper article published
on page 2 ofO Estado de S̃ao Pauloin January 11, 2004 (or
was this also a quote?) “some kind of error contract” be-
tween someone trying to transmit thoughts and ideas and
his “receivers”. This syndrome has been supposedly de-
scribed by none other than Francis Bacon. It was brought
to Malan’s attention (thus finding its way to his article and
finally to this Prologue) by a book by another economist,
Eduardo Giannetti da Fonseca, who identifies Bacon’sThe
advancement of learning, as the source. As I have not been
able to locate the original quote in time, I do my best trans-
lating (re-translating?) the brazilian version of the quote to
English, certainly not Bacon’s: “He who transmits knowl-
edge chooses to do it so as to enhance belief rather than
the possibility of examination, and who receives knowledge
seeks rather present satisfaction than the promises of inves-
tigation, and thus will rather not doubt than not fail; glory
leads the author not to reveal his weaknesses, and laziness
leads the disciple not to realize his strength”1. Curious as
my sources for these ideas happened to be, the dangers to

1Scanning once again Book 1 of Bacon’sThe advancement of learningI finally realized that at least some heavy editing has been involved in these in
fact rather loose quotes. The closest, or most relevant, passages I have been able to find in Bacon’s original work are transcribed here as they appear in the
Renascence Editions “imprint” available on line at the site http://darkwing.uoregon.edu/˜rbear/adv1.htm, see especially paragraph 9 of section V:

“BOOK 1, IV.12. And as for the overmuch credit that hath been given unto authors in sciences, in making them dictators, that their words should stand,
and not counsellors to give advice; the damage is infinite that sciences have received thereby, as the principal cause that hath kept them low at a stay without
growth or advancement. For hence it hath come, that in arts mechanical the first deviser comes shortest, and time addeth and perfecteth; but in sciences
the first author goeth farthest, and time leeseth and corrupteth. So we see, artillery, sailing, printing, and the like, were grossly managed at the first, and by
time accommodated and refined: but contrariwise, the philosophies and sciences of Aristotle, Plato, Democritus, Hippocrates, Euclides, Archimedes, of most
vigour at the first and by time degenerate and imbased; whereof the reason is no other, but that in the former many wits and industries have contributed in
one; and in the latter many wits and industries have been spent about the wit of some one, whom many times they have rather depraved than illustrated. For
as water will not ascend higher than the level of the first springhead from whence it descendeth, so knowledge derived from Aristotle, and exempted from
liberty of examination, will not rise again higher than the knowledge of Aristotle. And therefore although the position be good, OPORTET DISCENTEM
CREDERE, yet it must be coupled with this, OPORTO EDOCTUM JUDICARE; for disciples do owe unto masters only a temporary belief and a suspension
of their own judgment until they be fully instructed, and not an absolute resignation or perpetual captivity: and therefore, to conclude this point, I will say
no more, but so let great authors have their due, as time, which is the author of authors, be not deprived of his due, which is, further and further to discover
truth. Thus have I gone over these three diseases of learning; besides the which there are some other rather peccant humours that formed diseases: which
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which they refer are serious enough to deserve careful con-
sideration. I thus hope that the content of the lectures will
be doubted rather than believed, and tried to encourage this
by not concealing remaining obscurities.

A word should be said on why these lectures, or Chap-
ters, have been written in what amounts to thelingua franca2

of today. The organizers of the School said they intended
to publish written versions of the courses in a special issue
of the formerRevista Brasileira de Fsica, now known as
Brazilian Journal of Physics. My reaction to this was that it
tended to create a certain conflict, as the scope, tone and pur-
pose of course notes differ a lot from that of material usually
printed even in special issues of periodicals. The intention
having been maintained, my option has been to stick to the
scope, tone and purpose of course notes while borrowing
the use of thelingua francafrom the periodical literature.
Which might, after all, also have some pedagogical effect.

1 Condensation of ideal bosons in a
trap

1.1 Grand-canonical quantum statistics

1. Prolegomena: state vectors vs. density operators.

States of thermal equilibrium of many-particle quantum sys-
tems cannot be represented by state vectors on the account
of the fact that they do not correspond to definitemicro-
scopically definedstates, but rather correspond to an inco-
herent distribution over the various possible such states. In
this context,incoherentmeans that any interference effects
involving different states in the distribution are precluded.
One needs therefore a suitably extended way of describing
quantum states in order to be able to deal with thermal equi-
librium states.

The required extension is provided by the notion ofden-
sity operators. Consider first how this notion arises in the
particular situation in which the state of the system can be
described in terms of a state vector. If the microscopically
defined state of a many particle quantum system is character-
ized by a normalized state vector|ψ〉, 〈ψ|ψ〉 = 1 (or, equiva-
lently, by a wavefunctionψ(r1, . . . , rN ) ≡ 〈r1, . . . , rN |ψ〉,
where|r1, . . . , rN 〉 is a Dirac eigenket of the position opera-
tors for the various particles), then it is characterizedas well
by the density operator, defined in this case as the projection
operator

ρ ≡ |ψ〉〈ψ|
or, equivalently, by the (N-particle) densitymatrix

c

ρ(r1, . . . , rN ; r′1, . . . , r
′
N ) ≡ 〈r1, . . . , rN |ψ〉〈ψ|r′1, . . . , r′N 〉 ≡

≡ ψ(r1, . . . , rN )ψ∗(r′1, . . . , r
′
N ).

d

nevertheless are not so secret and intrinsic but that they fall under a popular observation and traducement, and therefore are not to be passed over. (. . . )
V.6. Another error hath proceeded from too great a reverence, and a kind of adoration of the mind and understanding of man; by means whereof men have

withdrawn themselves too much from the contemplation of nature, and the observations of experience, and have tumbled up and down in their own reason
and conceits. Upon these intellectualists, which are notwithstanding commonly taken for the most sublime and divine philosophers, Heraclitus gave a just
censure, saying, MEN SOUGHT TRUTH IN THEIR OWN LITTLE WORLDS, AND NOT IN THE GREAT AND COMMON WORLD; for they disdain to
spell, and so by degrees to read in the volume of God’s works: and contrariwise by continual meditation and agitation of wit do urge and as it were invocate
their own spirits to divine and give oracles unto them, whereby they are deservedly deluded. (. . . )

9. Another error is in the manner of the tradition and delivery of knowledge, which is for the most part magistral and peremptory, and not ingenuous and
faithful; in a sort as may be soonest believed, and not easiliest examined. I: is true, that in compendious treatises for practice that form is not to be disallowed:
but in the true handling of knowledge, men ought not to fall either on the one side into the vein of Velleius the Epicurean: NIL TAM METUENS, QUAM
NE DUBITARE ALIQUA DE RE VIDERETUR; [13] nor on the other side into Socrates his ironical doubting of all things; but to propound things sincerely
with more or less asseveration, as they stand in a man’s own judgment proved more or less. (. . . )

11. But the greatest error of all the rest is the mistaking or misplacing of the last or farthest end of knowledge: for men have entered into a desire of
learning and knowledge, sometimes upon a natural curiosity and inquisitive appetite; sometimes to entertain their minds with variety and delight; sometimes
for ornament and reputation; and sometimes to enable them to victory of wit and contradiction; and most times for lucre and profession; and seldom sincerely
to give a true account of their gift of reason, to the benefit and use of men: as if there were sought in knowledge a couch whereupon to rest a searching and
restless spirit; or a tarrasse, for a wandering and variable mind to walk up and down with a fair prospect; or a tower of state, for a proud mind to raise itself
upon; or a fort or commanding ground, for strife and contention; or a shop, for profit or sale; and not a rich storehouse, for the glory of the Creator and the
relief of man’s estate. Rut this is that which will indeed dignify and exalt knowledge, if contemplation and action may be more nearly and straitly conjoined
and united together than they have been; a conjunction like unto that of the two highest planets, Saturn, the planet of rest and contemplation, and Jupiter,
the planet of civil society and action: howbeit, I do not mean, when I speak of use and action, that end before-mentioned of the applying of knowledge to
lucre and profession; for I am not ignorant how much that diverteth and interrupteth the prosecution and advancement of knowledge, like unto the golden ball
thrown before Atalanta, which while she goeth aside and stoopeth to take up, the race is hindered;

Declinat cursus, aurumque volubile tollit. (. . . )” (Feb. 28, 2004)

2Lingua Franca; a composite language made up of Italian and the various languages of western Asia, used in the Levant by foreign traders and natives of
that region. (Webster’s New Twentieth Century Dictionary of the English Language, Unabridged. Rockville House Publishers, Inc., New York, 1964).
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The normalization of the state vector translates into the
property that the density operator, or matrix, has unittrace,
i.e.

Tr ρ ≡
∫

d3r1 . . .

∫
d3rNψ(r1, . . . , rN )ψ∗(r1, . . . , rN )

=
∑

j

〈φj |ψ〉〈ψ|φj〉 = 1

where the vectors{|φj〉} constitute an arbitrary orthonor-
mal base in state vector space. In this case the operatorρ is
clearly anidempotent(i.e.,ρ2 = ρ) self-adjoint operator. Its
only possible eigenvalues are therefore 1 and 0. The eigen-
vector corresponding to the eigenvalue 1 is clearly the state
vector|ψ〉 itself (this is therefore how the original state vec-
tor |ψ〉 can be retrieved, given the corresponding idempotent
density operatorρ), while the eigenvalue 0 is highly degen-
erate, sinceany state-vector orthogonal to|ψ〉 is an eigen-
vector associated to this eigenvalue. Note moreover that the
expectation value of some given observableO in the state
|ψ〉 can be obtained directly from the density operator as

Tr Oρ ≡
∑

j

〈φj |Oρ|φj〉 =
∑

j

〈φj |O|ψ〉〈ψ|φj〉 =

=
∑

j

〈ψ|φj〉〈φj |O|ψ〉 = 〈ψ|O|ψ〉,

the last step following from the completeness of the or-
thonormal base{|φj〉}. In a similar way one can also verify
the importantcyclic propertyof the trace

TrOρ = Tr ρO

which is in fact more general, in that it does not depend on
the particular form ofρ.

The required generalization of the way to characterize
states of quantum systems in order to include the needed in-
coherent distributions of state vectors consists in replacing
the idempotency conditionρ2 = ρ by the weaker condition
thatρ is anon-negativeself-adjoint operator with unit trace.
The non-negativity condition means that all the eigenvalues
are non-negative, i.e. they are positive or zero. These den-
sity operators can be conveniently written in terms of their
eigenvalues and normalized eigenvectors|Rj〉 as

ρ|Rj〉 = pj |Rj〉, pj ≥ 0, −→ ρ =
∑

j

|Rj〉pj〈Rj |.

(1)
The unit trace condition is now expressed as

∑
j pj = 1.

The idempotent density operators are clearly particular cases
of this more general class, which include moreover posi-
tive linear combinations ofmany(possibly even an infinite
number of) orthogonal projection operators. The unit trace
condition (actually the condition that the trace is finite is
of course sufficient) in fact restricts a great deal the spec-
trum of the more general density operators: by virtue of the

Hilbert-Schmidt theorem it is guaranteed to be a purely dis-
crete spectrum; and when the number of non-zero eigenval-
ues is infinite, they can only have zero as an accumulation
point.

Average values of observables in states described by
these density operators are also calculated in terms of a
trace, which gives now

TrOρ =
∑

j

O|Rj〉pj〈Rj | =
∑

j

pj〈Rj |O|Rj〉. (2)

This average appears thus as a weighted average of quantum
expectation values in the state vectors|Rj〉, with weightspj .
A standard interpretation of this is that the density operator
ρ describes anensembleof systems, in which the (classical)
probability of finding a system in state|Rj〉 is pj . A particu-
larly relevant property of the state represented by the density
operatorρ, which gives a measure of fragmentation of the
trace into the array of classical probabilities is itsentropyS
(sometimes called thevon Neumann entropy), defined as

S = −kBTr (ρ ln ρ) = −kB

∑

j

pj ln pj . (3)

For kB > 0 this is a non-negative quantity which vanishes
in the limit of an idempotent density operator. If the con-
stantkB is taken as the Boltzmann constant,S has units of
the standard thermodynamic entropy.

A further stepis still needed when one wishes to use
grand-canonical methods, as it is often the case in the con-
text of Bose-Einstein condensation. In this case the number
of particles in the many-particle system under consideration
is not fixed and must be seen as an observable. The way to
accommodate this is to use the language of “second quan-
tization” (see, e.g., ref. [1], Chapter 7). The state vectors
now reside in a “Fock space”, or occupation number space,
in which a number operator can be defined. The basic ob-
jects representing states of thermal equilibrium of quantum
many-particle systems are thus to be taken as positive self-
adjoint operators of unit trace in Fock space.

2. Grand-canonical equilibrium density operator. We
now consider specifically a system of many identical
bosonic atoms characterized by a hamiltonianH. For the
purposes of the formal developments to be undertaken at this
point, this may include interactions between atoms, e.g. rep-
resented by a suitable two-body potentialv(rj , rl), in addi-
tion to an external, one-body confining potential represent-
ing the trap. The state of the system is described by a density
operatorρ in Fock space. In this space we have also a num-
ber operatorN , and the hamiltonian is represented by an op-
erator which commutes withN . This means that onecould
adopt a canonical formulation by restricting the treatment to
theN -particle sector of the Fock space, which is closed un-
der the action of the number-conserving hamiltonianH, but
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it will be convenient to allow for states in which neither the
number of atoms nor the energy are sharply defined.

The problem we are set to solve is to determine the den-
sity operator which makes the entropy an extremum, with
prescribedaverage valuesfor the energy and number of
atoms. The density operator is written in the form (1), so that
the average values of the hamiltonianH and of the number
operatorN are given respectively by (see eq. (2))

TrHρ =
∑

j

pj〈Rj |H|Rj〉

and

TrNρ =
∑

j

pj〈Rj |N |Rj〉.

The entropy is expressed as in eq. (3), provided the weights
satisfy the condition

∑
j pj = 1 and the states|Rj〉 are nor-

malized,〈Rj |Rj〉 = 1. These subsidiary conditions can all
be taken care of in terms of Lagrange multipliersβ, α, λ and
ηj , so that the variational condition for the thermal equilib-
rium state is

c

δ


−kB

∑

j

pj ln pj − β
∑

j

pj〈Rj |H|Rj〉 − α
∑

j

pj〈Rj |N |Rj〉 − λ
∑

j

pj +
∑

j

ηj〈Rj |Rj〉

 = 0.

d

Variation ofpj gives

kB ln pj+kB+β〈Rj |H|Rj〉+α〈Rj |N |Rj〉+λ = 0 (1.4)

while variation of〈Rj | leads to

pj(βH + αN)|Rj〉 = ηj |Rj〉 or

(βH + αN)|Rj〉 =
ηj

pj
|Rj〉 ≡ εj |Rj〉, (1.5)

which shows that the states|Rj〉 are eigenstates ofβH +
αN , so that this operator andρ are simultaneously diagonal,
with β〈Rj |H|Rj〉 + α〈Rj |N |Rj〉 = εj . Straightforward
algebra now gives, from (1.4),

pj = e−1−λ/kBe−εj/kB

which, using the unit trace condition to evaluate the first ex-
ponential, leads to

pj =
e−εj/kB

∑
j e−εj/kB

.

The denominator of this expression can be written as
Tr

(
e−(βH+αN)/kB

)
, so that the resulting form for the den-

sity operator is

ρ =

∑
j |Rj〉e−εj/kB 〈Rj |

Tr
(
e−(βH+αN)/kB

) =
e−(βH+αN)/kB

Tr
(
e−(βH+αN)/kB

) .

The meaning of the Lagrange multipliersλ, β andα in
macroscopic terms can be found by comparing the statistical
expression for the entropy which results from imposing the
variational condition (1.4), namely

S = kB + λ + βTrHρ + αTr Nρ,

with the corresponding thermodynamic expression

S = − 1
T

(Ω− U + µN) ,

whereT is the temperature,Ω is the grand potential,µ is the
chemical potential,N is the number of particles andU is the
internal energy. This allows one to make the identifications

kB + λ = −Ω
T

; β =
1
T

and α = − µ

T
.

The grand-canonical equilibrium density operator at temper-
atureT becomes accordingly

ρ =
e
− 1

kBT (H−µN)

Tr
(
e
− 1

kBT (H−µN)
) . (1.6)

The chemical potentialµ can still be seen as a Lagrange
multiplier to be determined by the subsidiary condition on
the average total number of particles,Tr Nρ = 〈N〉.

Some general comments are in order at this point. First,
note that the Bose-Einstein statistics (in the case one is deal-
ing with a system of many identical bosons) is entirely taken
care of by the appropriate setting up of the Fock space in
which the density operatorρ resides. In fact an identical
result is obtained for a system consisting of many identi-
cal fermions, in which case the commutation relations of
the second quantized (or quantized field) operators are how-
ever changed as appropriate. Second, for second-quantized
hamiltoniansH which commute with the total number op-
eratorN , the eigenvectors|Rj〉 of the density operator are
simultaneous eigenvectors ofH andN and, except for “ac-
cidental” degeneracy, no quantum interference effects ex-
ist involving different such eigenvectors. Of course,all
energiesand particle numbers contribute (with appropriate
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weights) to the grand-canonical thermal state described by
ρ, and the actual determination of the appropriate eigen-
vectors involves the full complexity of the quantum many-
body problem. Finally, if the many-body hamiltonianH in-
cludes an external, confining one-body potential to represent
a trap for the particles, one cannot take a thermodynamic
limit by letting 〈N〉 → ∞ at constant density, since this is
constrained by the trap. Correspondingly, in this case the
grand-canonical formulation loses its equivalence to alter-
nate (technically less friendly) treatments.

1.2 Ideal Bose gas in a trap

Non-interacting identical bosons in a trap, represented by
an external, confining one-body potentialV (~r), can be han-
dled in terms of a very simple (possibly the only simple)
application of the previous general results. What makes it
simple is the absence of two- (or even possibly also other-
wise many, like three-, etc.) atom interactions, which are
generally present in real systems. Because of this, the qual-
ification of this case as “ideal” has been entirely appropriate
until late 2002, when areal “ideal” condensate of cesium
atoms was produced and studied in the Austrian town of
Innsbruck[2]. As will be discussed in Chapter 3 (see sec-
tion 3.1), one remarkable experimental trick developed in
connection with the alkali gases, which is particularly im-
portant in the case of cesium atoms, allows for the external
control of the effective atom-atom interaction[3]. This is
achieved by making judicious use of Zeeman displacements
of atomic energy levels. Thus the control agent is just an
external magnetic field, and it has permitted to tune the ef-
fective interactions among condensate cesium atoms to zero.
The same trick had in fact been used before in the case of
one of the rubidium isotopes (85Rb) to obtain a real “ideal”,
non Bose-Einstein condensed thermal gas[4].

The case of an extended, non-interacting gas of identical
bosons is of course equally simple to deal with in statistical
mechanical terms, and became in fact a standard textbook
case, in which one is able to take the thermodynamic limit
and derive exact statistical mechanics results (see e.g. [6],
section 1.9). In the case of the trapped ideal gas, the possi-
bility of taking a thermodynamic limit (in the usual sense,
at least) is excluded, so that in this case the results will bear
marks which are specific of the grand-canonical formulation
and which are moreover possibly artificial, such as particle
number fluctuations. In spite of this, technical convenience

has been decisive for the use of a grand-canonical frame-
work for the trapped gas [7, 8].

The second-quantized hamiltonian for the non-
interacting bosons in the trap can be written as

H =
∑

n

ena†nan

where the energiesen are the single-particle (with massM )
eigenvalues associated with the bound (normalized), station-
ary single-particle eigenfunctionsϕn(~r) of the trap

[
−~

2∇2

2M
+ V (~r)

]
ϕn(~r) = enϕn(~r) (1.7)

and thean, a†n are boson annihilation and creation operators
associated with the single-particle eigenfunctionsϕn(~r).
They satisfy the standard Bose commutation relations

[am, a†n] = δmn,

[am, an] = [a†m, a†n] = 0

and are related to the Bose field operatorsψ(~r), ψ†(~r),
which in turn satisfy the commutation relations

[ψ(~r), ψ†(~r ′)] = δ(~r − ~r ′),

[ψ(~r), ψ(~r ′)] = [ψ†(~r), ψ†(~r ′)] = 0,

through

an =
∫

d3r ϕ∗n(~r)ψ(~r), a†n =
∫

d3r ϕn(~r)ψ†(~r).

Note that the spin degree of freedom has been ignored in
this formulation, which therefore applies either to spinless
bosons or to bosons with spin but constrained to a definite
magnetic substate, as it is in fact the case for magnetic traps.
For non-interacting bosons of spinS and spin-independent
trap one-body potential one would still have to take into ac-
count the2S + 1 degeneracy of the single-particle states.

The number operator is in this setup given as

N =
∑

n

a†nan

so that the grand-canonical density operator (1.6) can be
worked out to acquire the form of a product of single-
particle factors:

c

ρ =
e
− 1

kBT

∑
n(en−µ)a†nan

Tr
(
e
− 1

kBT

∑
n(en−µ)a†nan

) =
∏
n

e
− 1

kBT (en−µ)a†nan

∑∞
νn=0 e

− νn
kBT (en−µ)

=
∏
n

e
− 1

kBT (en−µ)a†nan

(
1− e

− en−µ
kBT

)−1 . (1.8)

d

In the first step above the commutativity of the different
terms in the exponents has been taken advantage of, while
transition to the last form involved using the standard for-

mula for the sum of a geometric series. Note that conver-
gence of the series requires thaten − µ > 0 for all n, which
implies that the chemical potentialµ has the smallest single-
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particle eigenvaluee0 (say) as an upper bound. In what fol-
lows we define the energy scale so thate0 ≡ 0, so that one
must have−∞ < µ < 0.

As mentioned in the preceding section, the value ofµ is
fixed by the subsidiary condition that the mean total num-
ber of particles (taken in the density operator (1.8)). To this
effect we must evaluate

〈N〉 = Tr

(∑
n

a†nan ρ

)
=

∑
n

Tr
(
a†nan ρ

)
=

∑
n

〈Nn〉,

where〈Nn〉 is the mean number of particles in the single-
particle leveln. This can be evaluated as

c

〈Nn〉 = Tr
(
a†nan ρ

)
=

(
1− e

− en−µ
kBT

)
Tr

(
a†nane

− 1
kBT (en−µ)a†nan

)
=

=
(
1− e

− en−µ
kBT

) ∞∑
ν=0

νe
− 1

kBT (en−µ)ν = −
(
1− e

− en−µ
kBT

) d

d (en−µ)
kBT

∞∑
ν=0

e
− 1

kBT (en−µ)ν =

=
e
− 1

kBT (en−µ)

1− e
− 1

kBT (en−µ)
≡ ze

− en
kBT

1− ze
− en

kBT

, (1.9)

d

where, in the last step, the quantityz = e
µ

kBT , known as
the fugacity, has been introduced. From the bound on the
chemical potentialµ and our choice of energy scale it fol-
lows that0 < z < 1. For a given temperatureT , it is to
be determined by the subsidiary condition regarding the to-
tal number of particles, since it determines the value of the
chemical potential at that temperature. A particularly inter-
esting quantity is the mean occupation of the lowest single-
particle state of the trap, which can be written in terms of
the fugacity simply as

〈N0〉 =
z

1− z
, (1.10)

which can essentially exhaust the total mean number〈N〉
when the fugacityz approaches its upper bound.

The actual determination of the chemical potentialµ,
or of the fugacityz, involves the the single-particle spec-
trum en, and therefore requires further specification of the
trap potentialV (~r). A simple choice, which is moreover
“realistic” for the current experimental setups, is that of an
anisotropic harmonic potential

V (~r) → M

2
(
ω2

1x2 + ω2
2y2 + ω2

3z2
)

which leads to the spectrum

en → en1n2n3 = ~ω1n1 + ~ω2n2 + ~ω3n3,

ni = 0, 1, 2, . . . , i = 1, 2, 3.

For numerical purposes it is convenient to rewrite the final
expression (1.9) for〈Nn〉 using again the formula for the
sum of a geometrical series as

〈Nn〉 = ze
− en

kBT

∞∑
ν=0

zνe
− νen

kBT =
∞∑

ν=1

zνe
− νen

kBT

so that with this choice of trap potential one has

〈Nn1n2n3〉 =
∞∑

ν=1

zνe
−νn1

~ω1
kBT −νn2

~ω2
kBT −νn3

~ω3
kBT .

The total mean number of particles is then[7]

c

〈N〉 =
∞∑

n1,n2,n3=0

〈Nn1n2n3〉 =
∞∑

ν=1

∞∑
n1,n2,n3=0

3∏

i=1

zνe
−νni

~ωi
kBT =

∞∑
ν=1

zν
3∏

i=1

1

1− e
−ν

~ωi
kBT

. (1.11)

d

From eq. (1.11) one can numerically determine the fu-
gacity z (and hence the chemical potentialµ) as a func-
tion of the temperature. This completes the determination
of the thermal quantum density operatorρ for the ideal

bosons in the harmonic trap. In the case of anisotropictrap,
ω1 = ω2 = ω3 = ω it reduces to
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〈N〉 =
∞∑

ν=1

zν

(
1− e

−ν ~ω
kBT

)3 . (1.12)

Before turning to numerical examples, it is useful to use

the general expressions themselves in order to characterize
the Bose-Einstein condensation syndrome for the trapped
ideal gas[8]. Returning for a moment to eq. (1.9), the
total number of particles in excited single-particle states,
〈N〉 − 〈N0〉, can be written as

c

〈N ′〉 = 〈N〉 − 〈N0〉 =
∞∑

n=1

e
− 1

kBT (en−µ)

1− e
− 1

kBT (en−µ)
=

∞∑
n=1

1

e
1

kBT (en−µ) − 1
<

<

∞∑
n=1

1

e
en

kBT − 1
≡ 〈N ′

max〉. (1.13)

d

The inequality follows from the fact thatz < 1. Thus,
if 〈N〉 > 〈N ′

max〉, it follows that at least〈N〉 − 〈N ′
max〉

must occupy the lowest single-particle statee0. The number
〈N ′

max〉 is accordingly called thesaturation numberin [8].
For the isotropic harmonic trap, this saturation number can
be well approximated in terms of a simple, closed expres-
sion. The trick is to observe by a simple counting procedure
that in this special case the single-particle energy levels

en → ~ω(n1 + n2 + n3), n = n1 + n2 + n3

are(n + 1)(n + 2)/2-fold degenerate, so that one has

〈N ′
max〉 =

1
2

∞∑
n=1

(n + 1)(n + 2)

e
n~ω
kBT − 1

.

Now letn~ω/kBT ≡ x and~ω/kBT ≡ ξ. Providedξ ¿ 1,
the sum overn can be well approximated by an integral as

〈N ′
max〉 →

1
2ξ3

∫ ∞

ξ/2

(x + ξ)(x + 2ξ)
ex − 1

dx.

The integrands involvingx2 andx in the numerator are reg-
ular asx → 0, and thus one can estimate the corresponding
integrals by replacing the lower integration limitξ/2 by zero
in them. Then

c
∫ ∞

0

x2dx

ex − 1
=

∫ ∞

0

x2 e−x

1− e−x
dx =

∫ ∞

0

∞∑
ν=1

x2e−νxdx =
∫ ∞

0

∞∑
ν=1

2
ν2

e−νxdx =
∞∑

ν=1

2
ν3

= 2ζ(3).

The sum of reciprocal powers has been expressed in terms of the Riemann zeta functionζ(s) (see e.g. ref. [9]) which for
s = 3 has the valueζ(3) = 1.202 . . . . As for the integral involvingx in the numerator of the integrand one gets similarly

3ξ

∫ ∞

0

x dx

ex − 1
= 3ξ

∫ ∞

0

∞∑
ν=1

xe−νxdx = 3ξ

∞∑
ν=1

1
ν2

= 3ξ × ζ(2) = 3ξ × 1.6449 . . .

which, for ξ ¿ 1, amounts to just a small correction to the integral involvingx2 in the integrand. As for the remaining
integral, involving the numerator2ξ2, the lower integration limit cannot be taken to zero due to the singular behavior of the
integrand forx → 0. It can however be evaluated as

2ξ2

∫ ∞

ξ/2

dx

ex − 1
= 2ξ2

∫ ∞

ξ/2

∞∑
ν=1

e−νxdx = 2ξ2
∞∑

ν=1

e−νξ/2

ν
= −2ξ2 ln(1− e−ξ/2).

d

Due to the presence of the factor2ξ2 this is again only a
small correction to the first integral whenξ ¿ 1. An ad-
equate estimate of〈N ′

max〉 for the isotropic harmonic trap,
whenx1 ¿ 1, or equivalently~ω ¿ kBT , is therefore ob-
tained by keeping just theζ(3) contribution, leading to

〈N ′
max〉 '

ζ(3)
ξ3

= 1.202 . . .

(
kBT

~ω

)3

.

This formula is useful to set a temperature scale for the
trapped ideal gas. In fact, the “critical” temperatureT harm

c
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at which this estimate of〈N ′
max〉 becomes equal to the total

mean number of particles〈N〉, namely

T harm
c =

~ω
kB

( 〈N〉
1.202 . . .

) 1
3

(1.14)

is that temperature below which the bosons start accumu-
lating in the lowest single-particle statee0. Note thatT harm

c

depends on the total mean number of bosons in the harmonic
trap. The corresponding value ofξ is ξc ≡ ~ω/kBTc =
(1.202 . . . /〈N〉)1/3, which guarantees thatξc ¿ 1 and
hence the reliability of the estimate if〈N〉 is not too small.
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Figure 1.1. Occupation of the lowest single-particle state,N0/N ,
and fugacity,z, (lowest graph, heavy lines) as a function ofT/Tc,
for the indicated values of the total mean number of particles in the
isotropic harmonic trap. The upper graph is a logarithmic plot of
N0/N to exhibit more clearly the behavior of this quantity in the
transition region and above.

Results obtained by solving numerically eq. (1.12) for
the fugacityz and using eq. (1.10) to evaluate the occupancy
of the lowest single-particle statee0 as a function of temper-
ature are shown for an isotropic harmonic trap in Fig.1.1.
The temperature is plotted in units of the “critical” tempera-
tureT harm

c given by eq. (1.14) for the appropriate values of
the total mean number of bosons. Supplying the values of
the constants involved in this formula one gets

T harm
c = 4.5 N

1
3 ν(Hz)× 10−11 0K

whereν = ω/2π is the trap frequency (in Hertz) andT harm
c

is given in degrees Kelvin. Takingν = 200 Hz as a ballpark
value for the trap frequency (which corresponds to an oscil-
lator parameterb ≡ (~/Mω)1/2 ' (20/Mamu)1/2 × 10−3

cm,Mamu being the boson mass in atomic mass units), one
sees thatT harm

c is about40, 200 and400 nano-Kelvin for
〈N〉 equal to100, 10000 and100000 respectively.

1.2.1 “Quasi one-dimensional” harmonic trap

Anisotropic traps can of course be dealt with going back to
the more general eq. (1.11), instead of using its isotropic
specialization, eq. (1.12). Here we consider as an exam-
ple the case of a “quasi one-dimensional” trap[7], in which
ω1 ' ω2 À ω3 = ω, with ω/2π in the 200 Hz ballpark.
Thus the harmonic trap is very stiff in the transverse (1 and
2) directions, the corresponding excitation energies being
much larger than that corresponding to longitudinal (direc-
tion 3) excitations.
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Figure 1.2. Similar to Fig. 1.1 for the quasi one-dimensional
trapped ideal gas. The “critical” temperatureTc is now given
by eq. (1.16), for the indicated values of the total mean num-
ber of particles in a quasi one-dimensional harmonic trap with
ω1/ω3 = ω2/ω3 = 104. The fugacity and the condensed fraction
have been obtained from eq. (1.11), taking transverse excitations
into account.

In order to estimate the saturation number in this case,
we neglect the contribution of transverse excitations in eq.
(1.13), which in this way reduces to

〈N ′
max〉 '

∞∑
n=1

1
enξ − 1

→ 1
ξ

∫ ∞

ξ/2

dx

ex − 1
, ξ =

~ω
kBT

¿ 1.

The integral appearing here has been evaluated before, so
that one obtains
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〈N ′
max〉 ' −1

ξ
ln(1− e−ξ/2) ' 1

ξ
ln

(
2
ξ

)

=
kBT

~ω
ln

(
2kBT

~ω

)
. (1.15)

The “critical temperature” T qod
c for the quasi one-

dimensional, trapped free Bose gas is accordingly now de-
termined by the equation

〈N〉 =
kBT qod

c

~ω
ln

(
2kBT qod

c

~ω

)
, (1.16)

and, due to the slow variation of the logarithmic factor with
respect to the linear one, the conditionξ ¿ 1 is again satis-
fied provided〈N〉 is not too small, ensuring the validity of
the estimate.

Numerical results for a trap withω1/ω3 = ω2/ω3 = 104

are shown in Fig. 1.2. This implies an aspect ratio of1 : 100
for the ground state density, transverse excitation quanta be-
ing four orders of magnitude larger than the longitudinal
quantum. As in the case of Fig. 1.1, the temperature is
given in units ofTc, now determined from eq. (1.16). The
fugacityz and the fractional occupation of the lowest level,
〈N0〉/〈N〉 have been obtained by solving eq. (1.11) numer-
ically, without neglecting the transverse excitations. This
in fact affects especially the results for the fugacity, in the

case with larger number of particles. For〈N〉 = 105, z re-
mains within 1 % of1 in the entire range shown in the figure,
when transverse excitations are neglected completely (as ap-
propriate for the limitω1/ω3 = ω2/ω3 →∞. One sees that
the rise of the fractional occupation of the lowest level as
the temperature is decreased below the “critical” tempera-
ture is qualitatively similar to that found for the spherically
symmetric harmonic trap, but tends to a less abrupt, in fact
linear character.

1.3 Uniform vs. trapped ideal Bose gas

The uniform ideal Bose-Einstein gas in three spatial dimen-
sions, which was actually the case treated initially by Ein-
stein in the 1920’s, can be handled with the same tools
used above in connection with the trapped gas. Here we
replace eq. (1.7) by the free particle Schrdinger equation
with periodic boundary conditions in volumeV, so that nor-
malized single-particle wavefunctions and their respective
single-particle energies are

ϕ~k(~r) =
1√V ei~k·~r, ek =

~2k2

2M
.

The corresponding boson creation and annihilation opera-
tors are written asa†~k anda~k respectively. Implementing the
quantization volume asV ≡ L1L2L3 one has furthermore

c

k2 = k2
1 + k2

2 + k2
3 =

(
2π

L1

)2

n2
1 +

(
2π

L2

)2

n2
2 +

(
2π

L3

)2

n2
3

with ni = 0,±1,±2,±3, . . . , i = 1, 2, 3. With these ingredients the relation determining the fugacity, which corresponds to
eq. (1.11), reads

〈N(V)〉 =
∑

n1,n2,n3

〈N (V)
n1n2n3

〉 =
∑

n1,n2,n3

1

z−1eλ2
T (n2

1/L2
1+n2

2/L2
2+n2

3/L2
3) − 1

(1.17)

d

where〈N(V)〉 is the total mean number of bosons in volume
V and

λT ≡ 2π~√
2MkBT

(1.18)

is the de Broglie wavelength of a particle of massM and
kinetic energykBT . It is interesting to write down the satu-
ration number for this case. It is given by

〈N ′
(V)max〉 =

∑
ni

′ 1

eλ2
T (n2

1/L2
1+n2

2/L2
2+n2

3/L2
3) − 1

where the term withn1 = n2 = n3 = 0 is excluded form
the sum.

In order to study the uniform gas in three dimensions,
setL1 = L2 = L3 = L and use the appropriate density of

states to approximate this sum in terms of an integral, for
λT /L ¿ 1, as

〈N ′
(L3)max〉 →

L3

λ3
T

∫ ′
d3x

ex2 − 1
=

4πL3

λ3
T

∫ ∞

λT /2L

x2dx

ex2 − 1
.

This shows that one can define in this case a saturationden-
sity

ρ′max ≡ 〈N ′
(L3)max〉/L3

which remains finite in the thermodynamic limit〈N(L3)〉 →
∞, L → ∞ with constant total mean density〈N(L3)〉/L3.
The limiting value of the integral can be obtained in terms
of a series of standard gaussian integrals as
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∫ ∞

0

x2dx

ex2 − 1
=

∫ ∞

0

x2
∞∑

ν=1

e−νx2
dx =

√
π

4

∞∑
ν=1

1
ν3/2

=
√

π

4
ζ

(
3
2

)
=
√

π

4
× 2.612 . . .

d

so that the saturation density becomes in the thermodynamic
limit

ρ′max → 2.612 · · · × π3/2

λ3
T

= 2.612 · · · ×
(

2πMkBT

4π2~2

) 3
2

.

The temperature at which the saturation density equals the
total density is thecritical temperatureof the uniform gas,
given therefore by (cf. eq.(1.14))

Tc =
2π~2

MkB

( 〈N(L3)〉
2.612 . . . L3

) 2
3

=
2π~2

MkBL2

( 〈N(L3)〉
2.612 . . .

) 2
3

(1.19)
This implies that in an extended, uniform system at a tem-
perature smaller that the critical temperatureTc given by
(1.19), there will be afinite fraction of the total density
which is associated with occupation of the zero momen-
tum state by the bosons. This is the standard (and original!)
Bose-Einstein condensation phenomenon.

Furthermore, it is interesting to compare in some de-
tail the expressions (1.19) and (1.14) for the critical tem-
perature, which correspond respectively to the uniform ideal
bose gas and to the ideal bose gas confined in the isotropic
harmonic trap. They have clearly a similar structure, the
critical temperature being given in both cases in terms of a
single-particle energy scale divided by the Boltzmann con-
stant times a fractional power of the mean number of parti-
cles. In the case of the uniform gas, this number refers to the
quantization volumeV = L3, which plays the role of a sys-
tem “size” and also determines the relevant single-particle
energy scale~2/ML2. Analogously, in the case of the
harmonic trap the single-particle energy scale~ω defines a
“size” scale through the oscillator parameterb =

√
~/Mω,

the single-particle energy scale being also proportional to
the inverse square of the size scale.

In both cases, therefore, the factor consisting of the en-
ergy scale divided by the Boltzmann constant is proportional
to the inverse square of the size scale of the system. In the
case of the uniform gas this size dependence is compensated
by the factor involving the two thirds power of the mean
number of particles when taking the thermodynamic limit,
but not soin the case of the harmonic trap, where the cor-
responding factor involves theone thirdpower of the mean

number of particles. As a result of this, if one enlarges the
trap by reducing its frequencyω and at the same time in-
creases the number of particles so that the density parameter
〈N〉/b3 is kept constant, one is left with a system with a
lower critical temperatureT harm

c , which in fact approaches
zero asω1/2. In this way one sees that condensation of
free bosons in the harmonic trap is a strictlyfinite system
phenomenon3.

An obvious question at this point concerns the ultimate
origin of the different behaviors of the two types of system.
It can be answered, if somewhat technically, in terms of the
basic dynamic ingredients entering in the two statistical cal-
culations, namely the single-particle spectra, including de-
generacy factors. In the case of the harmonic trap the level
spacing is constant and the degeneracy increases quadrat-
ically with quantum number, while for the free gas both
the level spacing (the spectrum having been discretized by
periodic boundary conditions) and the degeneracy increase
quadratically, effectively inhibiting thermal excitations. In
order to test this interpretation one may conceive ananhar-
monic, symmetric trap with single-particle spectrum

en1,n2,n3 = ~ω(n2
1 + n2

2 + n2
3)

the corresponding eigenfunctions being ordinary harmonic
oscillator eigenfunctions. Then the relevant size parameter
b is proportional toω−1/2, and one finds thatTc approaches
a non-zero limit when〈N〉 andb are increased with constant
〈N〉/b3.

A difference of another nature between the gas in the
harmonic trap and the free gas relates to the fact that in the
latter case the condensate density〈N0〉/L3 is spatially uni-
form (as also is the total density), while in the trap it has
the spatial distribution of the trap ground-state wavefunc-
tion, |ϕ0(~r)|2, which issmallerthan the total spatial distri-
bution of the gas forT > 0. This is due to the fact that
in the case of the free gas the single-particle ground state
is the zero momentum state, which leads to the statement
that the Bose-Einstein condensation of the free gas occurs
“in momentum space”, unlike the situation in the case of the
trapped gas, in which spatial segregation of the condensed
fraction takes place. This latter effect has been in fact used
as a signature for the occurrence of condensation in trapped
atomic gases. Note that a similar segregation occurs also in

3The situation is if fact somewhat more complicated than just stated due to the fact that in order to write eq. (1.14) “small corrections” involving higher
powers of the small quantityξ were neglected. A more complete appraisal of the situation can be obtained by going back to the saturation number〈N ′

max〉 for
the symmetric harmonic trap including the neglected contributions. Asb is increased they remain smaller then the dominant contribution, but scale differently
with b. Thus, in the case of the trapped gas, strictly speaking the critical temperature is not an homogeneous function of the scale parameter.
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the case of the hypothetical anharmonic trap. Since this al-
lows for condensation in the “large system limit”, the spatial
segregation effect cannot be related to the restriction to finite
systems of the condensation in the harmonic trap.

1.3.1 One-dimensional free gas

We finally illustrate the dependence on the spatial dimen-
sionality of the condensation phenomenon by considering
the case of auniform one-dimensional ideal gas. To this
effect we return to eq. (1.17) and make the system highly

anisotropic by lettingL3 = L andL1/L = L2/L À 1.
If these ratios are so large that transverse excitations can be
neglected (i.e., the restrictionn1 = n2 = 0 applies), one
gets, writingn3 = n,

〈N(L)〉 =
∑

n

〈N (L)
n 〉 =

∑
n

1
z−1en2λ2

T /L2 − 1
(1.20)

The saturation number is given by the same expression with
then = 0 term omitted and withz = 1. For smallλT /L it
can be estimated from the integral

c

〈N ′
(L)max〉 =

L

λT

∫ ∞

λT /2L

2dx

ex2 − 1
→ 4L2

λ2
T

= kBT

(
4π2~2

8ML2

)−1

, λT /L ¿ 1,

d

showing that the corresponding critical temperature goes to
zero as one approaches the thermodynamic limit. The cor-
responding result for the (quasi) one-dimensional harmonic
trap is given by eq. (1.15) which, according to eq. (1.16), in
fact prescribes an even slightly faster decrease of the criti-
cal temperature when〈N〉 andb are increased with constant
〈N〉/b.

1.4 Relevant parameters and orders of mag-
nitude

According to eq. (1.19), the condensation of a homoge-
neous system of ideal bosons of massM can be charac-
terized in terms oftwo length parameters. One of them
is related to the mean interparticle spacing, and can be
taken as the inverse one-third power of the particle density,
ρ
−1/3
P ≡ L/〈N(L3)〉1/3. The second parameter can be taken

as the thermal wavelength (1.18) associated with the critical
temperatureTc, λTc . In fact, eq. (1.19) can be expressed in
terms of the dimensionless quantityρP λ3

Tc
as

ρP λ3
Tc

= 2.612 . . . × π3/2.

It has become customary to use, instead ofλT defined as
in eq. (1.18), a so calledde Broglie wavelengthλdB ≡
λT /

√
π, in terms of which one has

ρP λ3
dB = 2.612 . . . , T = Tc.

This latter quantity is often referred to as thephase space
densityfor the homogeneous gas, and its critical value is
often used as a ballpark to characterize experimentally the
conditions to achieve Bose-Einstein condensation. Note that
this phase space density becomes larger as the density is in-
creased and as the temperature is lowered, so that the critical

value represents a minimum value to be attained if conden-
sation is to be achieved. This is at the root of a custom-
ary pictorial interpretation of the Bose-Einstein condensa-
tion as a “collective quantum effect” in which the allowed
degree of localization of different particles, represented by
λdB , becomes smaller that the mean inter-particle distance,
represented byρ−1/3

P .
The use of the critical phase space density in order to

characterize the onset of condensation of the trapped gas is
in principle unwarranted. Even the use of the thermal de
Broglie wavelength must be used with caution in view of
the spatial quantization restrictions due to the trap potential.
If, however, one invokes semiclassical arguments to treat a
sufficiently extended and dense trapped system as being “lo-
cally uniform” it is easy to derive the semiclassical approxi-
mate relation[10]

ρP (0)λ3
dB ' 2.612 . . . , T = Tc

where nowρP (~r) is local density of the trapped gas at po-
sition ~r, ρP (0) corresponds to the peak value of the local
density, assumed to be located at the origin of the adopted
reference system. This relation is in fact used experimen-
tally in order to characterize the ballpark values of the pa-
rameters relevant to the onset of condensation in traps, in
substitution for (e.g.) eq. (1.14).

Finally, it is useful to quote expressions for the oscilla-
tor parameterb and for the de Broglie wavelengthλdB in
practical units. One has

b '
√

40
M(amu) ν(Hz)

× 10−2 cm and

λdB =
1.747√

M(amu) T (µK)
× 10−4 cm (1.21)
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whereM(amu) is the mass of the atoms in atomic mass
units,ν(Hz) is the frequency of the harmonic trap in hertz
andT (µK) is the temperature in micro-Kelvin.

2 Non-ideal dilute Bose gas

Interactions among atoms constitute an essential ingredi-
ent of nature as we see it, manifested in the existence of
molecules, from simple to very complex, liquid and solid
phases both of pure elements and compounds of various
sorts, etc. In the comparatively very simple systems con-
sisting of very cold, dilute, trapped atomicgaseswhich con-
cern us here, atom-atom interactions also play an essential
role, to begin with, in the very process trough which they
are produced. In fact, an important step towards attaining
the conditions for the formation of Bose-Einstein conden-
sates is the so calledevaporative cooling. In this process the
trap is set up in such a way that the “fastest” (more energetic)
atoms are allowed to escape, leading to a reduction in tem-
perature through a re-establishment of thermal equilibrium.
Both the establishment of an initial velocity distribution of
an “universal” (thermal) type and its colder re-establishment
following selective depletion of the initial one require the
action of atom-atom interactions. In this way, the recently
achieved “ideal” condensate of cesium atoms could only be
produced by making use of a trick allowing the atom-atom
interaction to be experimentally “tuned”. Thus, in order to
produce the “ideal” condensate, the interaction strength is
first set to a convenient value for the cooling process;af-
ter the (non-ideal!) condensate is produced, the interaction
strength is set to zero, rendering it “ideal”[2].

The natural ubiquity of bound complex molecular struc-
tures clearly indicates, moreover, that interactions between
atoms are in general extremely rich and complex and also
that they must contain enoughattractiveeffects in order to
account for the observed binding. As was put decades ago
by Victor Weisskopf, forces between atoms can be seen as
being much “stronger” than the strong forces between nu-
cleons, in the sense that the latter have a single, almost
spherically symmetric two-body bound state (the deuteron),
whereas a typical two-atom system has a huge number of
spatially very complex molecular bound states.

However, in a gaseous phase and at very low tempera-
tures the complexities of the atom-atom interaction are ren-
dered largely ineffective. Considering an atom-atom colli-
sion event at values of the relative momentum correspond-
ing to kinetic energieskBT with T in the sub-micro Kelvin
range, the classical turning point for the centrifugal barrier
corresponding to angular momentuml occurs at a relative
separationrl given by

rl =

√
~2l(l + 1)
2MkBT

=
√

πl(l + 1)λdB(T ),

which, according to (1.21), is in the10−4 cm range for
l = 1. Since this is more than three orders of magnitude
larger than the sizes of molecules (or of atomic cross sec-
tions, typically associated to linear dimensions of up to a few
hundred Bohr radii), scattering processes are under these
conditions effectively restricted tos-wave elastic scattering,
and are completely characterized by the corresponding scat-
tering phase-shift. This of course effectively restricts the
immediate correlation capabilities of the interatomic forces
to nuclear simplicity, or even below, at least as long as one
remains in a cold, gaseous phase.

The attractive character of the interatomic forces, re-
sponsible for the existence of molecules and of condensed
(e.g. liquid and solid) phases at low temperatures signals
however that thegaseous, non-ideal many-boson systems
which undergo Bose-Einstein condensation are in fact not
approaching their ground-states as they are cooled, but are
rather approaching some excited state, meta-stable at best,
raising the important question of the degree of stability of
this particular, and rather peculiar kind of phase. Qualita-
tively, the meta-stability is enhanced if the cold gas isdi-
lute, in the sense that three-body collisions that are the only
efficient way of disposing of the surplus energy (a process
known asthree-body recombination) have a very small prob-
ability in comparison with with the two-body elastic colli-
sions responsible for establishing and maintaining thermal
equilibrium.

2.1 Simple effective interaction

The center of mass scattering cross-section for scattering of
two particles at low enough relative energy~2k2/2µ, ~k be-
ing the relative momentum andµ being the reduced mass, so
that onlys-waves are affected by the interparticle potential,
can be expressed in terms of thes-wave phase shiftδ0(k) as

dσ

dΩ
=

sin2 δ0(k)
k2

k→0−→ a2 (2.1)

wherea has dimensions of length. There is no dependence
of the cross-section on the center of mass scattering angle.
There are at least two different lessons to be learned from
this simple fact. First, very low energy scattering is largely
insensitive to the detailed nature of the interparticle poten-
tial, as its relevant effects can be characterized by a single
parameter. Second, thes-wave scattering phase shiftδ0(k)
is not very adequate for this purpose in view of the denom-
inatork2, which requiressin δ0(k) to vanish linearly when
k → 0 for anyfinite value of the cross section.
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In order to circumvent this inadequacy of the pa-
rameterization in terms of the phase shift one introduces
thescattering lengtha defined as

lim
k→0

k

sin δ0(k)
≡ −1

a
,

which therefore coincides (with a defined sign) with the
length parameter introduced in (2.1). In order to refine the
description to describe the dependence of the low-energy
cross-section with the relative momentum, this last defini-
tion is interpreted as the first term of an expansion, in powers
of k, of the quantityk cot δ0(k). One can show (see e.g. [1],
section 5.1.6) that the linear term of the expansion vanishes
identically, so that it can be generally written as

k cot δ0(k) = −1
a

+
r0

2
k2 + . . . , (2.2)

known as theeffective range expansion, and the coefficient
r0 of the term quadratic ink is called theeffective range.
With the use of this expansion, the low energy scattering can
be described in terms of just the two parametersa andr0, so
that all potentials having given values of these parameters
produce the same scattering at low energies. An important
point to be kept in mind is that the effective range expansion
gives a parameterization of thescattering amplitude(since
it gives the dependence onk of the only relevant phase shift
δ0(k)). Therefore, in order to obtain the scattering length for
some given two-body potential one has to solve a two-body
scattering problem. For instance, for a hard-core repulsive
potential or radiusa thes-wave phase shift isδ0(k) = −ka.
This is obtained by solving the appropriate Schrdinger equa-
tion with scattering boundary conditions. From this result
one finds that the scattering length is equal to the hard-core
radius, and that the effective ranger0 vanishes. Note that the
parameters of the effective range expansion are finite, even
though the potential itself is not, and neither are perturbative
amplitudes, such as the Born amplitude, for this particular
potential. This can be readily understood if one recalls that
the scattering amplitude can in general be written in terms
of the exact scattering solution of the two-body Schrdinger
equation|φ+

~k
〉 as (see [1], p. 512)

f~k→~k ′ = − M

2π~2
〈~k ′|V |φ+

~k
〉.

In the case of the hard-core potential this wavefunction van-
ishes inside the repulsive core, giving a finite result for the
bracket which determines the scattering amplitude.

This feature of the scattering amplitude has been used
to a considerable extent in connection with the many-body
problem involving two-body interaction potentials which
are possibly singular (e.g, including hard cores). The ba-
sic trick consists in replacing the potential itself by an ef-
fective operator which incorporates the correlation effects
due to the potential which cannot be treated perturbatively.
It is known as Brueckner’s theory and has been originally
developed in connection with the nuclear (fermionic) many-
body problem[11], but has been immediately applied also
to the hard-sphere Bose-Einstein gas[12]. In the case of the
two-body scattering problem this is accomplished simply by
the transition operatorT (k2) having the property (see [1],
p. 537)

〈~k ′|V |φ+
~k
〉 = 〈~k ′|T (k2)|~k〉.

As indicated by the notation, this is in general an energy-
dependent operator, requiring considerable technical labor
when used in more elaborate many-body calculations[12].

A standard approach to the effective interaction cur-
rently used in connection with cold, dilute Bose-Einstein
atomic gases can be seen as a combination of the transition
operator trick with the effective range expansion. One re-
places the actual atom-atom interaction by a “contact” (zero-
range) two body effective interaction which can be repre-
sented as

veff(~r1, ~r2) =
4π~2a

M
δ(~r1 − ~r2) (2.3)

wherea stands for the scattering length characterizing the
low energy atom-atom scattering. This fact alone indicates
immediately that this effective interaction is in fact related
to the scattering amplitude, and must therefore be seen as
belonging to the hierarchical level of the transition opera-
tor, rather than to that of the two-body potential. In fact,
whenveff is treated in the first Born approximation, it repro-
duces the low-energy limit of the two-body collision cross-
section, written in terms of the scattering amplitudea. The
many-body effective hamiltonian for a system ofN identi-
cal bosons in an external trap represented by the one body
external potentialV (~r) is therefore written as

c

Heff =
N∑

i=1

(
p2

i

2M
+ V (~ri)

)
+

1
2

N∑

i 6=j=1

λδ(~ri − ~rj) with λ ≡ 4π~2a

M
(2.4)

or alternatively, in second-quantized form, as



A. F. R. de Toledo Piza 1115

Heff =
∫

d3rH(~r) ,

H(~r) = ψ†(~r)
(
−~

2∇2

2M
+ V (~r)

)
ψ(~r) +

λ

2
ψ†(~r)ψ†(~r)ψ(~r)ψ(~r) (2.5)

d

whereH(~r) is the hamiltonian density, written in terms of
the field operatorsψ†(~r), ψ(~r) introduced in page 1106.
Note again that spin degrees of freedom have been ignored.
This is of course correct for spinless identical bosons, but
applies also to the case of bosons with non-zero spin when
they are constrained to just one magnetic substate, as it is
the case for magnetic traps. Other situations allowing for
different spin states will be discussed below.

The two-body interaction term included in the effective
hamiltonian (2.4), or (2.5), has the peculiar feature that its
attractive or repulsive character depends on thesign of the
scattering lengtha being negative or positive, respectively.
A well known result of effective range theory is that the scat-
tering length of a purely repulsive potential is always posi-
tive. However, if the potential is not purely repulsive, or
even if it is purely attractive, the scattering length can in
general have either one of the two signs. Thus, from the
fact that the scattering length is positive one cannot draw
the conclusion that the potential is repulsive. Actually, even
though the atom-atom interaction involves enough attraction
to support a large number of molecular bound states, it may
possibly be associated with a positive scattering length, in
which case it is represented by a repulsive effective inter-
action when the prescription (2.3) is used. One clear im-
plication of this is that a simple prescription such as eq.
(2.3) cannot possibly be adequate for the treatment of more
demanding properties of the many-boson system, such as
instabilities related to three-body recombination processes,
to cite just one and very obvious example. It is presently
widely and successfully used mainly in connection with ap-
proximate treatments of non-ideal, dilute Bose-Einstein con-
densed systems, of their elementary excitations and of sev-
eral of their collective properties, as discussed in continua-
tion and in the following chapters.

The inclusion of the effective two-body interactionveff

also introduces a new length parameter into the many-boson
system, associated with the effective range of the interac-
tion, which can be identified with the scattering lengtha.
The relation of this parameter to the mean interparticle dis-
tanceρ1/3

P , ρP being the particle density, allows for a quan-
titative characterization of the “diluteness” of the system in
terms of the dimensionless quantityρP a3. The quantitya3

represents an interaction volume, so thatρP a3 corresponds
to the average number of particles in the interaction volume.

Typical densities of gaseous condensates currently obtained
are in the ballpark ofρP ∼ 1015 cm−3. Usinga ' 100rB

also as a ballpark value for the scattering length,rB being
the Bohr radius, one obtainsρP a3 ∼ 10−4. This quantity is
therefore apt to be used as small expansion parameter when
one deals with these systems. This is to be contrasted with
the situation of liquid4He, for whichρP a3 > 1.

2.2 Effective mean-field (Gross-Pitaevski) ap-
proximation

The simplest, but still extremely useful use of the effective
hamiltonian (2.4) (or its second-quantized version (2.5)) is
the derivation of a “mean field approximation” to the Bose-
Einstein condensed state of the non-ideal, dilute gas. This
can be obtained variationally by looking for extrema of the
energy functional〈Φ|Heff |Φ〉 using an ansatz for|Φ〉 of the
Hartree type. In wavefunction language, appropriate for use
in connection with the form (2.4) of the effective hamilto-
nian, this ansatz is

Φ(~r1, . . . , ~rN ) =
N∏

i=1

ϕ(~ri) (2.6)

whereϕ(~r) is a normalized single-particle wavefunction to
be determined. Note that all bosons are in the same single-
particle state, so that the symmetrization requirement is ful-
filled automatically. Alternatively one can use the second-
quantized form (2.5) of the effective hamiltonian in together
with the ansatz

|Φ〉 =
1√
N !

a†N |0〉

where the creation operatora† is expressed in terms of the
field operatorψ†(~r) as

a† ≡
∫

d3r ϕ(~r)ψ†(~r).

Calculations are in this case made easier by noting the com-
mutation relations

[a, a†] = 1 and [ψ(~r), a†] = ϕ(~r)

which follow directly from the normalization of the single-
particle wavefunctionϕ(~r) and from the commutation rela-
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Figure 2.1. (a) Energy functional per particle for an isotropic harmonic trap in units of~ω, with gaussian ansatz for the single-particle
wavefunction, plotted as a function of the gaussian width parameterβ. The various curves correspond to the indicated values of the
dimensionless parameterγ = (N − 1)a/

√
2πb. (b) Solutions of equation (2.10) for the indicated values ofγ. The straight lines correspond

to the left-hand side of the equation, and theβ values of the solutions (extrema of〈E〉(x)) are determined by their intercepts with the fifth
order parabola representing the right hand side.

Now it is easy to see that this functional does not have a
lower bound when the effective two-body potential isattrac-
tive, i.e., whenλ < 0, which amounts to anegativescatter-
ing lengtha. To this effect it is sufficient to make a gaussian
ansatz for the single-particle wavefunction

ϕ(~r) →
(

1
β
√

π

) 3
2

e−r2/2β2

and note that the kinetic energy contribution is positive and
proportional toβ−2, the contribution of the term involving
the one-body potential is just the gaussian average of a sup-
posedly non-singular function of~r, while the contribution
from the two-body potential has the sign ofλ and is propor-

tional toβ−3. Therefore, ifλ < 0 the value of the energy
functional can be made arbitrarily negative by choosing a
sufficiently small value ofβ. This indicates thecollapseof
the system when the scattering length is negative.

Remarkably, this fact that has been observed
experimentally[2, 13], with some nontrivial characteris-
tics which are quantitatively consistent with properties of
the energy functional (??). The relevant properties can be
spotted by actually evaluating the energy functional with
the gaussian ansatz, assuming an isotropic harmonic trap
with angular frequencyω, so that its size parameter is the
oscillator parameterb =

√
~/Mω. This is a straightforward

exercise giving as result

c

E [ϕ(~r)] → 〈E〉(β) = N~ω
[
3
4

(
b2

β2
+

β2

b2

)
+

(N − 1)a√
2π b

b3

β3

]
, (2.8)

d

wherea is the scattering length appearing in the effective
two-body potential parameterλ. Fig. 2.1 shows a plot of the
mean energy per particle (in units of~ω) as a function ofβ/b
for somenegativevalues of the dimensionless parameter

γ ≡ (N − 1)a√
2πb

. (2.9)

The “collapse” situation is revealed by the mean energy per
particle going to minus infinity asβ/b → 0, but whenγ is
not negatively too large, this quantity also has a minimum,
separated from the region of collapse by a kinetic energy
“barrier” which decreases asγ becomes more negative un-

til it disappears forγ below about0.25. For given trap fre-
quency and (negative) scattering length, this implies the pre-
diction of “meta-stable” solutions forN smaller than some
critical number of particlesNc in the trap, which depends
on the values ofa andb. The gaussian approximation to the
single-particle wavefunction for the meta-stable state can be
found from the extremum condition obtained by by setting
the derivative of (2.8) with respect tox ≡ β/b equal to zero.
One finds

1
2x3

+
γ

x4
=

x

2
or x + 2γ = x5 , x > 0 . (2.10)
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The graphical solution of this last equation is shown in
Fig. 2.1 (b) for the same negative values ofγ shown in the
part (a) of the figure. Also included is the case of a repulsive
effective two-body interaction withγ = 5. The value ofβ
which minimizes the gaussian approximation to the energy
functional is smaller than the trap oscillator parameterb for
a < 0 and larger thanb for a > 0, consistently with the
attractive and repulsive character of the mean field.

These features are not just artifacts of the gaussian
ansatz, but are preserved in unconstrained studies[14] of
the energy functional. Calculated values e.g. for the crit-
ical numberNc associated with the loss of the secondary
minimum in the case of attractive two-body interactions are

consistent with experimentally measured condensate popu-
lations.

Assuming the effective two-body potential to havere-
pulsivecharacter, i.e., forλ > 0, it has been proven[15] that
the energy functional (??) has an absolute minimum which
defines a single-particle wavefunctionϕ0(~r) up to an over-
all phase factor, which can always be chosen so thatϕ0(~r)
is strictly positive. This wavefunction is a solution of a non-
linear, Hartree-like equation obtained by variation of the en-
ergy functional with respect toϕ(~r), the normalization con-
straint being taken care of in terms of a Lagrange multiplier
η. It reads

c
(
−~

2∇2

2M
+ V (~r)

)
ϕ(~r) + λ(N − 1)|ϕ(~r)|2ϕ(~r) =

η

N
ϕ(~r) (2.11)

d

and is known as the Gross-Pitaevski equation. Accord-
ingly, the energy functional (??) has been called the Gross-
Pitaevski functional, and the many-body state|Φ〉 con-
structed from its minimizer (for repulsive effective interac-
tion) the Gross-Pitaevski ground-state. The Lagrange multi-
plier η is seen to be a Hartree-like single particle energy. Its

relation to the value of the functional for the corresponding
single-particle wavefunction is easily obtained multiplying
the Gross-Pitaevski equation by the (conjugate) wavefunc-
tion and integrating over~r. It can be expressed in either of
two forms, also familiar from the relation between Hartree
single-particle energies and the total Hartree mean energy

c

η = E [ϕ(~r)] +
λ

2
N(N − 1)

∫
d3r |ϕ(~r)|4 =

= 2E [ϕ(~r)]−N

∫
d3r ϕ∗(~r)

(
−~

2∇2

2M
+ V (~r)

)
ϕ(~r). (2.12)

d

The integral appearing in the first of these two forms is
in fact an integral of the squared single-particle density,
which can therefore be interpreted as the average single-
particle density associated with the single-particle wave-
function ϕ(~r). Furthermore, if the factorN(N − 1) is
replaced byN2 in the Gross-Pitaevski functional, and the
factor (N − 1) is consistently replaced byN in the Gross-
Pitaevski equation (2.11) (an essentially innocuous replace-
ment for largeN ), one can write

η

N
=

∂E [ϕ(~r)]
∂N

≡ µ

which accounts for the fact that this quantity is interpreted
as the chemical potential.

It should be stressed at this point that this “mean field”
treatment differs from an ordinary Hartree approximation in
that the effective two-body interaction is related to the two-
body scattering amplituderather that to the two-bodypo-

tential, which is actually involved to all orders inveff . Thus
it should be rather understood as an approximation of the
Brueckner-Hartree type, widely used in the context of nu-
clear physics[16], further restricted by the scattering length
limit used to obtain the effective two-body interaction. Thus,
considerable care and judgment are indispensable when us-
ing the effective hamiltonian (2.4) in dynamical situations.
In particular, the physics involved in thefateof the “collaps-
ing” condensate with attractive effective interactions lies en-
tirely beyond the most optimistically drawn theoretical hori-
zon of this effective hamiltonian, even though the observed
meta-stability and its limits may still be meaningfully as-
sessed. Also beyond this horizon is the physics of three-
body recombination processes, and therefore also the insta-
bility of the Gross-Pitaevski ground state under such pro-
cesses.
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2.2.1 The uniform gas and the “healing length”

Here and in the following subsection we consider some
properties of solutions in the case of a repulsive effective

two-body approximation (a > 0). The energy of the Gross-
Pitaevski ground state is given by the minimum value of the
energy functional, which can be expressed using relations
(2.12) as

c

E [ϕ0(~r)] = η0 − λ

2
N(N − 1)

∫
d3r |ϕ0(~r)|4 =

=
1
2

[
η0 + N

∫
d3r ϕ∗0(~r)

(
−~

2∇2

2M
+ V (~r)

)
ϕ0(~r)

]
(2.13)

d

whereη0/N is the chemical potential associated with the
minimizer functionϕ0(~r). To obtain this energy one has in
general to solve the Gross-Pitaevsli equation, now a standard
numerical task[14].

In the special case of a uniform gas (for which the poten-
tial V (~r) representing the trap vanishes identically) transla-
tional invariance requires the solutions to be plane waves, so
that the ground state energy can be evaluated analytically.
Using periodical boundary conditions in a volumeL3, eq.
(2.11) gives for a plane wave of momentum~k normalized in
the quantization volume

~2k2

2M
+ λ

(N − 1)
L3

=
η

N
,

whereN is the number of bosons in volumeL3. Now the
second form of the expression (2.13) for the energy shows
that the minimizer in this case is the plane wave with zero
momentum. Note that this satisfies the stated general prop-
erties of the minimizer. The ground state energy is therefore

E0 =
1
2
λ

N(N − 1)
L3

= N × 4π
~2

2M
ρP a.

In the last step the expression ofλ in terms of the scat-
tering length has been used, together with the replacement
(N − 1)/L3 → N/L3 = ρP , here fully allowed by the
thermodinamic limit.

An interesting feature of this result is that it reveals a
new length parameterwhich is relevant for the non-ideal
gas, given by

ξH ≡ 1√
4π ρP a

, (2.14)

in terms of which the ground state energy per particle of the
uniform gas is given asE0/N = ~2/2Mξ2

H . It is referred
to as thehealing length, or also, alternatively, as thede
Broglie wavelength(which however should not be confused
with thethermalde Broglie wavelengthλdB introduced ear-
lier). In order to understand its meaning, consider the Gross-
Pitaevski ground state in semi-infinite spacex > 0, with an
infinite potential wall atx = 0. This requires that the wave-
function vanishes forx = 0, being otherwise a solution of

− ~2

2M
∇2ϕ0(~r) + λ|ϕ0(~r)|2ϕ0(~r) = µϕ0(~r) ,

~r ≡ {x, y, z}, x > 0.

The factor(N − 1) has been absorbed in the normalization
of the wavefunction by requiring that

|ϕ0(~r)|2 x→∞−→ ρP .

The relevant solution to this equation can be found by
using the ansatz

ϕ0(~r) =
√

ρP tanh κx , x > 0 ,

independent ofy andz, which satisfies the required bound-
ary condition atx = 0 as well as the prescribed normaliza-
tion condition. In fact, substitution into the equation shows
that it is satisfied providedκ is chosen so that

κ2 = λ
M

~2
ρP

or

κ =

√
λMρP

~2
=

√
4πρP a =

1
ξH

with µ = ~2κ2/M . The lengthξH therefore characterizes
the scale at which the effect of the potential wall “heals”,
as one moves away from it and the density approaches its
asymptotic value.

There are thereforethreedistinct scales of length which
are relevant in the case of the (uniform) gas, namely the
interaction length characterized bya, the mean interparti-
cle distance characterized byρ

−1/3
P and the healing length,

characterized by(ρP a)−1/2. For a dilute gas one has
ρP a3 ¿ 1, so thata ¿ ρ

−1/3
P . Diluteness also implies,

moreover, that

ρ
−1/3
P

(ρP a)−1/2
=

√
ρp a3 ¿ 1

so that in the limit of a dilute gas one has the hierarchy of
length scales

a ¿ ρ
−1/3
P ¿ ξH ∼ (ρP a)−1/2. (2.15)
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2.2.2 The Thomas-Fermi regime

The values of the parameterγ, eq. (2.9), which can be cur-
rently be achieved in condensates of atoms with positive
scattering length can easily be large compared to one. As
an example, a condensate of106 atoms of87Rb, for which
a ' 100rB (rB being the Bohr radius), in an harmonic trap
with frequencyν = 100 Hz, one getsγ ' 300. In such
cases not only the condensate becomes quite appreciably
wider than the gaussian corresponding to the ground state
wavefunction of the trap (see fig. (b)), but the contribution
of the kinetic energy term to the Gross-Pitaevski functional
becomes small in comparison with the sum of the contribu-
tions due to the trap potential and to the two-body interac-
tion. In this case a fair approximation consists in dropping
the kinetic energy term altogether. As far as the minimizer
of the functional is concerned, this approximation amounts
to treating the condensate as being “locally uniform” with
a position dependent density, and is therefore known as the
Thomas-Fermi approximation to the Gross-Pitaevski func-
tional. It reads

ETF [ϕ(~r)] = N

∫
d3r ϕ∗(~r)V (~r)ϕ(~r)

+
λ

2
N2

∫
d3r |ϕ(~r)|4.

Note that the factorN(N − 1) has been replaced byN2 in
the two-body term. This approximation clearly breaks down
near the outer edge of the minimizer wavefunction, where
the two retained terms become small. However, for large
enough values ofγ, kinetic energy corrections toϕ(~r) are
small even there, on the scale of its peak value.

The equation satisfied by the minimizer of the Thomas-
Fermi approximation to the energy functional can again be
obtained by variation ofETF with respect toϕ(~r) with the
appropriate Lagrange multiplierµ to take the normalization
condition into account. One gets (cf. eq. (2.11))

(
µ− V (~r)−Nλ|ϕ(~r)|2) ϕ(~r) = 0

which is just an algebraic equation that can be readily solved
to give

|ϕ(~r)|2 =





µ−V (~r)
Nλ for µ > V (~r)

0 for µ ≤ V (~r).

Note that this solution has a discontinuous derivative at
points~r such thatµ = V (~r). The effect of the neglected
kinetic energy term is essentially to smoothen the minimizer
wavefunction in the vicinity of these points[17]. The value
of the Lagrange multiplierµ is determined from the normal-
ization condition

∫
d3r |ϕ(~r)|2 = 1

or ∫

µ>V (~r)

d3r
µ− V (~r)

λ
= N.

2.3 Spin-dependent effective interaction

Present day traps can be set in ways which do not rely on hy-
perfine Zeeman displacements for their operation (as is the
case with magnetic traps), allowing for the use of atomic
spins as active internal dynamical variables of the many-
boson gas. Bose-Einstein condensation in such systems re-
sults in what is generally called “spinor condensates”.

The atomic spinf results from the coupling of the nu-
clear spin with the electronic spin, both of which have half-
integer values in the case of the alkali atoms. The nuclei of
these atoms have odd charge numberZ, so that the isotopes
corresponding to bosonic atoms must have an even number
of neutrons and therefore odd mass numbers. Their lowest
electronic configuration has spin12 due to shell effects, and
therefore larger values off occur for the atoms with larger
nuclear spin. The only stable cesium isotope has mass num-
ber 133 and nuclear spin72 , so that the lowest atomic hyper-
fine levels havef = 3 andf = 4. 23Na and87Rb are spin3

2

nuclei, so that they havef values of 1 and 2, and85Rb has
nuclear spin5

2 andf values of 2 and 3.
The two-body effective interaction between atoms with

spinf 6= 0 will in general be spin dependent, the spin depen-
dence being however subjected to restrictions based on gen-
eral symmetry arguments, such as rotational as well as trans-
lational invariance. Interactions being restricted tos-waves,
rotational invariance amounts to the conservation of the to-
tal spin of the interacting pair, and the exchange symmetry
required by Bose-Einstein statistics restricts the allowed val-
ues of the total spin to even values. This restriction follows
from the symmetry property of Clebsch-Gordan coefficients
coupling two spinsf to total spinS

C f f S
m1m2M = (−1)f+f−S C f f S

m2m1M ,

M = m1 + m2, −f ≤ mi ≤ f, −S ≤ M ≤ S.

An often used parameterization[19] of the effective, spin de-
pendent two-body interaction consists therefore in general-
izing eq. (2.3) by allowing for different scattering lengths
for each of the possible (even) values of the total spinS.
This implies two scattering lengths forf = 1, three for
f = 2, etc. Numbers for these parameters are experimen-
tally poorly known (if at all) especially for atoms with the
higherf values. In regard to simplicity we restrict the fol-
lowing treatment to a spin dependence which is given in
terms of just the standard scalar bilinear in the two spin op-
erators, and generalize eq. (2.3) by writing

veff(~r1, ~F1, ~r2, ~F2) =
(

λ0 +
λs

~2
~F1 · ~F2

)
δ(~r1 − ~r2)

(2.16)
where~Fi, i = 1, 2 are the spin operators for the interacting
bosons and the constantsλ0 andλs account for possibly dif-
ferent scattering lengths for different values of the total spin.
This particular form involves only two independent parame-
ters, even though e.g. forf ≥ 2 it givesf +1 different scat-
tering lengths. Of course the relation among them implied
by the two-parameter interaction can in principle be checked
experimentally. The two independent scattering lengthsa0
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anda2 which are allowed forf = 1, corresponding respec-
tively to S = 0 andS = 2, can always be accommodated
in the form (2.16), which therefore implies no restriction in
this case. Their relation to the parametersλ0 andλs is then

λ0 =
4π~2(a0 + 2a2)

3M

and

λs =
4π~2(a2 − a0)

3M
,

so that whena0 = a2 one recovers a spin independent effec-
tive interaction. Forf = 1 states of23Na one calculates[18]
a positiveλs which is of the order of 10% ofλ0, corre-
sponding to a rather weak spin dependence. The value of
ā = (a0 + 2a2)/3 in this case is about 50 Bohr radii.

In oder to handle the spin variable in a second-quantized

formulation one considers a spinor set of field operators
ψ†m(~r), ψm(~r), −f ≤ m ≤ f satisfying the commutation
relations

[ψm(~r), ψ†m′(~r ′)] = δmm′δ(~r − ~r ′) ,

[ψm(~r), ψm′(~r ′)] = 0 .

What is understood by the qualification “spinor set” is the
fact that the2f +1 differentm-components transform under
rotations as a Racah tensor of rankf . The resulting second-
quantized form for a set of spinor bosons with spinf can
therefore be written as a sum of one- and two-body parts as

Heff =
∫

d3r (H1(~r) +H2(~r)) (2.17)

with the hamiltonian densities

c

H1(~r) =
∑

m1m′
1

ψ†m1
(~r)

[
−~

2∇2

2M
δm1m′

1
+ Vm1m′

1
(~r)

]
ψm′

1
(~r)

and

H2(~r) =
∑

m1m′
1m2m′

2

[
λ0

2
δm1m′

1
δm2m′

2
+

λs

2~2
~Fm1m′

1
· ~Fm2m′

2

]
ψ†m1

(~r)ψ†m2
(~r)ψm′

1
(~r)ψm′

2
(~r).

d

In the one-body part, the trap potentialVmm′(~r) is, in
the simplest case, not only spin-diagonal but also spin inde-
pendent,V (~r)δmm′ . As written, it may include as well an
arbitrary (but time-independent) external magnetic field. In
the two-body part, the matrix elements of the 1-particle spin
operators,~Fmm′ can be written quite generally (i.e., for ar-
bitrary spinf ) in terms of Clebsch-Gordan coefficients and
of a reduced matrix element. In terms of the spherical com-
ponents

F0 ≡ Fz, F±1 ≡ ∓Fx ± iFy√
2

,

one has, by the Wigner-Eckart theorem

(Fσ)mm′ ≡ 〈fm|Fσ|fm′〉 =
C f 1 f

m′ σ m√
2f + 1

〈f‖F‖f〉

where theC symbol is a Clebsch-Gordan coefficient and
last factor is the reduced matrix element. It can be cal-
culated from the same formula and the choice of making
Fz diagonal, with eigenvalues~m. Thus, for f = 1,
〈1‖F‖1〉 =

√
6~.

2.3.1 Gross-Pitaevski and Thomas-Fermi treatments

An effective mean-field treatment of spinor condensates can
be obtained by a straightforward generalization of what has
been done in section 2.2. Again we use an ansatz the nor-
malizedN -boson state

|N〉 =
1√
N !

a†N |0〉 (2.18)

where nowa† is a spinor creation operator defined as

a† ≡
∑
m

∫
d3r um(~r)ψ†m(~r) (2.19)

with the normalization condition

∑
m

∫
d3r |um(~r)|2 = 1.

This implies that the single-particle wavefunctionϕ(~r) is
now a spinor wavefunction with2f + 1 componentsum(~r),
−f ≤ m ≤ f . Sinceψm(~r)|N〉 =

√
Num(~r)|N − 1〉 one

obtains for the energy functional
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E [ϕ(~r)] ≡ 〈N |Heff |N〉 = N
∑

m1m′
1

∫
d3r u∗m1

(~r)
(
−~

2∇2

2M
δm1m′

1
+ Vm1m′

1
(~r)

)
um′

1
(~r) +

+ N(N − 1)
λ0

2

∑
m1m2

∫
d3r |um1(~r)|2|um2(~r)|2 + (2.20)

+
N(N − 1)λs

2~2

∑

m1m′
1m2m′

2

∫
d3r um1(~r)um2(~r)um′

1
(~r)um′

2
(~r)~Fm1m′

1
· ~Fm2m′

2
.

The variational condition that determines the spinor component functionsum(~r) is

δ

(
〈N |Heff |N〉 − η

∑
m

〈um|um〉
)

= 0,

variations being taken with respect to theum(~r). The term involving the Lagrange multiplierη accounts for the normalization
condition on the spinor state. This leads to the coupled nonlinear equations

−~
2∇2

2M
um(~r) +

∑

m′
Vmm′(~r)um′(~r) + (N − 1)λ0

∑

m′
|um′(~r)|2um(~r) + (2.21)

+
(N − 1)λs

~2

∑

m′m1m′
1

~Fmm′ · ~Fm1m′
1

u∗m1
(~r)um′

1
(~r)um′(~r) =

η

N
um(~r).

d

The factorsN−1 are usually replaced byN . In the Thomas-
Fermi limit, the kinetic energy term is negligible and the
determination of the spinor component functions is again
pointwise algebraic. Recall that the trap potentialVmm′(~r)
is, in the simplest case, not only spin-diagonal but also spin
independent; as written, it may include as well an arbitrary
(but time-independent) external magnetic field. The spin de-
pendent term involves the operator

~Fmm′ · ~Fm1m′
1

=
〈f‖F‖f〉2

2f + 1

∑
σ

(−1)σC f 1 f
m′ σ mC f 1 f

m′
1 −σ m1

.

In fact there is no sum overσ, since its value is determined
by the consistent values of the remainingm’s.

As an example, we write down explicitly the coupled

Thomas-Fermi equations forf = 1 bosons in a spin-
diagonal trap potentialVmm′(~r) → Vm(~r)δmm′ . The m-
dependence of the potential may be used, in particular, to
account for the first order Zeeman splitting due to a uniform
external magnetic field, i.e.Vm(~r) = V0(~r) + m∆B . We
get

~Fmm′ · ~Fm1m′
1

= 2~2 (−1)σC 1 1 1
m′ σ mC 1 1 1

m′
1 −σ m1

with σ = m − m′ = m′
1 − m1, which includes a condi-

tion on the possible sets ofm-values that give nonzero con-
tribution. Ignoring the kinetic energy term then gives the
coupled Thomas-Fermi equations for the spinor component
wavefunctionsum(~r), m = 0,±1

c

[ η

N
− V1(~r)− (N − 1)(λ0 + λs)ρT (~r)

]
u1(~r) = (N − 1)λs

[
u∗−1(~r)u

2
0(~r)− 2|u−1(~r)|2u1(~r)

]

[ η

N
− V0(~r)− (N − 1)(λ0 + λs)ρT (~r)

]
u0(~r) = (N − 1)λs

[
2u∗0(~r)u1(~r)u−1(~r)− |u0(~r)|2u0(~r)

]

[ η

N
− V−1(~r)− (N − 1)(λ0 + λs)ρT (~r)

]
u−1(~r) = (N − 1)λs

[
u∗1(~r)u

2
0(~r)− 2|u1(~r)|2u−1(~r)

]
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where4 ρT (~r) ≡ ∑
m |um(~r)|2.

Assuming that theum(~r) are real except for an overall
phase, i.e.,

um(~r) = |um(~r)|eiϕm ,

the equations become real except for a phase±(2ϕ0−ϕ1−
ϕ−1) multiplying the first terms on the right-hand side. In

this way, the equations become real if this phase is 0 orπ. In
general, this indicates that this approximation is sensitive to
phase relations among the spinor components. Further un-
derstanding of the phases results from consideration of the
Thomas-Fermi approximation to the energy functional per
particle (2.20), which is sensitive to the same combination
of phases. It is given by

c

ETF [ϕ(~r)] = N
∑
m

∫
d3r u∗m(~r)Vm(~r)um(~r) +

N(N − 1)λ0

2

∑

mm′

∫
d3r |um(~r)|2|um′(~r)|2 +

(2.22)

+
N(N − 1)λs

2~2

∑

m1m′
1m2m′

2

∫
d3r u∗m′

1
(~r)u∗m′

2
(~r)um1(~r)um2(~r) ~Fm1m′

1
· ~Fm2m′

2
.

The spin-dependent term is, writing explicitly the weights resulting from the spin matrix elements,

N(N − 1)λs

∫
d3r

[
1
2

(|u1|4 + |u−1|4
)

+ |u0|2
(|u1|2 + |u−1|2

)− |u1|2|u−1|2 + 2 Re (u∗20 u1u−1)
]

,

the last term of which becomes, under the assumptions made above concerning the phases,

2 Re (u∗20 u1u−1) → 2 cos(ϕ1 + ϕ−1 − 2ϕ0)|u0|2|u1||u−1|
d

This gives in fact an explicit expression for the Thomas-
Fermi approximation to the energy functional under the
somewhat more restrictive ansatz in which theum(~r) are
real except for an~r-independent phase, therefore only allow-
ing for~r-independent phase relations among the spinor com-
ponents. At points where neither of the amplitudesum(~r) is
zero, the functional is stationary with respect to phase vari-
ations at

2ϕ0 − ϕ1 − ϕ−1 = 0

or
2ϕ0 − ϕ1 − ϕ−1 = π.

The occurrence of this particular combination of the three
phases results from conservation of the third component of
the total spin of two interacting bosons, which allows for
converting onem1 = m2 = 0 pair into am1 = 1, m2 =
−1 pair and vice-versa. Variation with respect to the (ab-
solute values of the) amplitudes yields the Thomas-Fermi
equations as written before, with the adopted choice for the
phase(2ϕ0 − ϕ1 − ϕ−1).

Thomas-Fermi solutions for spinor condensates are
much richer than what one obtains in the case of a single
component. One of the simplest examples (albeit involving
parameter values which are rather unrealistic in experimen-
tal terms) is shown in Fig. 2.2. Actually two mutually com-
plementary solutions are shown in this figure. In the first
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Figure 2.2. Solutions of the T-F equations for sodium atoms in
a spherical harmonic trap with frequency60 Hz, µ = 104 Hz
and ∆B = −70 Hz. Note that this last value corresponds to
an experimentally unrealistic extremely weak magnetic field, of
the order of10−4 G. The two-body interaction parameters used
wereλ0 = 14.5 Hz µm3 (ā ' 50 aB) andλS = 0.3 Hz µm3

(a2 − a0 ' 3 aB).

4Strictly speaking one should take into account the fact that when the one-body part of the hamiltonian is diagonal in the spin projections the quantity
N̂1− N̂−1 is also conserved, requiring a second Lagrange multiplierΛ. The effect of this is to replaceη/N respectively byη/N +Λ, η/N andη/N −Λ in
the three coupled equations above. When them-dependence of the trap potential comes from an overall first order Zeeman shift∆B , this is in turn equivalent
to a redefinition of the Zeeman shift∆B → ∆′B = ∆B + Λ. The solutions obtained without explicitly introducingΛ and interpreting∆B as the actual
first order Zeeman shift correspond therefore to the value of the second conserved quantity for whichΛ = 0.
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one, them = 0 density vanishes identically, and a Zee-
man induced relative enhancement of them = 1 density in-
creases towards the surface to the point where them = −1
density vanishes. At this point them = 1 density joins a
different solution which hasu0 = u−1 ≡ 0, shown as the
dashed line. This latter solution is unstable (in the sense that
it corresponds to a maximum of the Thomas-Fermi energy
functional) whileu−1(r) 6= 0 (for the first solution), but
becomes stable (in the sense that it becomes associated to
a minimum of the Thomas-Fermi energy functional) in the
outer skin, so that it may be seen as the extension of the cor-
responding component of the first solution for larger values
of r.

It should be noted that the phase-carrying quantity
2Re (u∗20 u1u−1) vanishes identically, so that the overall
relative phase of the two nonvanishing components of the
spinor is not determined. This plain computational fact must
be understood as a warning against too stringent limitations
imposed by the adopted ansatz (2.18) and (2.19), which pre-
vent physics intended by the effective hamiltonian to be cap-

tured by the effective mean-field approximation as imple-
mented.

In order to justify this statement, consider again the spin-
dependent effective hamiltonian (2.17) for the casef = 1
with the trap potential reduced to a position independent first
order Zeeman shift, i.e.

Vmm′(~r) −→ m∆B δmm′ .

Corresponding to the neglect of the kinetic energy term in
the Thomas-Fermi approximation, introduce the momen-
tum state operators (using periodic boundary conditions in
a quantization volumeV)

am(~k) ≡ 1
V

∫

V
d3r ei~k·~rψm(~r) , −1 ≤ m ≤ 1

and restrict the hamiltonian to the zero-momentum plane
waves. The resulting truncated version of the effective
hamiltonian is then (cf. [20, 21])

c

Heff → H0 = ∆B

∑
m

m a†mam +
λ0

2V
∑

mm′
a†ma†m′am′am +

+
λs

2V
(
a†1a

†
1a1a1 + a†−1a

†
−1a−1a−1 + 2a†1a

†
0a0a1 + 2a†−1a

†
0a0a−1 −

−2a†−1a
†
1a1a−1 + 2a†0a

†
0a1a−1 + 2a†1a

†
−1a0a0

)
=

= ∆BŜz +
λ0

2V N̂(N̂ − 1) +
λs

2V
(

~S2 − 2N̂
)

(2.23)

d

where theam, a†m are now zero momentum operators,
N̂m ≡ a†mam, N̂ ≡ ∑

m N̂m are number operators and
~S ≡ {Ŝx, Ŝy, Ŝz} is the total spin operator the components
of which, forf = 1, can be written as

Ŝx + iŜy =
√

2(a†0a1 + a†−1a0),

Ŝx − iŜy =
√

2(a†1a0 + a†0a−1),

Ŝz = (a†−1a−1 − a†1a1).

Contact with the preceding Thomas-Fermi treatment can
be made by noting that the integrand of the Thomas-Fermi
energy functional (2.22) can be obtained from this hamilto-
nian (up to replacement of factorsN(N − 1) by N2) using
the spinor ansatz

|Φ〉 ≡



|ν1〉
|ν0〉
|ν−1〉


 ,

1∑
m=−1

|νm|2 = N

where the|νm〉 are coherent states[1] for the operatorsam,
i.e.

|νm〉 ≡ eνma†m−ν∗mam |0〉 ,

am|νm〉 = νm|νm〉 = |νm|eiϕm |νm〉 ,

where|0〉 stands for the vacuum state,am|0〉 = 0. A varia-
tional treatment therefore leads again to the Thomas-Fermi
coupled equations, now written in terms of the coherent am-
plitudesνm. The possible solution havingν0 = 0 leaves the
relative phase of the remaining two amplitudes undefined.

One can now however confront the approximation in-
volving this ansatz with the exact ground state of the trun-
cated hamiltonian (2.23) by taking advantage of its ex-
pression in terms of number and total spinoperators. To
see what this ground state is, note thatN̂ , ~S2 and Ŝz are
commuting operators, so that the simultaneous eigenvectors
|NSM〉 of these three operators are eigenstates ofH0. The
angular momentum commutation relations for the compo-
nents of the total spin operator give as usual

~S2|NSM〉 = S(S + 1)|NSM〉 ,

Ŝz|NSM〉 = M |NSM〉 , −S ≤ M ≤ S ;

moreoverS ≤ M ≤ N so that the maximum value of the
total spin isS = N . The eigenvalues ofH0 are then



1124 Brazilian Journal of Physics, vol. 34, no. 3B, September, 2004

H0|NSM〉 =
(

∆BM +
λ0

V N(N − 1) +
λs

V [S(S + 1)− 2N ]
)
|NSM〉.

d

The ground state corresponds to available values ofS and
M which minimize the eigenvalue ofH0. WhenλS > 0 (as
in the example of fig. ) a reduction ofS with respect to its
maximum value will be favored if∆B is not too large.

Except for the simplest “stretched” angular momentum
states withS = N , M = ±N the states|NSM〉 in-
volve spin correlationsthat cannot be properly represented
in terms of the spinor ansatz. They can in fact be written ex-
plicitly in terms of the operatorsa†m. WhenM = −S they
are given by

|N S M = −S〉 = NNS a†S
−1

(
a† 2
0 − 2a†1a

†
−1

)(N−S)/2

|0〉

where the correlations are clearly visible in the operator
within brackets, which creates a pair of bosons coupled to
zero total spin. The normalization factorNNS is[21]

NNS =
[
2(N−S)/2

(
N − S

2

)
! S !

(N + S + 1) ! !
(2S + 1) ! !

]−1/2

.

States with other values ofM can of course be obtained
from these by using the total spin projection raising oper-
atorŜ+ ≡ Ŝx + iŜy.

The difficulty found in the guise of an undetermined rel-
ative phase when using the simple spinor mean-field ansatz
in connection with the spin dependence of the effective two-
body interaction reflects therefore the inability of this ansatz
to capture essential spin correlations. It should be noted,
on the other hand, that the “exact” treatment reviewed here
to pinpoint this fact ignored the possibleconcomitantrole
of the position degrees of freedom, which are crucial when
considering a trapped system of bosons. A better treatment
for this type of system should therefore be able to handle
both of these aspectsdynamicallyat the same time. Treat-
ments such as that of refs. [20], which merely replace the
zero-momentum plane wave used here by one however judi-
ciously chosenfrozensingle particle wavefunction of course
fall short of this aim.

2.4 Gross-Pitaevski limit

The understanding of the success of the Gross-Pitaevski (G-
P) treatment of trapped, dilute atomic condensates has ac-
quired a new facet since the discovery was announced late
in 2001, by Lieb and Seiringer[22] (see also[23]), of im-
portant results concerning the ground state of a dilute boson
gas with repulsive two-body interactions in a rather peculiar
limit to which the accumulated G-P successes are in some
sense close. This limit, to be called the Gross-Pitaevski
limit for reasons that will become clear shortly, differs from
the usual thermodynamic limit, which consists in letting the

volume go to infinity at constant density. Thus, if the sys-
tem under consideration is constituted of a given species of
bosonic atoms, associated with a scattering lengtha > 0, the
thermodynamic limit implies its characterization in terms of
a given value of the quantityρP a3. The uniform Gross-
Pitaevski ground state of this system is the minimizer of the
G-P functional, which satisfies the equation

− ~2

2M
∇2ϕ(~r) +

4π~2a

M
|ϕ(~r)|2ϕ(~r) = µϕ(~r)

with periodic boundary conditions in volumeV, the function
ϕ(~r) being normalized according to

∫

V
d3r |ϕ(~r)|2 = N,

N

V = ρ.

The minimizer in this case is just the constant (zero momen-
tum) solution with particle densityρP . It is given explicitly
by

|ϕ|2 =
µM

4π~2a
=

N

V or µ =
4π~2Na

MV .

When one thinks in terms of the thermodynamic limit, this
gives the proportionality of the G-P chemical potentialµ on
the system density through the effective contact interaction
involving the scattering lengtha (the energy per particle is
in this case justµ/2). On the other hand, it also shows that
the constant G-P solution remains invariant under a scaling
quite unrelated to that which is associated to the thermo-
dynamic limit, namely, when the density and the scattering
length are changed in such a way that the productNa, and
also the quantization volumeV, remain constant. It is easy
to see that the G-P functional itself remains unchanged un-
der this type of scaling. The Gross-Pitaevskilimit consists
in letting N → ∞ with Na constant, so that the scattering
lengtha → 0 asN−1 andρa3 → 0 asN−2. This limit cor-
responds therefore to an extremely dilute (even though the
particle density diverges linearly withN ) and yet non trivial
limit, even though the strength of the effective interaction
goes to zero.

The special relevance of this particular limit comes from
the proof given by Lieb and Seiringer that, when it is taken,
the above G-P ground-state solution becomesexact, i.e., the
exact ground state of the full many-body problem. The
two-body interaction is given as a two-body potential hav-
ing suitable properties, besides giving the correct scattering
lengtha > 0, a sufficient condition for the proof being that
it is everywhere positive (e.g. a pure hard core potential
with core radiusa). This is of course “unrealistic”, but real
condensates are in fact systems not in their ground states,
but in meta-stable states which are however rendered sta-
ble by the unrealistic assumption, and supposedly without
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important collateral effects. The fact that the G-P solution
is exact implies, in particular, that the exact ground state is
of the simple product form (2.6). This means that the G-
P limit eliminates all many-particle correlations induced by
the two-particle interaction from the wavefunction. In this
sense, the G-P limit is “many-body trivial”, even though it
differs from an ideal gas in several (one-body) ways (e.g. in
the energy per particle). Another side effect of the proof is
that it provides for a justification of the adopted form of the
two-body effective interaction used in connection with the
G-P functional at least for purely repulsive two-body poten-
tials. Note that for this type of potential the scattering length
is alwayspositive.

It is important to stress here that the result of Lieb and
Seiringer depends in an essential way on the G-P functional
not corresponding to a plain mean field approximation of
the Hartree type, but rather to aneffectivemean field ap-
proximation which at best can be described as being of the
Brueckner type, as emphasized earlier. The exactness of the
product wavefunction based on the minimizer of the func-
tional does not holdif the effective two-body interaction is
replaced by the actual two-body interactionpotential.

The scaling property relevant for the Gross-Pitaevski
limit holds also for trapped bosons, in which case the equa-
tion for the minimizer of the Gross-Pitaevski functional
reads

[
− ~2

2M
∇2 + V (~r)

]
ϕ(~r) +

4π~2a

M
|ϕ(~r)|2ϕ(~r) = µϕ(~r).

Due to the presence of the trapping external potentialV (~r)

the relevant solution is normalizable. Since the solution
ϕN,a(~r) for the case ofN trapped bosons and scattering
lengtha is also assumed to be normalized according to

∫
d3r |ϕN,a(~r)|2 = N ,

it changes under scale transformationsN → N/ξ, a → ξa
that leave the productNa fixed according to

ϕN,a(~r) =
1√
ξ
ϕN

ξ ,aξ(~r).

In this case the G-P density is of course not uniform, and
keeps a fixed “geometry” under G-P scaling. It also becomes
exact in the G-P limit, so that in this limit the trapped sys-
tem ground state is also “many-body trivial”, even though
not ideal.

The successes of descriptions based on the G-P approx-
imation can be associated with proximity of the relevant ex-
perimental parameters to this particular limit, in which im-
portant interaction effects survive in the condensate geom-
etry, while correlation effects are in some sense negligibly
small (and vanish rigorously in the G-P limit). Typical val-
ues for experimentally achieved condensates area ∼ 10−7

cm, N ∼ 105, ρP ∼ 1015 cm−3, which correspond to
ρP a3 ∼ 10−6, ρ

−1/3
P ∼ 10−5 cm and healing length

ξH = (ρP a)−1/2 ∼ 10−4 cm. One has thus typically
the characteristic three-lengths hierarchy (2.15) of a dilute
system. In the G- P limit (a → 0 with Na constant) this
hierarchy is strengthened as can be seen through theN -
dependence of the various lengths:

c

a ¿ ρ
− 1

3
P ¿ ξH = (ρP a)−

1
2 =⇒ O

(
1
N

)
¿ O

(
1

N1/3

)
¿ O (

N0
)
.

d

3 Roles for atomic structure

When discussing the condensation process from a theoret-
ical point of view, the atoms which constitute the gas are
treated as identical bosons, possibly endowed with nonzero
spin but otherwise “structureless” objects. This picture is
of course completely inadequate for practical purposes re-
lating e.g. to the achievement of confinement, cooling and
condensation of the bosonic gas, since each of these opera-
tions takes advantage of internal atomic degrees of freedom
for its implementation in the laboratory. This is of course
a rich and challenging field of its own, which we will not
consider here, however. The topics included in this chap-
ter refer instead to atomic structure properties in so far as
they can be used to control (as it is the case of the “Fes-
hbach resonances”) or enrich (as it is the case of “hybrid
condensates” involving different atomic species, atoms and
molecules, etc.) the dynamics of dilute Bose-Einstein con-
densates as such, rather than just adding “theoretical real-
ism” to the picture.

3.1 Atom-atom resonance scattering and the
effective two-body interaction

Low-energy resonances can play a decisive role in deter-
mining the atom-atom scattering length. Since this quantity
determines the effective two-body interaction to be used in
connection with the Gross-Pitaevski functional, the possi-
bility of tuning the position in energy of narrow low-energy
resonances by means of some external control variable (such
as an external magnetic field, acting through the Zeeman
shifts it produces) may allow for tuning the value of the scat-
tering length, and hence also of the effective two-body in-
teraction. The resonances one is interested in here are not
“shape resonances” related to the properties of the atom-
atom interaction potential, but the typically much narrower
and numerousmany-bodyresonances associated to partic-
ular quasi-stationary states of the two-atom system. They
are therefore related in an essential way to atomic structure
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properties, and can be seen as atomic analogues of the “com-
pound nucleus” resonances of nuclear physics. One general
collision theory, which in particular gives a nice account of
the effects of quasi stationary states of the compound system
on the scattering observables has been developed since the
1960’s by Feshbach[24], mostly in the context of nuclear
physics. The use of the concepts of this particular theory
in the atomic domain has led to the denomination “Fesh-
bach resonances” for the resonances involving internal de-
grees of freedom of the atom-atom compound system. They
are now widely used as a tool for achieving experimental
control of the two-body effective interaction in many experi-
ments involving cold, dilute atomic gases of bosons and also
of fermions[2, 3, 4, 5, 25].

In the “no Feshbach resonance” case, the determination
of the scattering amplitudea involves solving the Schrdinger
equation

[
E − p2

2µR
− V

]
|Ψ~k〉 = 0 (3.1)

where~p is the relative momentum andµR is the reduced
mass of the two colliding atoms. The interaction between
the two atoms is described by the potentialV , and the en-
ergy scale is set so that this potential vanishes in the limit of
very large distance between them. For simplicity we omit
any explicit consideration of spins. The center of mass en-
ergy of the colliding system isE > 0, also equal to the

asymptotic value of the kinetic energy of relative motion of
the two atoms. If the pre-collision asymptotic relative mo-
mentum is~~k one has therefore

E =
~2k2

2µR
.

The scattering state vector|Ψ~k〉, or equivalently its asso-
ciated wavefunction〈~r|Ψ~r〉, are further determined by the
usual scattering asymptotic boundary condition

〈~r|Ψ~k〉
r→∞−→ ei~k·~r + f(r̂)

eikr

r
(3.2)

where the argument̂r of the scattering amplitudef de-
notes the angular components of the relative position vec-
tor ~r. This boundary condition implies the plane-wave-like
orthogonality relation expressed in terms of the Dirac delta
function as

〈Ψ~k|Ψ~k′〉 = (2π)3δ(~k − ~k′).

The scattering length is a particular way to represent the
extreme low energy (meaningE → 0) scattering amplitude,
which can in general be extracted from thes-wave compo-
nent〈~r|ψ(0)~k〉 of the scattering wavefunction. The asymp-
totic boundary condition corresponding to eq. (3.2) to be
satisfied by this particular partial wave is

c

〈~r|Ψ~k〉(l=0) ≡ eiδ0(k)u0k(r) r→∞−→ − 1
2ikr

(
e−ikr − e2iδ0(k)eikr

)
= eiδ0

sin(kr + δ0)
kr

(3.3)

d

which determines thes-wave phase shiftδ0(k). Thes-wave
component of the scattering amplitude does not depend on
the angular variables and is given by

f(l=0) =
e2iδ0(k) − 1

2ik
= eiδ0(k) sin δ0

k
.

The phase factore2iδ0(k) is the zero angular momentum “S-
matrix”, and the scattering lengtha is defined as the limit

a = − lim
k→0

δ0(k)
k

, so that lim
k→0

f(l=0) = −a ,

and the large distance asymptotic behavior of thes-wave
amplitude in the limitk → 0 can be expressed in terms of
the scattering length as

eiδ0u0k(r) r→∞−→ eiδ0
sin(kr + δ0)

kr

k→0−→ 1− a

r
.

Note furthermore that for very small values ofk the zero
angular momentum S-matrix can be approximated as

e2iδ0(k) ' e−2ika , k ' 0.

3.1.1 Effects of internal structure dynamics

We next modify this simple low-energy elastic scat-
tering picture to introduce the “Feshbach resonance”
syndrome[26]. When treating the elastic scattering one as-
sumes a definite and fixed choice for the internal states of the
colliding atoms in the asymptotic region. A crucial missing
ingredient is, however, the existence of other internal states
of higher energy allowing in principle for additional chan-
nels, which allow e.g. for inelastic scattering due to inter-
nal excitation of one or both atoms. Inelastic scattering will
be energetically allowed if the energyE is large enough to
leave a positive relative kinetic energy following the excita-
tion process, in which case the corresponding channels are
“open channels”. At energiesE low enough so that all in-
elastic channels are “closed”, one always can in principle
describe the scattering on the basis of an equation like (3.1),
but then the effects due to the degrees of freedom involved in
the closed inelastic channels have to be accounted for by the
atom-atom potentialV , which in general must therefore be
a complicated, energy-dependent object containing the full
internal dynamics of the two-atom compound system. In or-
der to unravel this situation it is preferable to consider the
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closed channels explicitly, as well as their coupling to the
single open, elastic channel. This is essentially what is done
in the Feshbach theory.

Although realistic descriptions of the low-energy scat-
tering of two bound many-body systems such as two atoms
can be extremely involved, some important and charac-
teristic aspects can be captured even in grossly simplified
schematic models. Let us then consider, in addition to the

lowest energy internal asymptotic states|0〉 associated with
the open elastic channel, one single excited state|ε〉 of either
atom, with excitation energyε as measured from the ground
state. We will now generalize the scattering problem (3.1)
to deal with the scattering of such a pair of two-level atoms.
The hamiltonian governing the dynamics of the two-atom
system is taken to be

c

H =
p2

2µR
⊗ 1 + V00 ⊗ |00〉〈00|+ (V0ε + ε)⊗ |0ε〉〈0ε|+ vc ⊗ (|00〉〈0ε|+ |0ε〉〈00|) . (3.4)

d

Note that each term has two factors, the first acting in the
position coordinates of the atoms and the second acting on
the space of internal states. The vectors|00〉 and|0ε〉 corre-
spond to respectively to the two atoms being in the ground
state|0〉 and to one atom being in the ground state, the other
being in the excited state|ε〉. ThusV00 andV0ε describe the
interaction of the two atoms in each of these two channels,
while vc is an additional interaction which couples the two
channels, i.e., is able to change the internal state of one of
the two atoms. The term involvingε as first factor accounts
for the energy of the internal state|0ε〉 being higher than that
of |00〉.

The state-vectors of the two atom system described by
this hamiltonian will, correspondingly, be of the form

|Ψ〉 = |ψ00〉 ⊗ |00〉+ |ψ0ε〉 ⊗ |0ε〉 (3.5)

where the first factors are the position space amplitudes (or
“channel amplitudes”) corresponding to the indicates inter-
nal states of the two atoms. Thus the scattering problem we
have to solve now involves solving the Schrdinger equation

[E −H]|Ψ~k〉 = 0

with H given by (3.4), the state|Ψ~k〉 being of the form (3.5)
and satisfying appropriate boundary conditions.

As a first step it is easy to rewrite this equation as a set
of two coupled equations for the two channel amplitudes,
by taking its scalar product successively with each of the
two channel internal states. One obtains in this way

[
E − p2

2µR
− V00

]
|ψ00〉 = vc|ψ0ε〉

[
E − ε− p2

2µR
− V0ε

]
|ψ0ε〉 = vc|ψ00〉. (3.6)

The channel potentialsV00 andV0ε, and also the cou-
pling potentialvc are again assumed to vanish at large sepa-
rations of the two atoms. Thus, if the total center of mass en-
ergyE is less thanε, the amplitude|ψ0ε〉will behave asymp-
totically as a decaying exponential, indicating that this chan-
nel is then a closed channel. Under these circumstances, the

elastic scattering in the only open channel|00〉 can be de-
scribed by a single equation of the form (3.1) with an ap-
propriate effective potentialV , which can now be derived
from the coupled equations (3.6). The second equation can
be formally solved for the closed channel amplitude giving

|ψ0ε〉 =
1

E − ε− p2

2µR
− V0ε

vc|ψ00〉 . (3.7)

Substituting this on the first equation yields

[
E − p2

2µR
− V00 − vc

1

E − ε− p2

2µR
− V0ε

vc

]
|ψ00〉 = 0

which identifies the appropriate effective potential for elas-
tic scatteringV as the explicitly energy-dependent object

V = V00 + vc
1

E − ε− p2

2µR
− V0ε

vc , E < ε .

The inverse operator first introduced in eq. (3.7) can be
expressed with the help of the eigenvectors of the closed
channel hamiltonianp2/2µR +V0ε. At negative channel en-
ergies one can have a discrete set of bound states|φn〉which
vanish asymptotically and satisfy

[
p2

2µR
+ V0ε

]
|φn〉 = ηn|φn〉 ,

ηn < 0, 〈φn|φn′〉 = δnn′

while at positive channel energiesη > 0 the spectrum is
continuous and the eigenstates are scattering states|φη〉 sat-
isfying scattering boundary conditions and the equation

[
p2

2µR
+ V0ε

]
|φη〉 = η|φη〉 , η =

~2k2

2µR
> 0.

The effective potential for elastic scattering can thus be writ-
ten in terms of the closed channel eigenvectors as
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V = V00 +
∑

n

vc|φn〉 1
E − ε− ηn

〈φn|vc +
1

(2π)3

∫ ∞

0

d3k vc|φη〉 1
E − ε− η

〈φη|vc , E < ε .

d

The denominator in the continuous spectrum part of this op-
erator does not vanish as long as the|0ε〉 channel remains
closed but, sinceηn < 0, the part associated with the dis-
crete spectrum becomes singular at energiesE such that
E − ε − ηn = 0, and is very strongly energy dependent
in the vicinity of each one of these singularities.

3.1.2 Single closed channel bound state and resonance
scattering

For the sake of simplicity, let us assume that there is just one
bound state|φ0〉, with eigenvalue−ε < η0 < 0, so that a
singularity in fact develops at0 < E = E0 ≡ ε + η0 < ε,
and hence in the energy interval corresponding to pure elas-
tic scattering. How does the singularity affect the elastic
scattering amplitude in its vicinityE ∼ E0?

In order to answer this question, note that the energy
dependence coming from the contribution of the continuous
spectrum is slow in comparison with that associated with the
bound state singularity. Thus it is permissible to lump it to-
gether with the channel potentialV00 and define an effective
“background” channel potential

Ṽ00 = V00 +
1

(2π)3

∫ ∞

0

d3k vc|φη〉 1
E − ε− η

〈φη|vc

which is only slowly energy dependent nearE = E0. The
open channel amplitude then satisfies the equation

[
E − p2

2µR
− Ṽ00

]
|ψ00~k〉 = vc|φ0〉 1

E − E0
〈φ0|vc|ψ00~k〉

(3.8)
where the asymptotic momentum~k is related toE as usual,
i.e. E = ~2k2/2µR. This equation has to be solved for
|ψ00~k〉 with scattering asymptotic boundary conditions of
the form (3.2).

This can be done in a variety of ways, of which we
choose that which is possibly least dependent on invoking

auxiliary results from scattering theory. The first step is to
note that equation (3.8) is equivalent to the pair of coupled
equations

[
E − p2

2µR
− Ṽ00

]
|ψ00~k〉 = vc|φ0〉α

[E − E0] α = 〈φ0|vc|ψ00~k〉 (3.9)

since it can be recovered from them by eliminating the c-
number amplitudeα. The first of these equations appears
as an inhomogeneous equation which can be solved by us-
ing the appropriate Green’s functionGE of the differential
operator on the left hand side as

|ψ00~k〉 = |χ00~k〉+ GE vc|φ0〉α
where|χ00~k〉 is a solution of thehomogeneousform of the
same equation. It describes elastic scattering by the back-
ground effective potential̃V00 alone. Substitution into the
second equation determinesα as

α =
〈φ0|vc|χ00~k〉

E − E0 − 〈φ0|vc GE vc|φ0〉
leading therefore to the desired solution

|ψ00~k〉 = |χ00~k〉+GE vc|φ0〉
〈φ0|vc|χ00~k〉

E − E0 − 〈φ0|vc GE vc|φ0〉 .

The effect of the singularity atE = E0 is entirely con-
tained in the last term of this solution, which shows that the
singularity itself is modified by the additional, also energy
dependent term〈φ0|vc GE vc|φ0〉. In order to make the
structure of this term more explicit, recall that the appropri-
ate Green’s function appearing there can be written as (cf.
ref. [1], section 10.3)

c

GE =
∫

d3k′

(2π)3

[
|χ00~k′〉

P
E − E′ 〈χ00~k′ | − iπ|χ00~k〉δ(E − E′)〈χ00~k|

]
, E′ =

~2k′2

2µR

whereP denotes the principal value of the singular integral and the background scattering states have been assumed to be
normalized as in eq. (3.2). This gives

〈φ0|vc GE vc|φ0〉 = P
∫

d3k′

(2π)3
|〈φ0|vc|χ00~k′〉|2

E − E′ − iπ

∫
d3k′

(2π)3
|〈φ0|vc|χ00~k〉|2δ(E − E′) ≡ ∆0 − i

Γ0

2
.
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Note that∆0 and Γ0 are real energy dependent quanti-
ties, their energy dependence coming from that of the back-
ground scattering states. We are thus led to

|ψ00~k〉 = |χ00~k〉+GEvc|φ0〉
〈φ0|vc|χ00~k〉

E − E0 −∆0 + iΓ0
2

. (3.10)

This solution shows that the effect of the singularity as-
sociated with the closed channel bound state appears as an
additional component in the elastic scattering state which
appears multiplied by a resonant complex factor. To the ex-
tent that the energy dependence of∆0 and ofΓ0 can be ig-
nored, the squared absolute value of this factor has a Breit-
Wigner profile which peaks at the energyE = E0 +∆0 and
has a widthΓ0.

The various ingredients in the seemingly elaborate ex-
pression (3.10) can actually be interpreted in a rather trans-
parent way. As already mentioned, the first term just repre-
sents the energy-smooth background elastic scattering. The
second term carries the resonant contribution, which results
from transitions mediated by the channel coupling interac-
tion vc from the open channel to the of the bound stateφ0〉 in
the closed channel. This is what the amplitude〈φ0|vc|χ00~k〉
in the numerator of this term stands for. Once these tran-
sitions feed the bound state amplitude, it acts as a source
for an additional amplitude in the open channel, this be-
ing given by the factor involving the background Green’s
function,GEvc|φ0〉. The energy dependent denominator ac-
counts for the dynamics of the two-atom system while in
transit through the closed channel or, in other words for the
propagation of the system through the closed channel. It
contains information about the energy of the bound state
and takes into account the ever present possibility of leak-
ing back to the open channel through the matrix element
〈φ0|vc GE vc|φ0〉, which introduces the energy shift∆0 and
the widthΓ0. The latter also guarantees the enforcement of
the time-energy uncertainty relation. In fact, the expression
for the width can be written as

Γ0 = 2π

∫
d3k′

(2π)3
|〈φ0|vc|χ00~k′〉|2δ(E − E′) (3.11)

so thatΓ0/~ is just Fermi’s Golden Rule expression for the
transition rate out of the closed channel bound state to the
open channel background continuum through the action of
the channel coupling interactionvc. Note however that this

is herenotmerely a perturbative approximation, but anexact
expression.

3.1.3 Resonant phase shift in low energy scattering

Our next task will be to extract from eq. (3.10) the effects of
a very low energy resonance on thes-wave phase-shift and
on the scattering amplitude. What is implied here by ’very
low energy’ is the effective suppression by their respective
centrifugal barriers of all higher partial waves.

As in the case of eq. (3.3), thes-wave component of the
background elastic scattering wavefunction appearing in the
expression for the width (3.11) can be written as

〈~r|χ00~k〉 ≡ eiδ̃0(k)ũ0k(r) r→∞−→ eiδ̃0
sin(kr + δ̃0)

kr

whereδ̃0 is the backgrounds-wave phase shift produced by
the effective potential̃V00 and the functioñu0k(r) is inde-
pendent of angular variables, regular at the origin and slowly
varying withk. The matrix element which appears in the ex-
pression for the width is therefore independent of the angu-
lar components of~k′. The energy delta function then allows
one to perform the momentum integration explicitly with the
result

Γ0 =
µR

π~2
k |〈φ0|vc|ũ0k〉|2 ≡ 2γk

where a linear phase-space inducedk-dependence has been
made explicit and the newly defined “reduced width” param-
eter

γ ≡ µR

2π~2
|〈φ0|vc|ũ0k〉|2

is slowly varying withk. Note that this parameter has di-
mensions of energy times length.

We next extract an expression for the fulls-wave phase
shift δ0, including the resonant contribution, from the scat-
tering state (3.10). To this effect we use an asymptotic ex-
pression for thes-wave Green’s functionGE(l=0) written in
terms of the regular background scattering solutionũ0k(r)
which reads

〈r|GE(l=0)|r′〉 r→∞−→ − µR

2π~2

eikr

r
eiδ̃0 ũ0k(r′)

which gives, upon substitution in (3.10),

c

〈r|ψ00k〉 r→∞−→ − 1
2ikr

[
e−ikr − e2iδ̃0

(
1− iΓ0

E − E0 −∆0 + iΓ0
2

)
eikr

]
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from which we can read thes-waveS-matrix as

e2iδ0 = e2iδ̃0

(
E − E0 −∆0 − iΓ0

2

E − E0 −∆0 + iΓ0
2

)
≡ e2iδ̃0e2iδR

where the resonant contributionδR to the phase shift is

tan δR = − Γ0/2
E − E0 −∆0

.

The characteristic behavior of the resonant phase shift for a
narrow resonance, i.e., a resonance in which the energy de-
pendence ofΓ0 and∆0 can be ignored (recall that this en-

ergy dependence comes from the “background” scattering
involving the open channel alone) is shown in Fig. 3.1. The
resonant phaseδR grows most rapidly throughδR = π/2
at the energyE0 + ∆0 for which the denominator vanishes.
As the energyE sweeps across the resonance,δR grows by
∼ π, the change betweenπ/4 and3π/4 occurring in an en-
ergy interval of widthΓ0. Our concern here is however with
cases in which the energyE0 + ∆0 is close enough to zero
so that one can write the phase-shift in terms of the scatter-
ing length as̃δ0 + δR = δ0 ' −ka = −k(ã + aR), we
obtain for the full scattering length, including the resonant
contribution

c

a = ã + aR = ã + lim
k →0

1
k

tan−1 Γ0/2
E − E0 −∆0

= ã− γ

E0 + ∆0
≡ ã− γ

ε
.

d

−2 0 2
E0+∆0

0

1.57

3.14

δ R
 (

ra
di

an
s)

E0+∆0+Γ0/2E0+∆0−Γ0/2

E

Figure 3.1. Resonant phase shiftδR for a typical narrow resonance
as a function of the energyE. The phaseδR grows fromπ/4 to
3π/4 in an energy interval of widthΓ0.

The energyε ≡ E0+∆0 marks the position of the resonance
energy with respect to the threshold for elastic scattering and
is usually referred to in this context as the “detuning” of the
resonance.

This expression for the full scattering length shows how
its “background” (off-resonance) value is affected by the
resonant scattering. The parameters which determine the
resonant modification of the scattering length are there-
duced widthγ and the detuningε. When the detuning is suf-
ficiently small, the resonant modification may be dramatic
not only for the magnitude of the scattering length, but also
by changing its sign. Moreover, whenever the atomic states
defining the open elastic scattering channel and the closed
channel bound state|φ0〉 have different magnetic moments,
in the sense that their energies vary differently under the in-
fluence of an external magnetic field of strengthB, one can

effectively change the detuning by changingB. Thus, if
ε0 is the detuning forB = 0, including the linear Zeeman
shifts, due toB 6= 0 one can write

ε = ε0 + ∆µ B

where∆µ is an effective, difference magnetic moment mea-
suring how the detuning varies withB as the elastic channel
threshold and the closed channel bound states react differ-
ently to this field. In this case the full scattering length can
be seen as a function of the magnetic fieldB

a = ã +
γ/∆µ

B0 −B
= ã

(
1 +

∆B

B0 −B

)
(3.12)

whereB0 = −ε0/∆µ is the field strength at which the de-
tuning vanishes, and∆B ≡ γ/ã∆µ characterizes the width
of the resonance in terms of magnetic field strength.

Typical behaviors of the scattering lengtha as a func-
tion of the external magnetic fieldB in the neighborhood
of the field valueB0 corresponding to zero detuning are
shown in Fig. 3.2. The case represented on the left cor-
responds to a resonance in23Na for which B0 = 907 G
and∆B = 1 G. This was the first Feshbach resonance to
be observed through their effect on the properties of Bose-
Einstein condensates[3], which in particular confirmed a
previously calculated value of the magnetic field width pa-
rameter∆B . In the case represented on the right of the fig-
ure the off-resonance scattering lengthã is negative, but be-
comes positive in a domain of values ofB > B0. This
situation is in fact found in a resonance in85Rb for which
B0 = 155 G and∆B = 11.5 G. This resonance has been
studied by means of photoassociation spectroscopy[27] and
then used in an experiment to control the strength of the
effective atom-atom interaction in a cold sample of85Rb
gasabovethe critical temperature for condensation[4]. By
disturbing the system out of equilibrium and measuring the
equilibration rate as a function of the magnetic field, it was
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Figure 3.2.Left: typical behavior of the near resonance full scattering length whenã > 0 and∆B > 0, as for the resonance atB0 ' 907
G in 23Na. Right: same but for̃a < 0, as for the resonance atB0 ' 156 G in 85Rb. Note changes of sign in both cases.

observed that the equilibration ratevanishedat the field
value for whicha = 0. This corresponds therefore to ex-
perimental realization of an ideal gas. This same resonance
has been subsequently used to obtain stable condensates of
85Rb atoms. A remarkable property of this resonance is that
it has allowed for the formation of condensates with mea-
sured values of the scattering length in excess of as large as
about 9000 Bohr radii[5].

Experimental and theoretical “Feshbach spectroscopy”
studies have also been carried out for133Cs, motivated both
by attempts at using this type of atom for Bose-Einstein con-
densation and by the special role it plays as time and fre-
quency standard[28, 29]. The scattering length for atoms in
the lowest hyperfine state has theB > B0 behavior shown
on the left part of Fig. 3.2, withB0 = −8 G. This negative
value means that the resonant state does not cross the elastic
scattering threshold as the field is increased from zero. The
scattering length varies froma ' −3000 Bohr radii at zero
magnetic field up toa ' 1000 Bohr radii atB = 55 G. It
is observed to vanish forB = 17 G[28, 2]. This is there-
fore a very broad resonance (∆B ' 25 G) which allows
for tuning the scattering length in a very broad range with
small magnetic fields. This flexibility has in fact been cru-
cial for achieving the Cs condensate, as it allowed to adjust
the residual interaction in oder to optimize conditions for
the various steps of the cooling process. Once the conden-
sate was formed, adjustment of the external magnetic field
to 17 G led to an experimental “ideal” condensate.

Finally, it should be noted explicitly that the property
a = 0 results in fact from a cancellation between two con-
tributions to the scattering amplitude which are of a differ-
ent nature, namely the effective potential scattering in the
elastic channel and the resonant contribution involving vir-
tual transfers to the closed inelastic channel and back. thus,
even though the wavefunction of a scattering pair of atoms is
asymptotically indistinguishable from the wavefunction of a
free pair, it is entirely different from the latter within the in-
teraction region. The “ideal gas” behavior results therefore
from insensitivity of the relevant properties ofdilutesystems
to the outwardly healed interaction wounds.

3.2 Feshbach resonances and molecular con-
densates

The mechanism underlying Feshbach resonant effects in
elastic atom-atom scattering involves the formation of two-
atom states of molecular type, which are not stationary states
on account of their coupling to the open elastic scattering
channel. The most naive form of bringing this process to
bear in the context of the many-body problem is to use the
resonance modified scattering length to write the two-body
effective interaction between atoms. This is in fact what is
implicitly or even explicitly assumed in many cases, without
meeting any gross inconsistencies on the experimental side.

However, it was soon realized that one should be deal-
ing in such cases with richer many-body dynamics, in which
in the neighborhood of a Feshbach resonance a dynamic
equilibrium situation may be reached in the many-body sys-
tem involving dimer formation and decay back to the elastic
channel, leading do condensates hybridized by the presence
of a molecular, or dimer phase. This suggestion has in fact
been made and elaborated in terms of a definite theoretical
model by Timmermans et al. in ref. [26]. As will be dis-
cussed shortly, this model possibly leads to results which
may not fully agree with the naive point of view, signaling
that at least a more detailed understanding of the atom-atom
effective interaction in the presence of resonant effects is
needed[30].

The model adopted by Timmermans et al. basically im-
plements coupled equations analogous to (3.9) in a many-
body context, allowing for the conventional treatment of the
effective two-body interaction. This is achieved by introduc-
ing into the second quantized hamiltonian a new field oper-
atorψb(~r) associated with the dimer state|φ0〉 and commut-
ing with the field operator associated with the single atoms,
written asψa(~r). The coupling of a pair of atoms to the
dimmer state, described by the coupling potentialvc in eqs.
(3.9), is represented in the hamiltonian density by an inter-
action term of the form
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Hint(~r) = α
(
ψ†b(~r)ψa(~r)ψa(~r) + ψ†a(~r)ψ†a(~r)ψb(~r)

)
.

This term represents an effective contact interaction of
strengthα which either converts a pair of atoms into a dimer
or, conversely, transforms a dimer back into a pair of atoms.

The constantα is related to the reduced widthγ of the in-
volved Feshbach resonance asα2 = 2π~2γ/M .

Additional terms of the effective hamiltonian density are
analogous to eq. (2.5) for each of the two fields, including
the detuning parameterε and an additional effective two-
body interaction term involving different fields. They read

c

Ha(~r) +Hb(~r) +Hab(~r) = ψ†a(~r)
(
−~

2∇2

2M
+ Va(~r)

)
ψa(~r) +

λa

2
ψ†a(~r)ψ†a(~r)ψa(~r)ψa(~r) +

+ ψ†b(~r)
(
−~

2∇2

4M
+ ε + Vb(~r)

)
ψb(~r) +

λb

2
ψ†b(~r)ψ

†
b(~r)ψb(~r)ψb(~r) +

+ λabψ
†
b(~r)ψ

†
a(~r)ψa(~r)ψb(~r) ,

the effective hamiltonian being therefore

Heff =
∫

d3r [Ha(~r) +Hb(~r) +Hab(~r) +Hint(~r)] . (3.13)

Note that the mass of the dimers has been written as being twice the mass of the atoms, and different trap potentials have been
allowed for each of these two species. It can be also easily verified that the operator

N̂ = N̂a + 2N̂b =
∫

d3r ψ†a(~r)ψa(~r) + 2
∫

d3r ψ†b(~r)ψb(~r)

is a constant of motion ofHeff . Since each dimer accounts for a pair of atoms, this operator represents the total number of
atoms present in the system in either form. SinceN̂a andN̂b by themselves arenot constants of motion, we may conclude
that stationary states of the hybrid system will in general involve correlated quantum fluctuations of the two species which
however become negligible in the case of a uniform system (i.e.Va = Vb = 0) when one takes the thermodynamic limit[31].
In order to obtain a simple mean-field approximation of the Gross-Pitaevski type one must therefore discardalsocorrelations
between fluctuating numbers of atoms and dimers. This is usually done by means of a coherent ansatz[26, 32]

|uaub〉 = e
∫

d3r (ua(~r)ψ†a(~r)−u∗a(~r)ψa(~r))e
∫

d3r (ub(~r)ψ
†
b(~r)−u∗b (~r)ψb(~r))|0〉 (3.14)

which leads to an energy functional of the form

〈uaub|Heff |uaub〉 =
∫

d3r u∗a(~r)
(
−~

2∇2

2M
+ Va

)
ua(~r) +

∫
d3r u∗b(~r)

(
−~

2∇2

4M
+ ε + Vb

)
ub(~r) +

+
λa

2

∫
d3r |ua(~r)|4 +

λb

2

∫
d3r |ub(~r)|4 + λab

∫
d3r |ua(~r)|2|ub(~r)|2 +

+α

∫
d3r

(
u∗b(~r)ua(~r)2 + ub(~r)u∗a(~r)2

)
.

Variation with respect to the amplitudesua(~r) andub(~r) with the constraint on the total number taken care of by means of a
Lagrange multiplierµ now yields Gross-Pitaevski coupled equations

(
−~

2∇2

2M
+ Va + λa|ua(~r)|2 + λab|ub(~r)|2

)
ua(~r) + 2αub(~r)u∗a(~r) = µua(~r)

(
−~

2∇2

4M
+ ε + Vb + λb|ub(~r)|2 + λab|ua(~r)|2

)
ub(~r) + αu2

a(~r) = 2µub(~r) (3.15)

with µ determined by the subsidiary condition on the total mean number of atoms

〈N̂〉 ≡ 〈uaub|N̂ |uaub〉 = 〈N̂a〉+ 2〈N̂b〉 =
∫

d3r
(|ua(~r)|2 + 2|ub(~r)|2

)
= N.

The mean squared dispersion in the total mean number of atoms introduced through the coherent ansatz can also be easily
evaluated. It is different from zero, and results from the combined uncorrelated fluctuations ofN̂a andN̂b:
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σ2
N = 〈N̂2〉 − 〈N̂〉2 = 〈N̂2

a 〉+ 4〈N̂2
b 〉 − 〈N̂a〉2 − 4〈N̂b〉2 = σ2

Na
+ 4σ2

Nb
.

Alternatively, one may allow the displacement functionsua andub of the coherent ansatz (3.14) to be time dependent
and obtain the time dependent generalization of the coupled Gross-Pitaevski equations (3.15) by using the time-dependent
variational principle

δ

∫
dt

(
i~〈uaub| ∂

∂t
|uaub〉 − 〈uaub|Heff |uaub〉

)
= 0 ,

where variations are to be taken with respect toua(~r, t) andua(~r, t). One obtains in this way

i~
∂ua(~r, t)

∂t
=

(
−~

2∇2

2M
+ Va + λa|ua(~r)|2 + λab|ub(~r)|2

)
ua(~r) + 2αub(~r)u∗a(~r)

i~
∂ub(~r, t)

∂t
=

(
−~

2∇2

4M
+ ε + Vb + λb|ub(~r)|2 + λab|ua(~r)|2

)
ub(~r) + αu2

a(~r) (3.16)

This time dependent mean field approximation conserves the total mean number of atoms, since equations (3.16) imply

d

∂

∂t

∫
d3r

(|ua(~r, t)|2 + 2|ub(~r, t)|2
)

= 0.

Thus the mean number prescribed by an initial condition
will be preserved at all subsequent times.

The stationary equations (3.15) may be easily solved
(particularly in the Thomas-Fermi approximation) for a va-
riety of parameter values. Independently of this, however,
their form alone reveals that, although a pure dimer station-
ary solution is possible (ua ≡ 0, ub 6= 0), there can be no
stationary solution in whichub ≡ 0, i.e., a dimer compo-
nentmust always be present. This follows from the fact that
in this case the second equation requires that one also must
haveua ≡ 0. The dimer fraction in the ground state depends
on the detuning, and therefore can be varied by changing the
value of an external magnetic field. If the detuning is large
and negative, eqs. (3.15) reasonably predict large dimer
fraction, in possible conflict with the naive point of view,
according to which the scattering amplitude should simply
approach its background value.

A particular case of the time-dependent equations (3.16)
that can be solved in a relatively simple way is that of a spa-
tially uniform system (so that one must haveVa = Vb = 0)
which remains uniform at all times, so that the functionsua

andub are time-dependent complex constants. The dynami-
cal equations they satisfy are then

i~
dua

dt
=

(
λa|ua(t)|2 + λab|ub(t)|2

)
ua(y) + 2αub(t)u∗a(t)

i~
dub

dt
=

(
ε + λb|ub(t)|2 + λab|ua(t)|2) ub(t) + αu2

a(t).

The complex character of the amplitudes is a direct con-
sequence of the coherent ansatz (3.14), which allows for
fixing the phase of each of the two condensates. Writing
ua,b = |ua,b|eiϕa,b , inspection of the equations of motion
shows that only the relative phaseϕ ≡ 2ϕa − ϕn is dy-
namically relevant. Moreover, since the total atom number
densityn ≡ |ua|2 + 2|ub|2| is a constant of motion, one
expressua| and |ub| in terms ofn and a single additional
variablef , which can be conveniently defined as

f ≡ 2|ub|2 − |ua|2
n

, −1 ≤ f ≤ 1.

The variablef describes the splitting of the total atom num-
ber density into atomic and molecular densities, the limiting
values corresponding respectively to all-atoms and to all-
molecules situations. It turns out to be an action variable
canonically conjugated to the angle variable corresponding
to the relevant relative phaseϕ. In fact, the equations of mo-
tion for the uniform, hybrid system can be re-expressed in
terms off andϕ as[31]

c

df

dt
=

2α
√

n

~
(1− f)

√
(1 + f) sin ϕ ,

dϕ

dt
=

ε

~
− nλa

~
(1− f) +

nλb

4~
(1 + f)− nλab

~
f − α

√
n

~
1 + 3f√

1 + f
cosϕ . (3.17)

It is easy to check that these equations are in fact classical hamiltonian equations corresponding to the hamiltonian function

h ≡ ε

~
f +

nλa

2~
(1− f)2 +

nλb

8~
(1 + f)2 +

nλab

2~
(1− f2) +

2α
√

n

~
(1− f)

√
1 + f cosϕ .
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The curvesh =constant in thef × ϕ plane are the phase-
space trajectories of the solutions of eqs. (3.17).

On the experimental side, perhaps the most conspicuous
signal of the nearby presence of a Feshbach resonance in the
pioneering experiment of Inouye et al.[3] was an enhanced
loss of atoms, leading to the complete loss of the system.
The mechanisms taken to be responsible for such loss actu-
ally involve internal atomic degrees of freedom which are
not considered explicitly in the simple two-channel model.
Under static external field conditions, the dimer component
relates in fact to a highly excited vibrational molecular state
in the closed channel, which can be easily de-excited in a
collision with another atom[33]. This is in fact an enhanced
three-body recombination process due to the formation of
the resonant, longer lived dimer. The kinetic energy released
in this process leads to the loss of the atoms involved. In the
case of the85Rb Feshbach resonance the role of this loss
mechanism was much less important, possibly due to the
low density of the condensate in this case. In fact, a recent
experimental success relating to this system now strengthens
the dimer hybridization picture. As already observed in ref.
[26], a sudden change of this field should cause the two co-
herent phases to be out of equilibrium, leading to subsequent
oscillations of the dimmer (and of the atom) fraction in time,
as found from the time-dependent generalization (3.16) of
the Gross-Pitaevski coupled equations and also seen in the
particular case of eqs. (3.17). This type of oscillation with
a frequency which depends on the detuningε. and hence
on the applied magnetic fieldB, has in fact been observed
near theB0 = 156 G resonance in85Rb[34]. The oscilla-
tions were however observed in theatomiccomponent, the
molecular component being experimentally very elusive.

Just recently, a different line of experiments succeeded
in directly observing the formation of molecules[35] and
also of molecular condensates mediated by a Feshbach res-
onances in systems of coldfermionicatoms[36, 37]. Due to
the requirements of Fermi statistics, the cooling of fermionic
atoms requires systems containing a mixture of two compo-
nents (which may be e.g. two different spin states) in order
to allow for thes-wave interactions. The experiments in
refs. [35, 36] used40K atoms, and that in ref. [37] use6Li
atoms. Bose-Einstein condensation of a molecular phase in
this case gives rise to a very peculiar system involving the
equilibrium of this condensate with a two-component Fermi
gas. Some theory of such systems is today in the early stages
of development[38].

3.3 Molecules in atomic condensates and hy-
brid atomic condensates by stimulated
transitions

Stimulated electromagnetic transitions (Raman or otherwise
contrived) provide a versatile tool to manipulate internal
atomic degrees of freedom in atomic condensates, besides
being many times used also in their production process. In
this final section we describe briefly a process of coherent
stimulated recombination of atoms which produces specific,
“cold” molecular states[39] and discuss the coupled dynam-
ics of a two-species atomic condensate in the presence of

stimulated inter-species transitions[40, 41].

3.4 Molecule formation

Bound molecular states such as|m〉 (see Fig. 3.3) in the
elastic channel which is open for the condensate atoms (la-
beled as “a + a” in the figure) are not significantly popu-
lated by spontaneous electromagnetic transitions. They will
however have important dipole coupling to bound states in
closed and rather high-lying channels involving an appro-
priate electronic excitation in one of the atoms (such as the
channel labeled “a + a∗” in the same figure), and these will
in turn dipole-couple down to bound molecular states|m〉 in
the elastic channel. This second-order coupling can be stim-
ulated by properly tuned external radiation sources, leading
effectively to the decay of the zero relative energy contin-
uum state to the bound molecular state.

ω1
2ω

∆1

∆2

a + a*

m| >
|a> xo|a>

|I>

ε
a + a

Figure 3.3. Stimulated second-order process leading from a state
containing a pair of atoms|a〉 ⊗ |a〉 to a molecular state|m〉 in the
“a + a” channel through the intermediate state|I〉 in the dipole-
coupled “a + a∗” channel. The molecular state has binding energy
ε, ω1 andω2 are the frequencies of the external sources, which
imply detunings∆1 and∆2.

The experiment described in ref. [39] uses thus proce-
dure in a condensate of magnetically trapped87Rb atoms
in the f = 1, mf = −1 hyperfine state, the intermediate
state involving an electronic excitation of one of the atoms
from S to theP level. Molecule formation was detected as
an increase in thelossof atoms after exposure to the stim-
ulating fields whenω2 − ω1 was close to the value of the
binding energyε. The loss has been understood as due to
molecule formation and subsequent escape from the trap.
The molecules in this experiment are produced essentially
“at rest”, allowing for unprecedented accuracy in measuring
the molecular binding energy. Interesting side many-body
effects are an observed density dependence of the value of
ω2 − ω1 for maximum loss (630.020 MHz at a peak density
of 0.77×1014 cm−3 and 630.023 MHz at2.6×1014 cm−3)
and of the line shape, which becomes broader at larger val-
ues of the condensate density.

The system of atoms and molecules coupled by the ex-
ternal driving fields can be described by equations of mo-
tion of the form used in connection with the Feshbach res-
onances, eqs. 3.16, with an appropriate reinterpretation of
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parameters. The density of molecules|m〉 is described in
terms of the amplitudeub(~r). The constantα in the term that
couples atoms and molecules and the detuningε (not to be
confused here with the molecular binding energy!) are now
set by the intensities and frequencies of the external driving
fields, and therefore in principle completely “tunable”. To
bring the model closer to real experimental situations loss
mechanisms can be introduced phenomenologically into the
coupled equations[26, 31].

3.4.1 Hybrid atomic condensates

Second order stimulated processes can also couple two dif-
ferent hyperfine states of the condensate atoms, as illustrated
in Fig. 3.4 for the case studied in refs. [40]. When a driving
pulseis applied one may end up with a system involving two
distinguishable types of atom which may be described by a
hamiltonian density of the form

m =0f

m =−1f

m =1f

m =0f

ω1

m =−2f

m =2f

m =−1f

m =1f
ω2

|2 1>

|1 −1>

f=2

f=1

Figure 3.4. Stimulated second-order process coupling the hyper-
fine state|f = 1, mf = −1〉 to |f = 2, mf = 1〉 in 87Rb. The
frequencies areω1 ' 6.8 GHz andω2 ' 2 MHz, in the microwave
and radiofrequency ranges respectively. The state|f = 2, mf −0〉
acts as an intermediate state in the second order stimulated process.

c

H0 =
2∑

i=1

ψ†i (~r)
[
−~

2∇2

2M
+ εi + Vi(~r) + ψ†i (~r)

4π~2ai

2M
ψi(~r)

]
ψi(~r) + ψ†1(~r)ψ

†
2(~r)

4π~2a12

M
ψ2(~r)ψ1(~r)

d

whereψ1(~r) andψ2(~r) are field operators corresponding to
the two different atomic species, theai are their associated
scattering lengths anda12 is the scattering length describing
the scattering of different species. Note that the two species
may interact differently with the trapping arrangement, lead-
ing possibly to species-dependent trap potentials. Since the
number of atoms of each species is in this case a constant of

motion, the presence of the internal energy parametersεi is
not dynamically relevant.

If, on the other hand, the external driving fields are kept
on continuously, one needs also an interaction hamiltonian
describing the coupling of the two species, which can be
written as

c

Hint = α
(
ψ†1(~r)ψ2(~r) + ψ†2(~r)ψ1(~r)

)
, H = H0 +Hint . (3.18)

d

With this extra term in the hamiltonian the number of atoms
of each of the two species is no longer a constant of motion.
Since the total number of atoms is conserved, one will in
general have correlated quantum fluctuations of the two con-
stituent populations, similarly to what has been discussed in
connection with the coexistence of atoms and molecules in
section 3.2. In this case the internal energy parametersεi

acquire dynamical relevance as they affect the equilibrium
mean values of the population fractions. Together with the
coupling strengthα, they are determined by the driving field
frequencies and intensities.

A possible mean field approximation of the Gross-
Pitaevski type for this system can be obtained by using a
coherent ansatz similar to eq. (3.14), i.e.

c

|u1u2〉 = e
∫

d3r (u1(~r)ψ
†
1(~r)−u∗1(~r)ψ1(~r))e

∫
d3r (u2(~r)ψ

†
2(~r)−u∗2(~r)ψ2(~r))|0〉 .

Using this ansatz the energy functional has the same form as the hamiltonianH =
∫

d3rH(~r) with the field operators (and
their adjoints) replaced by the c-number functionsui(~r) (and their complex-conjugates). The average total number of atoms
is, on the other hand,
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〈u1u2|
∫

d3r

2∑

i=1

ψ†i (~r)ψi(~r)|u1u2〉 =
∫

d3r

2∑

i=1

|ui(~r)|2 .

Fluctuations in the total number appear as a result of ignoring the correlation in the number fluctuations of the two species.
Variation of the energy functional using a Lagrange multiplierµ to take the subsidiary condition regarding the average total
number of atoms into account gives the now very symmetric extremum coupled equations

[
−~

2∇2

2M
+ ε1 + V1(~r) +

4π~2a1

M
|u1(~r)|2 +

4π~2a12

M
|u2(~r)|2

]
u1(~r) + αu2(~r) = µu1(~r)

[
−~

2∇2

2M
+ ε2 + V2(~r) +

4π~2a2

M
|u2(~r)|2 +

4π~2a12

M
|u1(~r)|2

]
u2(~r) + αu1(~r) = µu2(~r) (3.19)

d

A simple alternate ansatz which explicitly preserves the
conservation of the total number of atoms exists for conden-
sates involving two atomic species, however. It is written in
terms of thehybridcreation operator

a† ≡ 1√
N

∫
d3r

(
u1(~r)ψ

†
1(~r) + u2(~r)ψ

†
2(~r)

)

in which the factorN−1/2 has been introduced for later con-
venience. Note that, with this definition, the condition

∫
d3r

(|u1(~r)|2 + |u2(~r)|2
)

= N (3.20)

gives for the annihilation operatora and its adjoint the stan-
dard boson commutation relation[a, a†] = 1. This leads
then to theN -atom ansatz

|N ; u1u2〉 ≡ 1√
N !

(
a†

)N |0〉 . (3.21)

Evaluation of the energy functional with this ansatz
is straightforward using the commutation relation
[ψi(~r), a†] = ui(~r)/

√
N . The result is essentially the same

as that obtained in the case of the coherent ansatz, the dif-
ference being just additional factorsN(N − 1)/N2 in the
two-body terms involvinga1 anda2. Variation of the func-
tional with what is now thenormalizationcondition (3.20)
accounted for in terms of a Lagrange multiplierµ leads
thereforeagain to the equations (3.19), albeit with the third
terms on the left hand side multiplied by(N − 1)/N .

Thus whenN is large the functionsui(~r) are determined
from the same set of equations. In the case of the sharp
number ansatz (3.21), however, one can evaluate a possibly
meaningful fluctuation in the mean number of one of the two
species. To this effect use

〈N ;u1u2|N̂i|N ; u1u2〉 =
∫

d3r |ui(~r)|2 ≡ 〈Ni〉

and

〈N ; u1u2|N̂2
i |N ; u1u2〉 =

N − 1
N

〈Ni〉2 + 〈Ni〉

to obtain

σ2
Ni

= 〈Ni〉
(

1− 〈Ni〉
N

)

which shows that the number fluctuation is in factreduced
with respect to the uncorrelated poissonian fluctuations as-
sociated with the coherent ansatz. The reduction factor de-
pends on the fraction of the atoms which on the average are
in each of the two coupled internal states, and therefore does
not go away asN becomes very large.

When the ansatz (3.21) is used, the functionsui(~r) de-
scribe the spatial distribution of the internal hybridization
of eachand all of the N atoms, which as a result of the
(“Brueckner”) mean-field approximation occupythe same
single-particle state. This coherent internal superposition
takes the place of the coherence of “two condensates” which
one is led to consider when using the coherent ansatz.

The solution of equations (3.19) is very simple in the
case of a uniform system, but even so the results are not en-
tirely trivial. For definiteness we adopt the point of view
of the sharp number ansatz (3.21). The functionsui(~r) are
now complex constants which it is convenient to write in
polar form as

ui(~r) →
√

N

V xie
iϕi

whereV is a quantization volume. Furthermore, the nor-
malization condition (3.20) can be taken care of explicitly
by parameterizing thexi in terms of a mixing angleθ as

x1 = cos θ , x2 = sin θ.

With these simplifications it is preferable to work directly
with the energy functional rather than with the coupled
equations. It becomes
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Figure 3.5. Internal mixing angleθ in the case of a uniform hybrid condensate as a function of∆/α for A/α = −3 (left) andA/α = 0
(right ). The upper curves on both graphs correspond toϕ = π, while ϕ = 0 in the lower curves. Full and dashed lines correspond
respectively to minima and maxima of the energy functional.

〈H〉
N

=
ε1 + ε2

2
+C+

A

2
cos2 2θ+∆cos 2θ+α sin 2θ cosϕ

whereϕ = ϕ2 − ϕ1 is the relative phase between the two
species and the newly defined dimensionless coefficientsC,
A and∆ are

C =
4π~2N

8MV (a1 + a2 + 2a12) ,

A =
4π~2N

4MV (a1 + a2 − 2a12) and

∆ =
δ

2
+

4π~2N

4MV (a1 − a2) ,

whereδ = ε1 − ε2 is the detuning parameter.

Extrema of this function with respect to the relative
phaseϕ will exist whensin ϕ = 0, which impliesϕ = 0
or ϕ = π. The extrema with respect to the mixing angle
θ are easily determined for given values of the parameters
from the stationarity condition

1
N

∂〈H〉
∂θ

= 0 =⇒ A

2α
sin 4θ+

∆
α

sin 2θ+cos 2θ cos ϕ = 0.

Note that only two independent combinations of the vari-
ous parameters appear in this equation. Some solutions are
shown in Fig. 3.5. For sufficiently negative values ofA/α
one has two distinct minima when∆/α is in a certain vicin-
ity of zero.

An analysis of these solutions from the point of view of
the coherent ansatz leads of course to similar results. It can
be found in ref. [32].

4 One step beyond the Gross-
Pitaevski description

Gross-Pitaevski (G.-P.) theory, including the effective two-
body interaction based on the scattering length, draws its
most fundamental (if not most important) support from the
results of Lieb and Seiringer[22] concerning the G.-P.limit.
This limit carries a strong statement bearing on the ground
state of the many boson system (with purely repulsive two-
body interactions!), which essentially declares its “many-
body triviality” (absence of many-body correlations, see
section 2.4). Therefore it is very uninformative on any fea-
tures that involve such correlations in an essential way, rang-
ing from ground state properties under conditions falling
short of the G.-P. limit to the nature and spectrum of low
lying excitations.

One decisive first step towards dealing with these mat-
ters was taken long ago by Bogoliubov[42], on the basis of
an heuristic approach which appears adequate for dilute sys-
tems, although such systems were not experimentally avail-
able at the time. Its concepts were soon re-elaborated from
alternate points of view with a rather strong but unfulfilled
aim of obtaining results valid for at least not-so-dilute sys-
tems (see e.g. refs. [12]).

Some of the main approaches to such matters, within the
particular and now experimentally rich domain of dilute sys-
tems, will be treated in the sections to follow.

4.1 Bogoliubov’s quasi-particles

The problem treated by Bogoliubov consisted in determin-
ing the nature of the low lying excitations of a Bose-Einstein
condensate, and in particular its dispersion equation in an
extended, homogeneous system, which means the depen-
dence of the excitation energies on their momentum. Of
course the atom-atom interaction plays an essential role
here.
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Although one can obtain the results due to Bogoliubov
in a variety of different ways5, it will be useful to present it
here in the light of being some sort of perturbative correc-
tion to the pure G.-P. effective mean field picture, as this will
also make way for the developments to follow.

Consider then the effective hamiltonian (2.5) for the sim-
plest case of a uniform system, i.e., withV (~r) ≡ 0. It is con-
venient here to use a momentum representation defined in
terms of normalized plane waves satisfying periodic bound-
ary conditions in a quantization volumeV. The momentum
representation of the field operators is then given as

a†~k =
1√V

∫
d3r ei~k·~rψ†(~r) .

They satisfy usual boson commutation relations. In this rep-
resentation the kinetic energy is diagonal and the hamilto-
nian is written as

Heff =
∑

~k

~2k2

2M
a†~ka~k +

λ

2V
∑

~k1,~k2,~q

a†~k1+~q
a†~k2−~q

a~k1
a~k2

.

(4.1)
The sum over three momenta in the two-body term takes
momentum conservation explicitly into account and the ex-
plicit assumption is made thatλ > 0.

The minimizer of the G.-P. functional for this hamilto-
nian is just the constant zero-momentum plane wave1/

√V.

When the density of the system is such that there areN par-
ticles in the quantization volumeV, the effective mean field
ground state is

|Φ〉 =
1√
N !

(
a†0

)N

|0〉.

It is obvious, however, that such a state isnot an eigenstate
of Heff on account of the two-body term, which in partic-
ular contains a contributiona†~q a†−~q a0 a0 which, when act-
ing on |Φ〉, will convert a pair of zero momentum bosons
into two bosons with momenta±~q. The corresponding am-
plitude will moreover contain a bosonic enhancement fac-
tor of

√
N(N − 1). These terms represent propensities of

the hamiltonian which are completely frustrated within the
bounds of the G.-P. approximation, which only takes into
account terms in whichall the field operators are zero mo-
mentum operators.

Now observe that, due to momentum conservation, the
number of zero momentum operators in any term of the ef-
fective hamiltonian can be zero, one, two or four. In view of
the expected large population of the zero momentum state
and its consequences in terms of bosonic enhancement fac-
tors, a less drastic truncation would result if the only terms
left out would be those with at most one zero momentum
operator, and hence with three or fournonzeromomentum
operators, corresponding to single-boson states expected to
be weakly populated. This would leave us with the not-so-
truncated hamiltonian

c

H ′
eff =

λ

2V a†0a
†
0a0a0 +

∑

~k 6=0

[
~2k2

2M
a†~ka~k +

λ

2V
(
a†~ka†−~k

a0a0 + a†0a
†
0a−~ka~k + 4a†~ka†0a0a~k

)]
=

≡ H ′
0 + H ′

q .

d

The termH ′
0 acts only in the zero momentum sector, while

the termH ′
q is characterized by a quadratic dependence on

non-zero momentum field operators.
This hamiltonian clearly conserves the total number of

bosons (i.e., commutes witĥN ≡ ∑
~k a†~ka~k), but of course

not the number of bosons in the zero momentum state, or the
number of bosons in non-zero momentum states when con-
sidered separately (i.e., does not commute withN̂0 ≡ a†0a0

or with N̂ − N̂0). Therefore its ground state will be com-

plicated by entangled quantum fluctuations of these partial
numbers. The standard way to circumvent these complica-
tions is again to decorrelate by factorization the zero mo-
mentum and the nonzero momentum parts of the state vec-
tor at the expense of the conservation of the total number
of bosons. Furthermore, in order to keep the density of the
system under control, one constrains the average number of
atoms in the quantization volume by means of the Lagrange
multiplier µ, and considers thus

c

H ′
eff − µN̂ = H ′

0 − µN̂0 +
∑

~k 6=0

[(
~2k2

2M
− µ

)
a†~ka~k +

λ

2V
(
a†~ka†−~k

a0a0 + a†0a
†
0a−~ka~k + 4a†~ka†0a0a~k

)]

5In particular, they may be obtained by linearization of the time-dependent Gross-Pitaevski equation (the one-component counterpart of eqs. (3.16)) in
the small amplitude oscillatory regime around the stationary equilibrium solution, see e.g. Chapter 13 of ref. [10].
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One way to implement this factorization without impos-
ing further ansatz restrictions on the non-zero momentum
part, assume that the zero momentum part of the state vector
is frozen in a coherent state

|z〉 = eza†0−z∗a0 |0〉
which will in particular produce the appropriate bosonic
enhancement factors once the average number of atoms is
properly adjusted. In the spirit of a perturbative treatment of
the quadratic terms, the values ofz and andµ are determined
by minimization of the zero momentum energy functional
with the proper number constraint:

δ
(
〈z|H ′

0 − µN̂0|z〉
)

= δ

(
λ

2V |z|
4 − µ|z|2

)
= 0 ,

〈z|N̂0|z〉 = |z|2 = N.

Variation of the functional leads to the equation

(
λ

V |z|
2 − µ

)
z = 0 hence |z|2 =

V
λ

µ = N (4.2)

discarding the trivial solutionz = 0. Thusz =
√

Neiγ and
µ = λN/V.

The effective hamiltonianheff extended to the non-zero
momentum sector is next obtained as the partial expectation
value ofH ′

eff − µN̂ in the state|√Neiγ〉. The phaseγ is in
fact of no consequence since it can be absorbed by redefin-
ing the phases of the~k 6= 0 states, and will accordingly be
omitted in the following. One obtains

c

heff =
λN2

2V +
∑

~k

(
~2k2

2M
− µ

)
a†~ka~k +

λN

2V
∑

~k 6=0

(
a†~ka†−~k

+ a−~ka~k + 4a†~ka~k

)
=

=
λN2

2V +
∑

~k

~2k2

2M
a†~ka~k +

λN

2V
∑

~k 6=0

(
a†~ka†−~k

+ a−~ka~k + 2a†~ka~k

)
. (4.3)

d

In the final expression the Lagrange multiplierµ was substi-
tuted by its value obtained in (4.2).

The now standard way to deal with such an hamiltonian
involves “canonical transformations” of the field operators
of the form

η~k = uka~k + vka†−~k
, u2

k − v2
k = 1.

This type of transformation preserves the commutation rela-
tions and can be inverted, with the result

a~k = ukη~k − vkη†−~k
.

Substitution in (4.3) yields a quadratic form in the operators
η~k, η†~k. The transformation coefficientsuk, vk can then be
determined so as to eliminate what Bogoliubov called the
“dangerous terms”, involving two creation or two anihila-
tion operators. As a result of this the hamiltonian (4.3) is
reduced to the form

heff =
λN2

2V + δh
(0)
eff +

∑

~k

~ωkη†~kη~k

whereδh(0)
eff is a c-number term resulting from normal order-

ing the “non-dangerous” terms. Thus the net result of this
procedure is i) to generate a set of normal mode-like excita-
tions with energy~ωk and momentum~k created by the op-
eratorsη†~k; these are the Bogoliubov “quasi-particles”, and

ii) to give a correctionδh(0)
eff to the G.-P. ground state energy.

Note that this ground state must now be taken as the “quasi-
particle vacuum”, defined as the state which is annihilated
by any of the operatorsη~k.

4.1.1 Easy route to the quasi-particles

The procedure described above to obtain explicit expres-
sions for the transformation coefficientsuk, vk and hence
also for the important quantitiesωk andδh

(0)
eff can, of course,

be followed “verbatim”. It is not, however, the shortest, or
the more elegant route. A better approach on both of these
aspects[32] involves, as a first step, rewriting the hamilto-
nian (4.3) in terms of the coordinate-like operatorsx~k and
momentum-like operatorsp~k defined as

c

x~k ≡
a−~k + a†~k√

2
, p~k ≡

a~k − a†−~k

i
√

2
, [x~k, p~k ′ ] = iδ~k,~k ′ .
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These definitions are easily inverted, giving the momentum space field operators in terms ofx~k andp~k. Substitution in (4.3)
then gives

heff =
λN2

2V +
∑

~k 6=0

[(
~2k2

4M
+

λN

V
)

x~kx−~k +
~2k2

4M
p~kp−~k

]
−

∑

~k 6=0

(
~2k2

4M
+

λN

2V
)

.

The last term is a divergentc-number sum over momenta which will contribute toδh
(0)
eff and will be dealt with below.

The appropriate canonical transformations to obtain the quasi-particle excitations are now simple scale transformations
{

x~k
p~k

−→
{

Γkx̄~k
p̄~k/Γk

Writing heff in terms ofx̄~k andp̄~k, and choosing the scale factorsΓk so that the coefficients of thēx- andp̄-dependent terms
are equal, i.e.

(
~2k2

4M
+

λN

V
)

Γ2
k =

~2k2

4M

1
Γ2

k

implying Γk =

[
~2k2

4M
~2k2

4M + λN
V

] 1
4

,

one is left with

heff =
λN2

2V −
∑

~k 6=0

(
~2k2

4M
+

λN

2V
)

+
∑

~k

√
~2k2

4M

(
~2k2

4M
+

λN

V
) (

x̄~kx̄−~k + p̄~kp̄−~k

)
=

=
λN2

2V −
∑

~k 6=0

(
~2k2

4M
+

λN

2V
)

+
∑

~k

√
~2k2

2M

(
~2k2

2M
+

2λN

V
)(

η†~kη~k +
1
2

)

where the quasi-particle operators are related to the scaled coordinate-like and momentum-like operators in the same way as
thea~k, a†~k are related to thex~k, p~k:

x̄~k ≡
η−~k + η†~k√

2
, p̄~k ≡

η~k − η†−~k

i
√

2
, [x̄~k, p̄~k ′ ] = iδ~k,~k ′ .

The transformation coefficientsuk andvk relating the quasi-particle operators to thea~k, a†~k are also easily obtained. In fact

η~k =
x̄−~k + ip̄~k√

2
=

x−~k/Γk + iΓkp~k√
2

=
(1 + Γ2

k)a~k + (1− Γ2
k)a†−~k

2Γk

d

from which it follows that

uk =
1 + Γ2

k

2Γk
and vk =

1− Γ2
k

2Γk
.

We turn now to the effects of non-zero momentum states
on the condensate dynamic properties. First, the quasi-
particle energies are seen to be given by

~ωk =

√
~2k2

2M

(
~2k2

2M
+

2λN

V
)

k→0−→
√

λρp

M
~k .

A remarkable outcome of this calculation is the phonon-like
linear dependence with~k at low momenta. The slope is
usually referred to as thesound velocityc, which can be ex-
pressed as

c =

√
λρp

M
=
~
M

√
4πρP a =

~
MξH

whereξH is the healing length (2.14). The sound veloc-
ity is therefore a quantity which remains unchanged under
the Gross-Pitaevskilimit. The linear dispersion equation at
small momenta has in fact been associated by Landau[43]
with superfluidityof the condensate, as it prevents a particle
moving in the condensate to lose energy by creating conden-
sate excitations for phase-space reasons.

Second, collecting the various contributions to the cor-
rection to the ground state energyδh

(0)
eff , which includes now

another divergent sum of zero-point-like energy terms com-
ing from the quasi-particle hamiltonian, one is left with
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δh
(0)
eff =

1
2

∑

~k 6=0

(√
~2k2

2M

(
~2k2

2M
+

2λN

V
)
− ~

2k2

2M
− λN

V

)

still a divergent result! The divergence occurs for large momenta, as can be rewriting the summand (with obvious abbreviated
notation) as

√
ek(ek + 2λρP )− ek − λρP = ek

(√
1 +

2λρP

ek
− 1− λρP

ek

)
ekÀλρP−→ −λ2ρ2

P

2ek
+

λ3ρ3
P

2e2
k

+ · · · ,

d

where the last result has been obtained by expanding the
term with the square root. When the sum over~k is trans-
formed to an integral, the factork2 of the momentum space
volume element will cancel the asymptotick−2 dependence
of the first term, causing the integral to have a linear di-
vergence proportional toλ2. This divergence has been
very specifically addressed in ref. [44], where it is shown
that it results from the particular form of the two-body ef-
fective potential as implemented in the starting effective
hamiltonian6. This effective potential, written as

v(~r1, ~r2) = λ δ(~r1 − ~r2),

must be seen as a truncated version of the more accurate ef-
fective potential, introduced as thepseudopotentialin ref.

[45],

v(~r1, ~r2) = λ
∂

∂|~r1 − ~r2| [ |~r1 − ~r2|δ(~r1 − ~r2) ] .

These two forms of the potential give equivalent resultsex-
ceptin orderλ2, where the effect of the more accurate ver-
sion is simply to cancel out the second order term causing
the divergence. In particular, the two forms of the effec-
tive potential are completely equivalent within the Gross-
Pitaevski mean field approximation.

Introducing this amendment to the correction to the
ground state energy, one is left with the now regular expres-
sion

c

δh
(0)
eff =

1
2

∑

~k 6=0

(√
~2k2

2M

(
~2k2

2M
+ 2λρP

)
− ~

2k2

2M
− λρP +

λ2ρ2
P

2ek

)
.

d

It can be calculated replacing the sum by an integral over
momentum space[44] with the result

δh
(0)
eff =

NλρP

2
128

15
√

π

√
ρP a3.

This result has been first derived by Lee and Yang in
1957[46] using a different method. It amounts only to a
small correction in the dilute limitρpa

3 ¿ 1 and in fact
vanishes in the Gross-Pitaevskilimit.

It is perhaps useful to summarize the main points of
the preceding discussion, in which some effort was spent
in trying to enhance the possibility of examination rather
than belief. First, one takes into accountoff-diagonalmo-
mentum space matrix elements of the two-body effective in-
teraction in which two of the four states involved are dif-
ferent from the macroscopically populated zero momentum
state. This is considered as a perturbation of the condensed
mean field ground state and determines a set of “normal
excitation modes” which constitute the Bogoliubov quasi-

particles. When the quantum fluctuations due to these exci-
tation modes are taken into account by redefining the ground
state as the “quasi-particle vacuum”, an energy correction

arises which is proportional to
(
ρP a3

)1/2
. In order to ob-

tain this correction one must take special care in check-
ing the consistency of the second order contributions of the
two-body effective potential. The pseudopotential recipe of
Huang and Yang[45] avoids the second order divergences in
a way which is consistent with the kinship of the effective
interaction with the two-body scattering amplitude.

4.1.2 Ground state depletion

The ground state state vector in the Bogoliubov approxima-
tion |ΦB〉 is the vacuum of the Bogoliubov quasi-particles
anda coherent state of zero momentum single particle states,
i.e.

6Cf. in this respect the treatment of the same problem in ref. [43]. Here the perturbative treatment of a two-body interaction potential is explicit, and
the regularizing correction is obtained as the second order perturbative correction to the zero-momentum only ground state. Note that this point of view in
untenable when the effective two-body interaction is related to the two-body scattering amplitude, since in this case the second order term is spurious.
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η~k|ΦB〉 = 0 , all ~k ; a0|ΦB〉 =
√

N |ΦB〉 .

The first of these properties implies that there areparti-
clespresent in non-zero momentum states, since the quasi-
particle operatorsη~k are linear combinations of creation and
annihilation operators. One of the byproducts of the above
calculation is therefore a perturbative estimate of particle
number distribution in non-zero momentum states due to

the action of the effective two-body interaction. This dis-
tribution is usually called thedepletionof the condensate,
from the fact that particles found in these states must have
been removed from the zero momentum condensate. Strictly
speaking, violation of the conservation of particle number
in this calculation does not conform this meaning, however.
Actually the depletion is here an additional distribution of
particles which can be simply calculated from the expres-
sion which gives the number of particles with momentum
~k 6= 0 in the quasi-particle vacuum, namely

c

n~k ≡ 〈ΦB |a†~ka~k|ΦB〉 = v2
k =

(
1− Γ2

k

)2

4Γ2
k

=
~2k2

2M + λρP√
~2k2

2M

(~2k2

2M + 2λρP

) − 1 ,

d

where use has been made of the previously obtained expres-
sion forΓk. Note that this expression refers to a givenvector
momentum, even though it depends only on it magnitudek.
It diverges ask−1 for smallk. Due to this isotropy one can
define a depletion density per interval ofk as

dn

dk
≡ V

(2π3)
4π k2 n~k

in which the divergence for smallk has been controlled
by the momentum space volume element. It is also easy
to check that this depletion density approaches zero fast
enough for largek so that its integral, which corresponds
to the “total depletion” in the Bogoliubov ground state is fi-
nite and also given in terms of the diluteness factor of the
condensate as

ntot =
8N

3
√

π

(
ρP a3

)1/2
.

Note that this expression also vanishes in the Gross-
Pitaevskilimit, in whichρP a3 → 0.

4.2 Self-consistency looks worse

A crucial element in the Bogoliubov approach is the canon-
ical transformation leading from the particle field operators
to the quasi-particle operators, which is there used to ob-
tain normal-mode-like excitations with non-zero momentum
added perturbativelu on top of a zero-momentum conden-
sate. An improvement over the perturbative character of this
approach consists in starting from a slightly more general
canonical transformation which will allow both for a co-
herent condensate and for quasiparticles and to determine
both ingredients self-consistently. This is, in words, what is
known as the Hartree-Fock-Bogoliubov (HFB) approxima-
tion, which we proceed to develop in continuation[47, 48].

The dynamics is based again on the hamiltonian (4.1),
the system being assumed to be uniform and treated in
a momentum representation defined in terms of periodical
boundary conditions in quantization volumeV. The ground

state will be approximated by a “self-consistent vacuum” of
quasi-particle (normal mode-like) excitations associated to
creation and annihilation operatorsη†~k, η~k related to the cor-

responding momentum space componentsa†~k, a~k of the field
operator through the canonical transformation

a~k ≡ c~k + z0δ~k,0 ≡
(
ukη~k − vkη†−~k

)
+ z0δ~k,0 , (4.4)

wherez0 is ac-number andu2
k − v2

k = 1. For~k 6= 0 this is
of course just the Bogoliubov transformation leading to the
quasi-particle operators, but for~k = 0 the possibility of a
c-number displacement of the particle operator is included
through the parameterz0. The interpretation of this param-
eter follows from the fact that the state vector|0̃〉 which is
annihilated by the displaced operatorc0 has the property

c0|0̃〉 = 0 =⇒ (a0 − z0) |0̃〉 = 0 =⇒ a0|0̃〉 = z0|0̃〉 ,
i.e., it is the eigenstate of the annihilation operatora0 with
eigenvaluez0 and hence ( up to an overall phase) the coher-
ent state

|0̃〉 ≡ |z0〉 ≡ ez0a†0−z∗0a0 |0〉.
Note that one could have performed the Bogoliubov trans-
formationbeforeintroducing the zero momentumc-number
displacement, with equivalent results. In fact, in this case
one would first have written

a~k = uv η̃~k − vkη̃†−~k

and then introduce the zero momentum displacement by
defining

η̃~k = η~k + ζ0δ~k,0.

Combining these two steps one is left with

a~k = ukη~k − vkη†−~k
+ (u0ζ0 − v0ζ

∗
0 )δ~k,0
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which is equivalent to (4.4) and establishes the relation ofz0

to ζ0.
The canonical transformation (4.4) therefore makes all

the ingredients used in the Bogoliubov treatment again fully
available. However, this transformation will now be used in
a way that attempts to determine its parameters in a simul-
taneous, “self-consistent” way instead of in the sequential
way used in that treatment.

The first step is straightforward, if algebraically rather
cumbersome. In consists in substituting the transformed op-
erators (4.4) into the effective hamiltonian, normal-ordering
the quasiparticle operators and sorting the resulting terms
according to the number of normal ordered quasiparticle
operators they contain. In order to enforce the appropriate
density (average number of particlesN in the quantization

volumeV) a Lagrange multiplierµ is introduced. Again
one finds that the phase of the zero momentum displace-
ment z0 can be absorbed by redefining the phases of the
k 6= 0 single-particle states, so that this quantity will simply
be taken as real in what follows. One obtains in this way
terms having zero to four quasiparticle operators, collected
respectively ashi, with i ranging from zero to four. Thus

Heff − µ
∑

~k

a†~ka~k −→
4∑

i=0

hi . (4.5)

Now if |Φ〉 is the (normalized) quasi-particle vacuum, i.e.
η~k|Φ〉 = 0 for all ~k, then the expectation value ofHeff−µN̂
in this state reduces to thec-number parth0, which is given
by

c

h0 = −z2
0µ +

λ

2V z4
0 +

∑

~k

(
ek − µ + 2λz2

0

)
v2
~k
− λ

V z2
0

∑

~k

u~kv~k +
λ

V





∑

~k

v2
~k




2

+
1
2


∑

~k

u~kv~k




2

 .

whereek ≡ ~2k2/2M . Note that there is no guarantee that the sums over momenta which appear in this expression are
finite. Ignoring this question for the moment, and proceeding to the formal minimization of this quantity with respect to the
parameters of the canonical transformations, leads to the equations

∂h0

∂z0
= 0 ⇒ z0


−µ +

λ

V


z2

0 +
∑

~k

(
2v2

k − ukvk

)




 = 0

∂h0

∂vk
+

∂h0

∂uk

∂uk

∂vk
= 0 ⇒ tanh 2σk =

λ
V

(
z2
0 −

∑
k′ uk′vk′

)

ek + 2 λ
V

(
z2
0 +

∑
~k′ v

2
k′

)− µ
, (4.6)

d

where theu~k andv~k have been parametrized in terms of the
hyperbolic angleσk as

uk = cosh σk , and vk = sinh σk ,

so as to take into account the conditionu2
k − v2

k = 1. The
subsidiary condition on the number of particles, on the other
hand, gives the additional equation

〈Φ|N̂ |Φ〉 = N ⇒ z2
0 +

∑

~k

v2
k = N .

It turns out that these same equations imply that the
“dangerous terms” ofh1 andh2 vanish (i.e., terms contain-
ing only quasi-particle creation operators, which therefore
do not annihilate the quasiparticle vacuum). The only re-
maining such term occur inh4, contains four quasi-particle
creation operators. Thus, the quasi-particle vacuum fails to
be an eigenstate ofHeff − µN̂ on the account of this term
only.

The interesting remaining part is of course the “non-
dangerous” part ofh2, which reads

c

h2 =
∑

~k

~ωk η†~kη~k , ~ωk =

√√√√√

ek +

λ

V


z2

0 +
∑

~k′

uk′vk′







2

− λ2

V2


z2

0 −
∑

~k′

uk′vk′




2

.
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Note that

~ωk
k→0−→

√√√√4
λ2

V2
z2
0

∑

~k′

uk′vk′ ≡ ∆HFB

so that the dispersion equation for the quasiparticles of the
HFB approximationdoes nothave the interesting phonon
behavior of the simple Bogoliubov approximation at small
momenta. The quantity∆HFB is usually referred to as the
“HFB energy gap”. One of the factors contributing to this
energy gap is the sum which can be recognized as giving the
contribution of the non condensate particles to the so called
pairing (or anomalous) density associated with the quasipar-
ticle vacuum

ρ
(pair)
~k

≡ 〈Φ|a~ka−~k|Φ〉 = z2
0δ~k,0 − ukvk .

The “normal” density can also be split into condensate and
non-condensate contributions as

ρ
(norm)
~k

≡ 〈Φ|a†~ka~k|Φ〉 = z2
0δ~k,0 + v2

k .

A “gapless” approximation can therefore be obtained from
the HFB approximation by simply ignoring the contribution
of the non-condensate particles to the pairing density. This
approximation is known as the Popov approximation[47,
49].

4.2.1 Difficulties with the contact effective interaction

It has been mentioned that the results obtained for the HFB
approximation were formal in the sense that the convergence
of the sums over momenta was not being checked explicitly.
It so happens that, for the case of the contact effective two
body interaction included in the hamiltonian (4.1), the sum
over the anomalous density contributions that are ignored in
the Popov approximation arenot convergent. This may be
seen as follows. First,assumethat the sum for the anoma-
lous density converges. If so, then the second of eqs. (4.6)
shows that for sufficiently largek the hyperbolic angleσk,
and hence also its hyperbolic sine which corresponds tovk

decrease ask−2. The sum is however to be taken over all di-
rections of the momenta as well, and this contributes a factor
k2 from the volume element in momentum space. Sinceuk

approaches one from above, for largek, it follows that the
sum in fact cannot converge.

One easy way to avoid this divergence[48] is to replace
the contact effective interaction by a finite range one, such
as

V (~r1 − ~r2) −→ 4π~2a

M

(
1√
πb

)3

e−
|~r1−~r2|2

b2 (4.7)

which reproduces the usual form of the contact interaction
in the limit b → 0. The two-body matrix elements of this
interaction in momentum space involve

c

V (q) =
1
V

∫
d3r ei~q·~rV (~r) =

4π~2a

MV e−
b2q2

4
b→0−→ 4π~2a

MV =
λ

V
The two-body term of the effective hamiltonian (4.1) becomes

∑

~k1,~k2,~q

V (q)a†~k1−~q
a†~k2+~q

a~k2
a~k1

and the paring density contributions e.g. to the second eq. (4.6) appear in the form

tanh 2σk =

(
z2
0 −

∑
k′ V (|~k − ~k1|)uk1vk1

)

ek +
(
(V (0) + V (k)) z2

0 +
∑

~k1

(
V (0) + V (|~k − ~k1|)

)
v2

k1

)
− µ

,

d

the divergence being now controlled by the momentum
transfer dependence of the two-body matrix elements. With
this choice of effective two body interaction the HFB ap-
proximation is finite but still features a gap in the quasipar-
ticle dispersion equation.

This approach certainly produces a calculable self-
consistent mean field theory on which one can, in particu-
lar, mount further improvements, by considering small am-
plitude fluctuations around the mean field. This has been
pursued in ref. [48] and will be briefly reviewed in the next
section. What remains in relatively less secure grounds is

its relation to the actual physical situation, since the finite
range of the potential, which is the ingredient which is es-
sential to make the theory finite, is in fact not tied to it in
any reasonably secure manner. Recall, furthermore, that the
adopted zero momentum fit to the usual function of the scat-
tering length makes the finite range potential conceptually
akin to the scattering amplitude associated with the realistic
atom-atom interaction.

One question which can be put at this point is whether
the full recipe of Huang and Yang[46] for the pseudopoten-
tial is useful in this connection. One way of approaching this
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question is to try and evaluate the ground state energy in the
HFB approximation, which means to evaluate thec-number
term h0 of the hamiltonian expressed in terms of the shift
parameterz0 and of normal ordered products of quasiparti-
cle operators. Self-consistency makes this task much more
demanding than the corresponding one in the simple Bogoli-
ubov approximation, however, since the values of the vari-
ous parameters appearing inh0 are actually determined by
the extremum conditions (4.6) derived fromh0 itself. There
seems to be no calculation done along these lines in terms
of the full pseudopotential, and there possibly will never be
one.

4.3 Elementary excitations on worse looking
richer foundations

Static solutions to self-consistent mean field approximations
such as Hartree-Fock and Hartree-Fock-Bogoliubov are in-
teresting starting points for studying stability and normal
modes of excitation. One of the interesting and often ex-
plored features of such theories is that continuous symme-
tries of the hamiltonian which are broken in the mean field
solution reappear as solutions of zero frequency, associated
with the generators of the broken symmetry transformations,
in the so called Random Phase Approximation (RPA) treat-
ment of the excitation modes. The symmetry breaking itself
can be seen as the resource explored by the mean field treat-
ment to take important correlations into account within the
limitations imposed by the mean field constraint.

Possibly the example of this syndrome that is most sim-
ply visualized is the generation of the self-bound charac-
ter of atomic nuclei within the Hartree-Fock approximation.
The finiteness of the bound nuclear system is clearly a cor-
relation property, each nucleon being correlated so as not to

be too far away from other nucleons, their center of mass
behaving as a free particle with the appropriate total mass.
This correlation property is replaced in the self-consistent
mean field treatment by an attractive average potential gen-
erated by all nucleons and also binding them. In this way
the mean field treatment replaces “not being too far from the
rest” simply by “being confined by the common average po-
tential”, keeping all the nucleons together without they hav-
ing to keep track of each other. This is achieved, however,
at the expense of breaking the translational symmetry of the
hamiltonian through the introduction of the average localiz-
ing potential. One of the solutions to the RPA equations to
identify excitation modes of such a system will be the total
momentum operator, the generator of spatial translations of
the system, with excitation frequency equal to zero, imply-
ing the absence of a restoring force as a consequence of the
symmetry (see e.g. ref. [50], section 8.4.7).

In the context of the Bose-Einstein condensates these
features remain true and can be taken advantage of when
one uses as a starting point to study excitation modes the
self-consistent HBF approximation. Although the relation
of calculated results to the actual physical situation involves
the question of the effective interaction which is used, gen-
eral properties which are not oversensitive to it, such as the
fate and role played by the energy gap in the BHF spectrum
as well as the fate and role of the broken symmetries, can be
safely investigated using self-consistently a finite range po-
tential such as the one introduced in the preceding section.

A possible starting point for this brief review of the main
results of ref. [48] is the observation that the generator of
the symmetry which is broken by the HFB treatment is the
number operator̂N =

∑
~k a†~ka~k, which can be written in

terms of the quasiparticle operators and thec-number dis-
placementz0 as

c

N̂ = z2
0 +

∑

~k

v2
k + z0(u0 − v0)(η0 + η†0)−

∑

~k≥0

2ukvk

1 + δ~k,0

(
η†~kη†−~k

+ η~kη−~k

)
+

∑

~k

(
u2

k + v2
k

)
η†~kη~k ,

d

where the restriction on the second sum means that each pair
of opposite vectors~k, −~k in to be included only once. The
first two terms are the only ones to survive when the expecta-
tion value is taken in the quasiparticle vacuum|Φ〉, and must
therefore give the number of particlesN . The operator part
should emerge as a zero frequency normal mode in the de-
sired RPA treatment, and thus its form serves to indicate the
minimal structure needed for the excitation operators to be
determined. The quasi-particle representation ofN̂ shows

that besides quasiparticle creation and annihilation opera-
tors, two-quasiparticle operator terms also appear. It turns
out that contributions of the formη†~kη~k′ are not relevant for
the equations of motion to be derived for the excitation op-
erators, while it is important to include the quasiparticle cre-
ation and anihilation terms. Thus the general ansatz for the
elementary excitation operator with momentum~P is taken
to be

c

Q†~P = x~P η†~P + y~P η−~P +
∑

~q≥0

X~q, ~P

η†
~q+~P/2

η†−~q+~P/2√
1 + δ~q, 0

+ Y~q, ~P

η~q−~P/2η−~q−~P/2√
1 + δ~q, 0

,
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Figure 4.1.Left: Numerical dispersion equation for RPA elementary excitations on the HFB quasiparticle vacuum. The calculation has
been done assuming a not so dilute system withρa3 = .01. The momentum scale is plotted in units of~/a, and the energy scale is in units
of ~2/2Ma2. The full line represents a discrete phonon-like branch, and the dashed line represents the threshold of a continuum. At zero
momentumP the threshold is at twice the HFB gap. Note that the discrete branch essentially merges with the continuum atP ∼ ~/a.
Right: One and two quasi-particle fractions in the composition of the discrete branch. The shift from one quasi-particle to two-quasiparticle
dominance atP ∼ 0.75 ~/a suggests an “avoided crossing” situation, with most of the one quasi-particle strength located within the
continuum branch for higher momenta.

where thex~P , y~P andX~q, ~P , Y~q, ~P are coefficients to be de-
termined. These two groups of coefficients, which refer to
one and two quasi-particle components of the sought nor-
mal modes (three, or more, quasiparticle contributions to the
excitation operator are ignored), are coupled to each other
through the three quasiparticle parth3 of the decomposition
(4.5) of the effective hamiltonian. In addition the four quasi-
particle termh4 couples the two quasi-particle components
among themselves. Note that all terms create a momentum
~P , either through the addition or removal of one quasiparti-
cle or through the addition or removal of a pair of quasipar-

ticles with relative momentum~q.
The total momentum~P of an excitation mode is a

sharply defined quantity, so that the RPA equations deter-
mining the coefficientsx~P , y~P andX~q, ~P , Y~q, ~P have to be

solved for each value of~P (or of just the magnitudeP ,
due to rotational invariance). Implementing the equations
in terms or periodical boundary conditions in a quantization
volumeV, reduces them to large matrix equations which are
however amenable to numerical solution. They yield, for
eachP , a set of modesQσ †

~P
whose associated coefficients

are chosen to satisfy the normalization condition

c

〈Φ|
[
Qτ

~P
, Qσ †

~P

]
|Φ〉 = xτ∗

~P
xσ

~P
− yτ∗

~P
yσ

~P
+

∑

~q≥0

(
Xτ∗

~q, ~P
Xσ

~q, ~P
− Y τ∗

~q, ~P
Y σ

~q, ~P

)
= δτσ .

d

Solutions obtained for a gaussian effective two-body in-
teraction of the form (4.7) withb = 3, 96 a and assuming
that the diluteness parameterρa3 is .01, are summarized in
Fig. 4.1. What one obtains for each value ofP is a discrete,
lower energy solution in addition to a “continuum” (within
the limitations of the scheme based on the adoption of pe-
riodical boundary conditions) of solutions starting at aP -
dependent threshold energy which goes to the limit of twice
the HFB gap forP → 0. The set of discrete solutions form
a low energy discrete branch of excitations with phonon be-
havior, and merge atP = 0 with the the symmetry generator
N̂ .

Reference to the dependence of the coefficientsx~P , y~P

andX~q, ~P , Y~q, ~P on the total momentum~P gives additional
information on the composition of the normal modes. As
shown on the right hand graph of Fig. 4.1, for low momenta
the discrete branch is dominated by the one quasi-particle
contributions

c1(~P ) = |x~P |2 − |y~P |2

while the contributions of two quasi-particle terms

c2(~P ) =
∑

~q≥0

(
|X~q, ~P |2 − |Y~q, ~P |2

)
= 1− c1(~P )

remain small. This dominance of one quasi-particle terms
decreases asP increases and is replaced by a two quasi-
particle dominance near theP values where the energy of
the discrete branch approaches the continuum threshold and
eventually merges with it.

This behavior suggests an “avoided crossing” situation,
as the one free HFB quasi-particle energy and the threshold
for two free quasi-particles cross. At values ofP beyond
the onset of the two quasi-particle dominance in the discrete
branch, the bulk of the one quasi-particle strength is to be
found spread in the continuum branch.
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5 Many mode traps, localization and
interference

As discussed in Chapter 2, the state of a dilute system
of very cold trapped bosons (in the sense that the system
finds itself esentially in its ground-state) can, to a very
good approximation, be described in terms of a single one-
body wavefunction, which minimizes the appropriate Gross-
Pitaevski functional. In particular, this result becomes rig-
orously valid in the Gross-Pitaevski limit (see section 2.4),
independently of possibly ellaborate varieties of trapping
potentials, provided they satisfy the general requirements
of local regularity and confinement (limr→∞ V (~r) = ∞,
see ref. [15]). Some potentials, such as “many wells” po-
tentials can lead to nearly degenerate solutions, so that re-
striction to the single minimizer state may not be physically
appropriate, as it artificially freezes the possibly interest-
ing dynamics which involves the quasi-degenerate group of
modes. On the other hand, to the extent that one increases
the relevant sector of the phase space by considering many,
quasi-degenerate single-particle modes one also allows for
a richer choice of observables, which may or may not be
in fact brought to measurement procedures in the labora-
tory. One may therefore expect that closer scrutiny of the

measurement processes also becomes more relevant in this
context. This final chapter will be dedicated to “a bird’s
eye view” of these topics. Before turning to the modeling of
many-mode setups, it is useful to review some typical exper-
imental facts observed in connection with such situations.

5.1 Quick survey of phenomena with some in-
terpretation hints

A most famous first observation is that of Andrews et al.[51],
in which a sausage shaped condensate is pinched in the mid-
dle by a very high optical barrier, which essentially cuts it in
two pieces. When these are allowed to expand by removal of
the trap and barrier, they generate interference fringes vis-
ible under absorption imaging. This experiment has been
carefully analysed in ref. [52], in terms of a time-dependent
Gross-Pitaevski initial conditions problem in a way which
is consistent with the use of a single, initially bi-localized
wavefunction. The observed interference fringes can in this
case be obtained from the one body density. Thus, if after
expansion the time evolved wavefunction can be represented
over some region as a superposition of two plane waves (the
two different momenta resultung from contributions of the
two initially disjoint parts to the amplitude in that region),
then the density is there given by

c

φ(~r) ∼ aei~k1·~r + bei~k2·~r −→ ρ(~r) = |a|2 + |b|2 + 2 Re
(
ab∗ei(~k1−~k2)·~r

)

d

This is then simple one body interference, the many body
nature of the condensate serving just obtaining the neces-
sary measurement statistics in one shot[53].

A different type of interference effect which may occur
in a many boson system was pointed out, even before the ex-
periment of Andrews et al., by Javanainae and Yoo[54]. This
type of interference does not appear in the one-body density
and is basically a correlation effect, requiring the implemen-
tation of a many body observable for its direct measurement.

To illustrate it in the simplest possible way, consider the state
of two free identical bosons

Φ(~r1, ~r2) =
1√
2V

(
ei~k1·~r1ei~k2·~r2 + ei~k1·~r2ei~k2·~r1

)
.

The full probability density associated with this exchange
correlated wavefunction is

c

|Φ(~r1, ~r2)|2 =
1
V2

(
1 + cos(~k1 − ~k2) · (~r1 − ~r2)

)
=

2
V2

cos2
(~k1 − ~k2) · (~r1 − ~r2)

2

d

which shows interference fringes in therelativeposition of
the two bosons. Thus, interference fringes would be seen in
the reiterated measurement of therelative positionof the two
bosons in identically prepared systems. At the same time,
the one body density associated with the two boson wave-
functionΦ(~r1, ~r2) is easily seen to be constant, so that reit-
erating a one body position measurement yields a flat distri-
bution. The point of Javanainen and Yoo in ref. [54] is that a

similar situation ocurs whenN/2 particles occupy each one
of two plane-wave states, in the sense that the measurement
of N − 1 conditional positions, each measurement being
conditioned byall the precedingresultsshows interference
fringes similar to those observed in the one-body density in
the case of single wavefunction consisting of the superpo-
sition of two plane waves. A single full set of conditioned
position measurements, for sufficiently largeN (N = 1000
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in a simulation shown in ref. [54]) in fact exhibits the many
body exchange correlation fringes clearly enough.

100 200 300 400 500

1

2

3

4

Figure 5.1. IntensityI(q) (in arbitrary units) obtained from eq.
(5.1) withn = 6 and the realistic parameters for the Anderson and
Kasevich experimentq0 = .425 µm and2

3
M
~
√

2g q
3/2
0 = 1.130.

The horizontal scale is inµm. Compare with Fig. 4 of ref. [56].

Recently, a related experiment has been reported by Shin
et al.[55] involving however entirely different aspect-ratios,

as in this case an elongated condensate was divided length-
wise into two also very elongated parts by a controlable bar-
rier.

A different setup which again can be interpreted in terms
of the dominance of a single, multiply split wavefunction oc-
curs in the experiment of Anderson and Kasevich[56]. Here
the vertically arranged∼ 30 portions of a multiply split con-
densate are allowed to leak, the various leakages suffering
free falls from their respective initial positions. Under these
conditions one observes at a given time the existence of
zones of measurable density, which can be accurately repro-
duced in terms of constructive interference ofn free falling
coherentWKB amplitudes

I(q) =




n−1∑

j=0

√
2π

kj(q)
senϕj(q)




2

(5.1)

where

kj(q) =

√
2M2g

~2
(q + jq0)

and

c

ϕj(q) =
∫ q

−jq0

k(q′)dq′ =
∫ q

−jq0

M

~
√

2g(q′ + jq0) dq′ =
2
3

M

~
√

2g (q + jq0)3/2.

d

The vertical axisq is oriented downwards and the positions
of the leaky condensate portions are−jq0, j = 0, . . . , (n−
1).

A more recent but to a certain extent similar situation oc-
curs in the experiment of experiment of Cataliotti et al.[57],
in which a trapped condensate is subjected to a comb of opti-
cal barriers before being released. Measured density profiles
after an allowed expansion time shows two ejected portions
travelling in opposite directions away from a central resid-
ual portion. A very schematic “one wavefunction” model
for this behavior is provided by the behavior of the density
associated with the free evolution of an initial wavefunction
given by

φ(x) ∝ e−
x2

2b2 cos2 kx , kb À 1.

Sincecos2 kx = (1 + cos2kx)/2, this wave function is in
fact the coherent superposition of three wave packets mov-
ing with mean velocities0 and±2~k/M respectively. If the
cos2 kx modulation of the gaussian is replaced by a more
general periodic function, Fourier analysis would give anal-
ogous results involving a richer superposition of differently
moving wavepackets.

Still more recently, Greiner et al.[58] observed similarly
producedthree dimensionalarrays of condensate pieces.
Here, by varying the barrier height between neighboring
sites they have been able to observe interference patterns fol-

lowing removal of the trap which changed markedly with the
eventual blurring of the interference pattern. This has been
interpreted in terms of the confinement of atoms to definite
sites in the case of sufficiently high barriers, with loss of def-
inite phase relation between different pieces of the original
condensate, in the manner of a bosonic Mott transition.

5.2 Simple models for split condensates

The simplest case of a system with many modes is a system
with two modes and, appart from its direct relevance to ex-
perimental setups like those of refs. [51, 55], it will be use-
ful to analyse this case in detail also in order to see what is
really involved and what simplifications can be introduced
in the modeling of more complicated situations. Note that
the systems considered in section 3.4.1 are in fact two mode
systems, but the two modes there refer to two different types
of boson (e.g.two different internal states of a given atomic
spacies), while here the focus will be on a sigle type of boson
evolving in a nearly degenerate pair of spatially orthogonal
modes.
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Figure 5.2. Schematic representation of a two-well trap, with the
corresponding lowest energy single-particle doublet. The lowest
member of the doublet has a nodeless wavefunctionϕ1, and the
energy splitting∆E ≡ E2 − E1 determines the oscillation period
between the two non-stationary, localized states(ϕ1 ± ϕ2)/

√
2 as

2π~/∆E.

A typical situation of this kind arises in the case of
a double-well trap such as the one represented schemati-
cally in Fig. 5.2. Laboratory situations are of course three-
dimensional and can be arranged in a variety of aspect ratios,
ranging e.g. from long sausages pinched at the middle by an
imposed barrier[51] to also long sausages split lengthwise
in half by an interposed wall[55]. Different aspect ratios im-
ply also different energy ratios of excitations in directions
transverse to that crossing the barrier, and it will be assumed

that these excitations are in any case much higher than the
doublet splitting. In this case a possible simplification of the
problem consists in restricting the dynamics to a two-mode
phase space. This is implemented introducing the creation
operators

a†± =
∫

d3r u(r⊥)ϕ±(z)ψ†(~r),

ϕ±(z) =
ϕ1(z)± ϕ2(z)√

2
,

the functionu(r⊥) being the frozen transverse wavefunction
andϕi(z), i = 1, 2 being the quasi-degenerate longitudinal
eigenfunctions for the lowest doublet in the two-well trap. In
this way,ϕ±(z) are localized, non-stationary wavefunctions
peaking in each of the two sides of the barrier.

The basic hamiltonian to be used to characterize the dy-
namics of the system is the usual second-quantized effective
hamiltonian with the contact two-body effective interaction
(2.5) restricted to the two modes. This restriction is easily
implemented using for the field operators the substitution

ψ(~r) −→
∑
±

u(r⊥)ϕ±(z)a± ,

ψ†(~r) −→
∑
±

u∗(r⊥)ϕ∗±(z)a†±

which, after some trimmings to be discussed shortly, gives

c

Heff
∼−→ HBH ≡ E+a†+a+ + E−a†−a− + α

(
a†+a− + a†−a+

)
+

+
Λ+

2
a†+a†+a+a+ +

Λ−
2

a†−a†−a−a− . (5.2)

d

Here the constantsE± stand for the diagonal matrix ele-
ments

E± = 〈uϕ±| p2

2M
+ V |uϕ±〉.

Note that if the delocalized functionsuϕi, i = 1, 2 are taken
as eigenfunctions ofp2/2M + V with eigenvaluesEi, then
E+ = E− = (E1 + E2)/2. The parameterα stands for the
off-diagonal matrix elements

α = 〈uϕ±| p2

2M
+ V |uϕ∓〉, (5.3)

taken to be equal, the wavefunctions being both real. Again,
for eigenfunctions ofp2/2M + V one finds thatα = (E1−
E2)/2 < 0. This reveals, in particular, that this term is re-
lated to the periodic tunneling of partiches across the barrier.

The two-body part in fact gives rise to sixteen terms in-
volving space integrals of the various distinct products of

four mode wavefunctionsuϕ±. Due to the localized charac-
ter of these wavefunctions, however, integrals over products
of four wavefunctions that are not all equal are much smaller
than the two which have been retained. The parametersΛ±
are therefore essentially equal and given by

Λ± = λ

∫
d3r u4(r⊥)ϕ4

±(z) .

The trimmed hamiltonian (5.2) is nothing but a bosonic
version of a two-site Hubbard model (in short, the two-site
Bose-Hubbard model), in which the “hopping” term relates
to tunneling between different wells and there is an “in site”
two-body interaction, in addition to possibly different one-
body site energies. The above “derivation” can moreover
be extended to more sites and/or dimensions, by picking
Wanier functions[59] as the appropriate generalization of
the two-well localized wavefunctions. The standard form
of the trimmed model hamiltonian is
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HBH =
∑

i

Eia
†
iai + α

∑

<i,j>

(
a†iaj + a†jai

)
+

Λ
2

∑

i

a†ia
†
iaiai , (5.4)

d

where< i, j > in the second sum denotes that the sitesi
andj are neighbors.

This argument shows therefore that, in presence of a
spatially periodic trap potential which gives rise to a large
number of quasi-degenerate independent modes one can,
by restricting the phase space to just the quasi-degenerate
modes, using a representation in terms of localized wave-
functions (typically a “single” Wanier function) one is led,
with only some mild trimmings, from the Gross-Pitaevski
problem to the Bose-Hubbard model. The restriction to the
quasi-degenerate modes is the most severe limitation of the
Bose-Hubbard model. This restriction in fact constrains the

rendering of the dependence of effective mean-field proper-
ties on degrees of freedom kept active in the model, such as
mean occupations of the different sites. While in the Gross-
Pitaevski treatment this is taken into account by the nonlin-
ear term, in the Bose-Hubard model it is limited by freezing
once and for all a set of quasi-degenerate orbitals, such as
the wavefunctionsuϕ1 anduϕ2 in the case of the two-well
trap of Fig. 5.2.

5.2.1 Results for a two-well system

In this case one considers the hamiltonian (5.2) withE+ =
E− = 0 andΛ+ = Λ− = Λ, i.e.

c

HBH = α
(
a†+a− + a†−a+

)
+

Λ
2

(
a†+a†+a+a+ + a†−a†−a−a−

)
. (5.5)

d

and realizes imediately to have been left with a particular
case of the hamiltonian that was considered in section 3.4.1.
In particular, since the confining trap is taken into account
in terms of the choice made for the relevant orbitalsuϕi,
i = 1, 2, there is no explicit reference to the position degree
of freedom besides that which is related to the indices± and
the localized character of the corresponding orbitals. Fur-
thermore, there are no two body interactions between bosons
in different sites, and the total number of bosons

N̂ = a†+a+ + a†−a−

is clearly a constant of motion.
A convenient way of dealing with the two-mode hamil-

tonian (5.5) within a sector of the second-quantized phase
space having a definite number of particlesN is to define
the operators

J± = J1 ± iJ2 ≡ a†±a∓ ,

J3 ≡
a†+a+ − a†−a−

2
,

J ≡ a†+a+ + a†−a−
2

=
N̂

2
,

which constitute Schwinger’s well known realization of
the angular momentum algebra it terms of two bosonic
modes[60]. They are therefore frequently refered to as
“quasi-spin” operators in this context[31]. The role played
by the operatorJ is revealed by the relation

J2
1 + J2

2 + J2
3 = J(J + 1) =

N̂

2

(
N̂

2
+ 1

)
,

so that the value of the quasi-spin is half the number of
bosons in the considered sector. The two-site hamiltonian
(5.5) can be expressed in terms of the quasi-spin operators
as

c

HBH = 2αJ1 +
Λ
2

[(J + J3)(J + J3 − 1) + (J − J3)(J − J3 − 1)]

= 2αJ1 + ΛJ(J − 1) + ΛJ2
3 . (5.6)
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The second term is a constant of motion, and the two re-
maining terms are non-commuting cartesian components of
the quasi-spin. This reveals at once that one can diagonal-
ize the hopping term proportional toα by choosing a rep-
resentation in terms of the simultaneous eigenvectors of the
square of the total spin and of the componentJ1, and in
this case the on-site two-body effective interaction term will
have off-diagonal matrix elements. Or, alternatively, one can
diagonalize the on-site two-body effective interaction term,
by choosing instead the representation in whichJ(J−1) and
J3 are diagonal, and in this case the hopping term will have
off diagonal matrix elements. The ground state forα = 0,
which implies a completely impermeable barrier, is the state
|J = N/2, J3 = 0〉 which corresponds to an equal number
of bosons in each well (assumingN to be even, and a repul-
sive effective two-body interaction). Conversely, the ground
state in the caseΛ = 0, and assumingα < 0 (cf. the discus-
sion following eq. (5.3)), is the state|J = N/2, J1 = N/2〉.

To see what this state is, recall the relations between the lo-
calized wavefunctionsuϕ± to the quasi-degenerate, delo-
calized wavefunctionsuϕ1,2 which imply the relations

a± =
a1 ± a2√

2
where the anihilation operatorsa1,2 are associated to the
quasi-degenerate single particle state rather than with the lo-
calized states. Straightforward algebra then gives immedi-
ately

2J1 = a†+a− + a†−a+ = a†1a1 − a†2a2 ,

so that the eigenstate|J = N/2, J1 = N/2〉 is the state
in which all N particles are in the lowest one of the quasi-
degenerate single particle doublet, and therefore fully delo-
calized. It can be expressed in terms of the common normal-
ized eigenvectors ofJ(J + 1) andJ3 after a simple calcula-
tion:

c

|J = N/2, J1 = N/2〉 =
1√
N !

(
a†1

)N

|0〉 =
1√
N !

(
a†+ + a†−√

2

)N

|0〉 =

=
1

2N/2
√

N !

N∑
n=0

(
N
n

) (
a†+

)N−n (
a†−

)n

|0〉 =

=
1

2N/2

N∑
n=0

√(
N
n

)
|J = N/2, J3 = (N − 2n)/2〉 . (5.7)

d

It will be convenient to refer to the alternate representations
in which the hopping term and the on-site two body effec-
tive interaction are diagonal simply as theJ1 representation
and theJ3 representation respectively.

The preceding discussion provides enough elements for
a qualitative understanding of the dynamics implied by the
model hamiltonian (5.5). One sees that the hopping term fa-
vors delocalization of the particles so as to promote the rel-
evance of the lowest member of the quasi-degenerate dou-
blet; and that, on the contrary, the on-site two body effective
interaction favors the most symmetric state of theJ3 repre-
sentation, havingJ3 = 0, which means half of the particles
localized in each of the two wells. In general the spectrum
of HBH will consist of N + 1 states in theN boson sec-
tor. The eigenvalues and eigenvectors can be obtained by
diagonalizing the hamiltonian matrix in any of the two rep-
resentations.

5.2.2 Semi-classical domain

A semi-classical domain exists forN À 1, and in this case a
formulation of the dynamics in classical terms may be use-
ful. To this effect, consider, instead of the three operators
Jk, k = 1, 2, 3, which have eigenvalues in the interval−J

to +J , their scaled couterparts

jk ≡ Jk

J
, J =

N

2
which have eigenvalues in the range−1 to +1. The spec-
trum of the scaled operators therefore becomes very dense
in the semiclassical regime and may be treated as a continu-
ous variable. At the same time, from the angular momentum
commutation relations satisfied by theJk, namely

[Jj , Jk] = iεjklJl ,

whereεjkl is the completely antisymmetric symbol, it fol-
lows that

[jj , jk] =
2i

N
εjkljl

so that the scaled operators approximately commute in the
semiclassical domainN À 1. Furthermore, in this domain
the object

{jj , jk} ≡ N

2i
[jj , jk] = εjkljl (5.8)

plays the role of the Poisson brackets of the dynamical vari-
ables represented by the scaled operators. The quasi-spin
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hamiltonianper particlecan now be written in terms of the
scaled operators as

1
2J

HBH ≡ hBH = αj1 +
ΛN

4

(
1 +

1
N

)
+

ΛN

4
j2
3 .

Recall that the parameterΛ is related to the “basic” strength
parameterλ = 4π~2a/M of the effective two body interac-
tion by an integral over the fourth power of the mode wave-
functions, which is if the order of magnitude of the inverse
volume of the system. ThereforeΛN is of the order of the
constantλ times the mean density of the system.

To the extent that theji can be treated as classical vari-
ables, this hamiltonian can be used to obtain their equations
of motion by using the Poisson brackets (5.8). In this way
one obtains

dji

dt
= {ji, hBH} , i = 1, 2, 3

from which it it easy to check that
∑3

i=1 j2
i is a (classical)

constant of motion. The variablesji are in fact the carte-
sian components of a unit, classical quasi-spin vector which
rotates in time as dictated by the equations of motion. The
variable which is canonically conjugated toj3 ≡ cosθ is the
azimuthal angleϕ of this rotating vector,θ being the usual
colatitude. The “classical” hamiltonian (cf. ref. [61]) can
thus be written in terms of canonical variablesj3, ϕ as

h
(cl)
BH =

ΛN

4

(
1 +

1
N

+ j2
3

)
+ α

√
1− j2

3 cosϕ . (5.9)

Here the relationsin θ =
√

1− j2
3 has been used. Note that,

since0 ≤ θ ≤ π, the suare root must be taken with positive
sign.

The canonical equations of motion are

dϕ

dt
=

ΛN

2
j3 − α

j3√
1− j2

3

cos ϕ

dj3
dt

= α
√

1− j2
3 sin ϕ ,

and the classical stationary states are at the values ofϕ
andj3 for which the time derivatives vanish. This implies
sin ϕ = 0, so thatϕ = 0 or ϕ = π, the coresponding values
of j3 being respectively the solutions of

j3

(
ΛN

2
− α cosϕ√

1− j2
3

)
= 0 , cosϕ = ±1 .

Thus solutionsj3 = 0 with α = 0 or π always exist, other
solutions being given by

√
1− j2

3 = 2α cosϕ/ΛN . For
α < 0 only the possibilityϕ = π remains for these other
solutions, which furthermore will exist as real numbers only
if 4α2 < Λ2N2. The minimum energy static solution for
α < 0 is at j3 = 0, ϕ = 0. Other solutions correspond
in this case to maxima or saddle points of the hamiltonian

surface in thej3 × ϕ phase space. An example of the
surface representing the classical hamiltonian (per particle)
(5.9) can be seen in Fig. 5.5(a) below.

It is worth noting that these semi-classical results can
also be obtained by using as ansatz for the hamiltonian (5.5)
a product of coherent states for the two modes

|z+z−〉 ≡ ez+a†+−z∗+a+ez−a†−−z∗−a− |0〉
and introducing explicitly the constraint|z+|2 + |z−|2 = N
together with the definitionj3 ≡ (|z+|2 − |z−|2)/N . The
expectation value of the hamiltonian (5.5) turns out to be
just (5.9), the angle variableϕ being the relative phase be-
tween the two coherent condensates,ϕ = Arg(z+z∗−). This
then provides for an interpretation of the angle variable of
the quasi-spin treatment. The fact thet this angle variable
is canonically conjugate toj3, which measures the popula-
tion inbalance of the two localized states, indicates that, in
a quantum regime, the population inbalance and the rela-
tive phase of the condensates are quantities which maintain
complementarity relations to each other.

5.2.3 Quantum domain

The quantum mechanical ground state of the two-site Bose-
Hubbard hamiltonian in either of the forms (5.5) or (5.6)
cannot be associated with a sharp value ofJ3 (i.e., of the
population inbalance) due to the presence in the hamilto-
nian of the hopping term, proportional toJ1 and therefore
non commuting withJ3. Since the total number of particles
is a constant of motion, this means that there will be cor-
related quantum fluctuations of the two number operators,
a†+a+ anda†−a−.

The quasi-spin representation, including the fact that the
operatorJ(J + 1) is a constant of motion, makes the prob-
lem “soluble”, in the sense that eigenvalues and eigenvectors
can be obtained from the diagonalization of finite matrices.
In such a numerical procedure, the eigenvectors in theJ3

representation

HBH |En〉 = En|En〉 , |En〉 =
J∑

m=−J

c(n)
m |J,m〉,

(5.10)
give directly the corresponding distributions of the occupa-
tion ratios for the two localized states in the form of the ar-
rays of2J +1 = N +1 numbers{|c(n)

m |2}. The correspond-
ing distribution in the relative phase between the two con-
densates, which is conjugate to the distribution of occupa-
tion inbalance, can be obtained by taking a discrete Fourier
transform of the energy eigenvectors in theJ3 representation

c̃(n)
ν =

1√
2J + 1

J∑

m=−J

e
2πiνm
2J+1 c(n)

m , −J ≤ ν ≤ J .

It is then given by the array{|c̃(n)
ν |2}, which is complemen-

tary to the array which describes the distribution of occupa-
tion ratios. Examples of such distributions are shown in
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Figure 5.3.Top: (a)Distributions of population inbalance (full line) and relative phase (dashed line) for the ground state of the two site
Bose-Hubbard model withN = 80, α = −1.0 × 10−4 Hz andΛ = 0.0146 Hz). In the case of the population inbalance, the labels on
the horizontal axis are to be read as2(m + J), −J ≤ m ≤ J = 40. In the case of the relative phase distribution they are to be read as
40(1 + ϕ/π), which corresponds toϕ = −π at the origin andϕ = π at full scale;(b) Discrete Wigner function for the same case. The
axis labeled “action” refers toj3, that labeled “angle”refers toϕ. Bottom: Same as the top figures, with the barrier somewhat lowered
(Λ unchanged,α = −1.9 × 10−3 Hz). One sees clearly the better definition of the relative phase and some loss in the definition of the
population inbalance between the two wells.

Fig. 5.3(a) for two different heights of the interwell poten-
tial barrier. Note that these arediscretedistributions, whose
entries are labeled respectively by the eigenvaluem of J3

(or, equivalently, by2m/N ) and by the discrete set of an-
gles2πm/(2J + 1) = 2πm/(N + 1), which appear in the
discrete Fourier transform.

Alternatively, one can visualize both distributions simul-
taneously by calculating a discrete Wigner distribution di-

rectly from the amplitudes which appear as expansion co-
efficients of the considered energy eigenstate|En〉 in theJ3

representation as in eq. (5.10). This procedure has been used
in ref ([31]) and is discussed in detail in ref. [62]. It is im-
plemented basically in the following steps. Given the array
of aplitudes{c(n)

m }, −J ≤ m ≤ J , and assuming thatJ is
an integer, which implies thatN is even, one first constructs
the matrix

c

r(k, l) =
1√

2J + 1

J∑

m=−J

c(n)
m c

(n)∗
{m+l} exp

[
− 2πi

2J + 1
k(m +

l

2
)
]

where the range of the integersk andl is−J ≤ k, l ≤ J and the index{m+ l} denotes the value ofm+ l cyclically confined
to the range−J, J of the basis labels. Explicitly, one has

{m + l} = m + l − (2J + 1) Floor
(

m + l + J

2J + 1

)
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where Floor(x) denotes thelargest integer (negative forx < 0) less than or equal tox. The desired discrete Wigner phase-
space representativec(n)

w (p, q) of the state| En〉 is then obtained as the double (discrete) Fourier transform

(2J + 1) aw(p, q) =
1√

2J + 1

∑

k,l

exp
[

2πi

2J + 1
(pk + ql)

]
r(k, l).

d
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Figure 5.4. Discrete Wigner function for the ground state of the
two-site Bose-Hubbard hamiltonian forN = 80, Λ = 0.0146 and
α = −0.1. The classical lowest energy state is represented in this
phase-space diagram by the single pointϕ = 0, j3 = 0. Increas-
ing the number of particles decreases the relative variances of the
population inbalance and relative phase distributions.

In this expression the range of the integersp andq is also
bounded as−J ≤ p, q ≤ J , and the properly scaled vari-
ables corresponding toj3 andϕ areq/J and2πp/(2J + 1)
respectively. The Weyl transform of the hamiltonian can be
obtained in exactly the same way, replacing the amplitude
productsc(n)

m c
(n)∗
{m+l} by the matrix elements〈J,m | hBH |

J, {m+ l}〉multiplied by the number of states2J +1, when
evaluatingr(k, l).

Figure 5.3(b) shows the discrete Wigner functions for
the ground states whose population inbalance and relative
phase distributions are shown in the parts (a). The latter can

in fact be obtaining by summing the Wigner function over
the complementary variable. The case of a still stronger hop-
ping term,α = .1, also forN = 80, is shown in Fig. 5.4.
The Weyl transform of the corresponding quantum hamilto-
nian is shown in Fig. 5.4(b), while part (a) of the same figure
shows its classical version.

There is a somewhat subtle property of the hamiltonian
which gives rise to an important property of its eigenstates,
concerning the experimentally important class of one-body
observables. This property is best expressed in terms of the
number operators for theJ1 representation, namely those
associated with the delocalized membersuϕi, i = 1, 2 of
the active doublet,a†iai, i = 1, 2. It consists in the fact that,
even though these number operators are not themselves con-
stants of motion, the hamiltonian does not mix eigenstates of
either of them whose eigenvalues differ by anodd number
of particles; or, in different words, the hamiltonian admits
themodularconstants of motion

Pi ≡ (−1)a†i ai , i = 1, 2 , i. e.

[Pi,HBH ] = 0 , i = 1, 2 . (5.11)

This property can be easily verified by re-expressing the
hamiltonian (5.5) in terms of the operatorsai, a†i and noting
that each term either maintains the occupancy of each state
fixed or changes it bytwoparticles. Due to the conservation
of the total number of particles the number operatorsa†iai,
i = 1, 2 are themselves correlated, so that it is sufficient to
consider just one of them, saya†1a1.
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Figure 5.5. (a) Energy surface representing the classical Bose-Hubbard hamiltonian for two sites, eq. (5.9) multiplied by the number of
particles (N = 80), for Λ = 0.0146 andα = −0.1; (b) Discrete Weyl transform of the quantum hamiltonian forN = 80 and for the same
values ofΛ andα.



A. F. R. de Toledo Piza 1155

As a consequence of this property, the eigenvectors of
(5.5) can be chosen to be simultaneous eigenvectors ofP1

(they will automatically fulfill this property except for rea-
sons of degeneracy) and as such divided in two classes ac-
cording to the eigenvalues of the modular constants of mo-
tion. In particular, a non-degenerate ground state|Φ0〉 will
be an eigenstate ofP1. This has important consequences for
its one-particle density matrix

ρ(~r, ~r′) ≡ 〈Φ0|ψ†(~r′)ψ(~r)|Φ0〉 ,
which in the case in hand can be expressed as a two by two
matrix in theJ1 representation

ρ =
( 〈Φ0|a†1a1|Φ0〉 〈Φ0|a†2a1|Φ0〉
〈Φ0|a†1a2|Φ0〉 〈Φ0|a†2a2|Φ0〉

)
.

In fact, the operators appearing in the off-diagonal matrix
elements change the eigenvalue ofP1, and therefore their
expectation value vanishes when taken with respect to an
eigenstate of this operator.

As a consequence of the modular constant of motionP1

we find therefore thatthe one body density matrix is diago-
nal in theJ1 representation.This means that the delocalized
statesuϕi, i = 1, 2 are the natural orbitals which carry the
coherence properties which are relevant for one-body ob-
servables. Correlations introduced into the ground state by
the non comitativity of the hopping term and the on-site two-
body effective interaction will affect just the relative weights
of the two quasi-degenerate modes. This immediately sug-
gests a considerable stability of anyone bodyinterference
patternsassociated with the nature of the doublet wavefunc-
tions, the effect of many-body correlations being manifest
rather in their visibility. These patterns are in fact entirely
determined by the one body density matrix, wuich in theJ1

representation takes the form

ρ = A 1̂ + B |uϕ1〉〈uϕ1|

where1̂ is the unit2 × 2 matrix. SinceTr ρ = N , one has
2A + B = N andJ1 = B/2, or j1 = B/N , and the pa-
rameter relevant for the visibility isJ1 (or j1, or B). For
the two cases shown in Fig. 5.3, in whichN = 80 and the
dominant term in the hamiltonian is the on site two body ef-
fective interaction, withΛ = 0.0146 Hz, one hasB = 36.3
(for α = 1.0 × 10−4 Hz), which corresponds toj1 = .454,
andB = 68.9 (for α = 1.0× 10−3 Hz), which corresponds
to j1 = .860.

5.3 Many site one dimensional arrays, peri-
odic boundary conditions

A more general class of systems to which many of the above
results still apply is that of one-dimensional arrays of con-
densate fractions with periodic boundary conditions, which
has been studied recently, form a mean-field point of view,
by Paraoanu[63]. The idea is to arrangeνc condensate frac-
tions in a “circular array”, so that the the the first one is also
next to theνc−th one. The Bose-Hubbard hamiltonian for
this system has the form (5.4) with degenerate sites (Ei = 0
for i = 1, . . . , νc), i.e.

H
(νc)
BH = α

∑

<i,j>

(
a†iaj + a†jai

)
+

Λ
2

νc∑

i=1

a†ia
†
iaiai ,

(5.12)
where the sum over nearest neighbors includes the term
a†1aνc + a†νc

a1. The operatorsai, a†i , i = 1, . . . , νc refer to
the single particle states of a localized (Wanier) base. One
car however introdice a complementary base by defining the
alternate creation and anihilation operators

A†n ≡
νc∑

k=1

e−
2πink

νc a†k , n = 0, . . . , νc − 1

in terms of which the hamiltonian becomes

c

H
(νc)
BH = 2α

νc−1∑
n=0

cos
2πn

νc
A†nAn +

Λ
νc

νc−1∑
n,p,q=0

A†q+nA†p−nApAq , (5.13)

d

i.e., in the complementary base the hopping term is diago-
nal. The indicesn, p andq in the two body term run from0
to νc − 1, and the indicesq + n, p− n are to be understood
as moduloνc (e.g. νc + 2 ≡ 2, −νc + 1 ≡ 1, ±νc ≡ 0).
The structure of this term therefore reveal the conservation
of the “modular momentum” associated to the index of the
creation operators of the complementary base.

Thus the complementary base plays in this case the same
role as theJ1 representation in the two-site case. Not only it
diagonalizes the pure hopping (Λ = 0) hamiltonian, but also

diagonalizes the one-body density matrix associated with
the simultaneous eigenstates ofHBH and of this “modular
momentum”. This constant of motion allows now for the
classification of the energy eigenstates of the model inνc

classes according to the value of the total modular momen-
tum. Thus, for an eigenstate|Φ0〉,

ρpq ≡ 〈Φ0|A†qAp|Φ0〉 = npδpq .

In fact, whenq 6= p the operator defining the one body den-
sity matrix element changes the value of the total modular
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momentum of|Φ0〉, so that the coresponding matrix ele-
ment vanishes. One has therefore again a situation showing
marked propensity for the preservation of one-body interfer-
ence patterns, even if with varying degrees of visibility, as
the competition of hopping and on site two body interactions
reduces the coherence of the one body density matrix.

-0.8 -0.6 -0.4 -0.2
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2
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#

Figure 5.6. Dependence of occupation numbers #(diagonal matrix
elements of the one body density matrix in the complementary rep-
resentation) with hopping parameterα. The two body interaction
parameter isΛ = 1 + α. Occupation numbers are calculated with
a mesh of0.1 in α. In this caseN = 10 andνc = 5. The two
lowest occupations are doubly degenerate each and correspond to
then 6= 0 states. The upper points corespond to then = 0 state.

The hamiltonians (5.12) and (5.13) are also “soluble”
in the same sense as the two site Bose-Hubbard hamilto-
nian, i.e., eigenvalues and eigenvectors can be obtained by
numerical diagonalization of finite (if possibly very large)
matrices. These methods again indicate considerable per-
manence of large occupations of then = 0 state of the com-
plementary base in the ground state one body density matrix
up to fairly strongly dominating on site two body interaction
effects. An example of this is shown in Fig. 5.6, where re-
sults for a loop containing five condensate fragments with
a total of ten particles are shown. The occupations of the
five different states of the complementary base are such that
those corresponding ton andνc − n are equal. This then
gives in general three different occupation numbers, two of
which appearing twice. The non doubled occupation os that
for n = 0, which dominates over the range|α|/Λ >∼ 0.1.
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