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The material presented here consists of lecture notes written for a five two-hour sections course given during
the 2004 edition of the Brazilian School on Statistical Mechanics. The topics covered are 1. Bose-Einstein
condensation of trapped ideal gases; 2. Effective two-body interactions and exact results in the Gross-Pitaevski
limit; 3. Atomic structure effects, including “Feshbach resonances” and hybrid condensates; 4. Elementary
excitations in the Bogoliubov approximation and beyond; and 5. Splitt traps, interference phenomena and
condensate arrays.

Prolog ue gases. Lecture 4 will carry us slightly beyond the basic “sin-
gle one-body wavefunction” description of real condensates,

The five lectures (or Chapters) which follow are intended a_md Iecture_5 will introduce experimental results on thg op-
as a pedagogical, theoretically oriented introduction to the tical fracturing of condensates as well as some of the ideas
presently very active field involving the physics of Bose- e}nd simplified models used in connection with such situa-
Einstein condensation in trapped atomic gases. The lecturedons-
have been prepared for the 2004 Brazilian School on Sta-  In preparing these lectures, | have tried my best to avoid
tistical Mechanics, having in mind an audience of graduate being trapped in what has been called by the former brazil-
and advanced undergraduate students possibly, and perhapan minister Pedro Malan in a newspaper article published
even typically, not concentrating in the subject. Needless toon page 2 oD Estado de & Pauloin January 11, 2004 (or
say, this makes them quite distinct from a review article on was this also a quote?) “some kind of error contract” be-
the subject, chiefly as considerations of impedance matchingween someone trying to transmit thoughts and ideas and
with the intended audience plays the dominant role in the his “receivers”. This syndrome has been supposedly de-
choice and development of topics. This particular School is scribed by none other than Francis Bacon. It was brought
perhaps a somewhat peculiar setting for these lectures, sincé Malan’s attention (thus finding its way to his article and
the systems which will be considered are orderly enoughfinally to this Prologue) by a book by another economist,
to be quite well described, for several relevant purposes,Eduardo Giannetti da Fonseca, who identifies Bac®his
even in terms of a single one-body wavefunction. This will advancement of learnings the source. As | have not been
be discussed in lecture 2, after the statistical mechanics ofable to locate the original quote in time, | do my best trans-
the condensation phenomenon forideal Bose gas is dis-  lating (re-translating?) the brazilian version of the quote to
cussed in lecture 1. A fortunate circumstance in this con- English, certainly not Bacon’s: “He who transmits knowl-
nection is that the condensation of an ideal gas is today noedge chooses to do it so as to enhance belief rather thar
longer just a simplifying idealization, but an experimentally the possibility of examination, and who receives knowledge
studied (i.e.real) phenomenon (see section 1.2). This will seeks rather present satisfaction than the promises of inves
be discussed in some detail in lecture 3, together with thetigation, and thus will rather not doubt than not fail; glory
just now fashionable theme of molecular hybridization of di- leads the author not to reveal his weaknesses, and lazines
lute Bose-Einstein condensates and Bose-Einstein condenleads the disciple not to realize his strendthCurious as
sation of diatomic molecules formed in very cold fermionic my sources for these ideas happened to be, the dangers t

I'Scanning once again Book 1 of Bacoitee advancement of learninidinally realized that at least some heavy editing has been involved in these in
fact rather loose quotes. The closest, or most relevant, passages | have been able to find in Bacon'’s original work are transcribed here as they appe:
Renascence Editions “imprint” available on line at the site http://darkwing.uoregon.edu/"rbear/advl.htm, see especially paragraph 9 of section V:

“BOOK 1, IV.12. And as for the overmuch credit that hath been given unto authors in sciences, in making them dictators, that their words should st
and not counsellors to give advice; the damage is infinite that sciences have received thereby, as the principal cause that hath kept them low at a stay
growth or advancement. For hence it hath come, that in arts mechanical the first deviser comes shortest, and time addeth and perfecteth; but in s
the first author goeth farthest, and time leeseth and corrupteth. So we see, atrtillery, sailing, printing, and the like, were grossly managed at the first, :
time accommodated and refined: but contrariwise, the philosophies and sciences of Aristotle, Plato, Democritus, Hippocrates, Euclides, Archimedes, c
vigour at the first and by time degenerate and imbased; whereof the reason is no other, but that in the former many wits and industries have contribt
one; and in the latter many wits and industries have been spent about the wit of some one, whom many times they have rather depraved than illustrat
as water will not ascend higher than the level of the first springhead from whence it descendeth, so knowledge derived from Aristotle, and exemptec
liberty of examination, will not rise again higher than the knowledge of Aristotle. And therefore although the position be good, OPORTET DISCENTE
CREDERE, yet it must be coupled with this, OPORTO EDOCTUM JUDICARE; for disciples do owe unto masters only a temporary belief and a suspen
of their own judgment until they be fully instructed, and not an absolute resignation or perpetual captivity: and therefore, to conclude this point, | will
no more, but so let great authors have their due, as time, which is the author of authors, be not deprived of his due, which is, further and further to dis
truth. Thus have | gone over these three diseases of learning; besides the which there are some other rather peccant humours that formed disease
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which they refer are serious enough to deserve careful con-States of thermal equilibrium of many-particle quantum sys-
sideration. | thus hope that the content of the lectures will tems cannot be represented by state vectors on the account
be doubted rather than believed, and tried to encourage thiof the fact that they do not correspond to definitécro-

by not concealing remaining obscurities. scopically definedtates, but rather correspond to an inco-
A word should be said on why these lectures, or Chap- herent distribution over the various possible such states. In
ters, have been written in what amounts tolthgua franca this context,jncoherentmeans that any interference effects

of today. The organizers of the School said they intendedinvolving different states in the distribution are precluded.
to publish written versions of the courses in a special issueOne needs therefore a suitably extended way of describing
of the formerRevista Brasileira de Fsicanow known as  quantum states in order to be able to deal with thermal equi-
Brazilian Journal of PhysicsMy reaction to this was thatit librium states.
tended to create a certain conflict, as the scope, tone and pur- The required extension is provided by the notiomleh-
pose of course notes differ a lot from that of material usually sity operators Consider first how this notion arises in the
printed even in special issues of periodicals. The intention particular situation in which the state of the system can be
having been maintained, my option has been to stick to thedescribed in terms of a state vector. If the microscopically
scope, tone and purpose of course notes while borrowingdefined state of a many particle quantum system is character-
the use of thdingua francafrom the periodical literature.  ized by a normalized state vectar), (1/|¢)) = 1 (or, equiva-
Which might, after all, also have some pedagogical effect. lently, by a wavefunction)(ry,...,ry) = (ri,...,r~5|),
where|ry, ..., ry) is a Dirac eigenket of the position opera-

. . . tors for the various particles), then it is characteriasdvell
1 Condensation of ideal bosons in a by the density operator, defined in this case as the projection

trap operator

1.1 Grand-canonical quantum statistics p= U)W

1. Prolegomena: state vectors vs. density operators. or, equivalently, by the (N-particle) densityatrix

]

p(riy . TN T ) = (N[O )

W(re, .., rN)O (], Ty

nevertheless are not so secret and intrinsic but that they fall under a popular observation and traducement, and therefore are not to be passed over. (...)

V.6. Another error hath proceeded from too great a reverence, and a kind of adoration of the mind and understanding of man; by means whereof men ha
withdrawn themselves too much from the contemplation of nature, and the observations of experience, and have tumbled up and down in their own reas:
and conceits. Upon these intellectualists, which are notwithstanding commonly taken for the most sublime and divine philosophers, Heraclitus gave a ju
censure, saying, MEN SOUGHT TRUTH IN THEIR OWN LITTLE WORLDS, AND NOT IN THE GREAT AND COMMON WORLD; for they disdain to
spell, and so by degrees to read in the volume of God’s works: and contrariwise by continual meditation and agitation of wit do urge and as it were invocat
their own spirits to divine and give oracles unto them, whereby they are deservedly deluded. (...)

9. Another error is in the manner of the tradition and delivery of knowledge, which is for the most part magistral and peremptory, and not ingenuous anc
faithful; in a sort as may be soonest believed, and not easiliest examined. [: is true, that in compendious treatises for practice that form is not to be disallowe
but in the true handling of knowledge, men ought not to fall either on the one side into the vein of Velleius the Epicurean: NIL TAM METUENS, QUAM
NE DUBITARE ALIQUA DE RE VIDERETUR; [13] nor on the other side into Socrates his ironical doubting of all things; but to propound things sincerely
with more or less asseveration, as they stand in a man’s own judgment proved more or less. (...)

11. But the greatest error of all the rest is the mistaking or misplacing of the last or farthest end of knowledge: for men have entered into a desire o
learning and knowledge, sometimes upon a natural curiosity and inquisitive appetite; sometimes to entertain their minds with variety and delight; sometime
for ornament and reputation; and sometimes to enable them to victory of wit and contradiction; and most times for lucre and profession; and seldom sincere
to give a true account of their gift of reason, to the benefit and use of men: as if there were sought in knowledge a couch whereupon to rest a searching a
restless spirit; or a tarrasse, for a wandering and variable mind to walk up and down with a fair prospect; or a tower of state, for a proud mind to raise itsel
upon; or a fort or commanding ground, for strife and contention; or a shop, for profit or sale; and not a rich storehouse, for the glory of the Creator and th
relief of man'’s estate. Rut this is that which will indeed dignify and exalt knowledge, if contemplation and action may be more nearly and straitly conjoined
and united together than they have been; a conjunction like unto that of the two highest planets, Saturn, the planet of rest and contemplation, and Jupit
the planet of civil society and action: howbeit, | do not mean, when | speak of use and action, that end before-mentioned of the applying of knowledge tc
lucre and profession; for | am not ignorant how much that diverteth and interrupteth the prosecution and advancement of knowledge, like unto the golden bz
thrown before Atalanta, which while she goeth aside and stoopeth to take up, the race is hindered;

Declinat cursus, aurumque volubile tollit. (...)" (Feb. 28, 2004)

2Lingua Franca a composite language made up of Italian and the various languages of western Asia, used in the Levant by foreign traders and natives
that region. (Webster’'s New Twentieth Century Dictionary of the English Language, Unabridged. Rockville House Publishers, Inc., New York, 1964).
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The normalization of the state vector translates into the Hilbert-Schmidt theorem it is guaranteed to be a purely dis-
property that the density operator, or matrix, has tmaite, crete spectrum; and when the number of non-zero eigenval-
ie. ues is infinite, they can only have zero as an accumulation
point.

Average values of observables in states described by
these density operators are also calculated in terms of a
trace, which gives now

TrpE/d3r1.../dngw(rl,...,rN)¢*(r1,...,TN)

= D _(05l¥)lo;) =1

TrOp = ZO|Rj>pj<Rj| = ZP;‘(RHO‘RH- 2

where the vectorg|¢;)} constitute an arbitrary orthonor- F ;

mal base in state vector space. In this case the opegragor
clearly anidempotenti.e., p> = p) self-adjoint operator. Its ~ This average appears thus as a weighted average of quantur
only possible eigenvalues are therefore 1 and 0. The eigenexpectation values in the state vectdgs), with weightsp;.
vector corresponding to the eigenvalue 1 is clearly the stateA standard interpretation of this is that the density operator
vector|y) itself (this is therefore how the original state vec- p describes aensemblef systems, in which the (classical)
tor |¢) can be retrieved, given the corresponding idempotent probability of finding a system in stat&;) is p;. A particu-
density operatop), while the eigenvalue 0 is highly degen- larly relevant property of the state represented by the density
erate, sinceny state-vector orthogonal @) is an eigen-  operatorp, which gives a measure of fragmentation of the
vector associated to this eigenvalue. Note moreover that thérace into the array of classical probabilities isetsropyS
expectation value of some given observablén the state  (Sometimes called theon Neumann entropydefined as
|1} can be obtained directly from the density operator as

S =—kgTr(plnp)=—kp ij Inp;. 3
TrOp = (6;10pl65) = Y (#5010} {wlo;) = j

J J . . . . .
For kg > 0 this is a non-negative quantity which vanishes

in the limit of an idempotent density operator. If the con-

= 2_(¥165){95101) = (IOy),

the last step following from the completeness of the or-
thonormal baség|¢;)}. In a similar way one can also verify

stantkp is taken as the Boltzmann constafithas units of
the standard thermodynamic entropy.

A further stepis still needed when one wishes to use
grand-canonical methods, as it is often the case in the con-

the importantyclic propertyof the trace : ) . .
P y propertyo text of Bose-Einstein condensation. In this case the number

_ of particles in the many-particle system under consideration
TrOp = Tr pO . '

S _ _ is not fixed and must be seen as an observable. The way tc
which IS. in fact more general, in that it does not depend oNn gccommodate this is to use the |anguage of “second quan-
the particular formop. ~tization” (see, e.g., ref. [1], Chapter 7). The state vectors

The I’GQUITEd generallzatlon of the way to characterize now reside in a “Fock space”, or occupation number space,
states of quantum systems in order to include the needed inin which a number operator can be defined. The basic ob-
coherent distributions of state vectors consists in replacingjects representing states of thermal equilibrium of quantum

the idempotency conditiop® = p by the weaker condition  many-particle systems are thus to be taken as positive self-
thatp is anon-negativeself-adjoint operator with unit trace.  adjoint operators of unit trace in Fock space.

The non-negativity condition means that all the eigenvalues
are non-negative, i.e. they are positive or zero. These den-
sity operators can be conveniently written in terms of their

eigenvalues and normalized eigenvecidts) as 2. Grand-canonical equilibrium density operator. We

now consider specifically a system of many identical
bosonic atoms characterized by a hamiltonian For the
purposes of the formal developments to be undertaken at this
point, this may include interactions between atoms, e.g. rep-
Q) resented by a suitable two-body potentiét;, r;), in addi-
The unit trace condition is now expressedg§ p; = L tion to an external, one-body confining potential represent-
The idempotent density operators are clearly particular casesng the trap. The state of the system is described by a density
of this more general class, which include moreover posi- operatorp in Fock space. In this space we have also a num-
tive linear combinations afany(possibly even an infinite  ber operatoV, and the hamiltonian is represented by an op-
number of) orthogonal projection operators. The unit trace erator which commutes withvV. This means that oneould
condition (actually the condition that the trace is finite is adopt a canonical formulation by restricting the treatment to
of course sufficient) in fact restricts a great deal the spec-the N-particle sector of the Fock space, which is closed un-
trum of the more general density operators: by virtue of the der the action of the number-conserving hamiltonirbut

pIR;) =pi|R;),  p; =0, — p=> [R;)p;(Rl.
J
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it will be convenient to allow for states in which neither the and
number of atoms nor the energy are sharply defined.

The problem we are set to solve is to determine the den-
sity operator which makes the entropy an extremum, with
prescribedaverage valuedor the energy and number of ) ) ] _
atoms. The density operator is written in the form (1), so that The entropy is expressed as in eq. (3), provided the weights
the average values of the hamiltoniaihand of the number ~ Satisfy the conditiory_; p; = 1 and the stated?;) are nor-

operatorN are given respectively by (see eq. (2)) malized,(Rj|Rj>.: 1. These subsidiary cqngiitions can all
be taken care of in terms of Lagrange multipligrsy, A and

n;, SO that the variational condition for the thermal equilib-
TrHp = p;(R;|H|R;) rium state is
J

TrNp=> p;(R;|N|R;).

J

0| =k Y _pjInp;— B pi(Rj|H|R;) —a Y pi(R;INIR;)) =AY pj+> mi(R;|R;) | =0.
7 7 7 7 7

[
Variation ofp; gives with the corresponding thermodynamic expression
1
kg Inp;+kp+0(R;|H|R;)+a(R;|N|R;)+X =0 (1.4) §=-5(Q-U+uN),
while variation of(R;| leads to whereT is the temperaturd) is the grand potentia; is the

chemical potentialV is the number of particles aridis the

internal energy. This allows one to make the identifications
p;(BH + aN)|R;) = n;|R;) or

_ " —
(BH + aN)|R;) pj'RJ>—€j|R]>7 (1.5) kB+>\:—%§ 5:% and a:—%.
which shows that the state®;) are eigenstates gtH + _ o _
N, so that this operator angare simultaneously diagonal, The grand-canonical eqt_uhbnum density operator at temper-
with B(R;|H|R;) + a(R;|N|R;) = ;. Straightforward ~ aturel’ becomes accordingly

algebra now gives, from (1.4),
9 9 (1.4) k)

P = o—1-Mkp ,—¢;/kp p= o (e—kE%T(H—#N)) (1.6)
which, using the unit trace condition to evaluate the first ex-
ponential, leads to The chemical potentigl. can still be seen as a Lagrange
multiplier to be determined by the subsidiary condition on
o e~i/kp the average total number of particlds,Np = ().
Pi= > e~ci/ks’ Some general comments are in order at this point. First,

. . . . note that the Bose-Einstein statistics (in the case one is deal-
The denominator of this expression can be written as.

Ty (e,(ﬁHmN)/kB) 50 that the resulting form for the den- ing with a system of many identical bosons) is entirely taken
sity operator is ' care of by the appropriate setting up of the Fock space in

which the density operatgs resides. In fact an identical
result is obtained for a system consisting of many identi-

> |R;Ye % /FB (R e~ (BH+aN)/ks cal fermions in which case the commutation relations of
P~ (e~(BH+aN)/k5) T Tr (e—(BH+aN)/ks5) the second quantized (or quantized field) operators are h(_)w-
ever changed as appropriate. Second, for second-quantized

The meaning of the Lagrange multipliexs 3 and in hamiltoniansH which commute with the total number op-

macroscopic terms can be found by comparing the statisticalerator NV, the eigenvectorsR;) of the density operator are
expression for the entropy which results from imposing the simultaneous eigenvectors Af and N and, except for “ac-
variational condition (1.4), namely cidental” degeneracy, no quantum interference effects ex-
ist involving different such eigenvectors. Of coursH,
S=kp+ A+ 0TrHp+ aTr Np, energiesand particle numbers contribute (with appropriate
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weights) to the grand-canonical thermal state described byhas been decisive for the use of a grand-canonical frame-
p, and the actual determination of the appropriate eigen-work for the trapped gas [7, 8].

vectors involves the full complexity of the quantum many- The second-quantized hamiltonian for the non-
body problem. Finally, if the many-body hamiltoni&hin- interacting bosons in the trap can be written as

cludes an external, confining one-body potential to represent

a trap for the particles, one cannot take a thermodynamic H = Zena;an

limit by letting (N) — oo at constant density, since this is n

constrained by the trap. Correspondingly, in this case thewhere the energies, are the single-particle (with mads)
grand-canonical formulation loses its equivalence to alter- gjgenvalues associated with the bound (normalized), station-

nate (technically less friendly) treatments. ary single-particle eigenfunctions, (7) of the trap
. h2v?
1.2 Ideal Bose gas in a trap {— oar + V(f’)] ©on(7) = enon(7) 1.7)

Non-interacting identical bosons in a trap, represented by

an external, confining one-body potenfi&(), can be han-

dled in terms of a very simple (possibly the only simple)

application of the previous general results. What makes it

simple is the absence of two- (or even possibly also other-

wise many, like three-, etc.) atom interactions, which are

generally present in real systems. Because of this, the qual- [am,an] = [al,,al] =0

ification of this case as “ideal” has been entirely appropriate

until late 2002, when aeal “ideal” condensate of cesium

atoms was produced and studied in the Austrian town of

Innsbruck[2]. As will be discussed in Chapter 3 (see sec- . L.

tion 3.1), E)r]1e remarkable experimental trigk devc(aloped in [ (7), 1 (7)) = 8(F = 7),

connection with the alkali gases, which is particularly im- [ (), (7)) = [T (7), " (7)) = 0,

portant in the case of cesium atoms, allows for the externalthrou h

control of the effective atom-atom interaction[3]. This is 9

achieved by making judicious use of Zeeman displacements

of atomic energy levels. Thus the control agent is just an .o

external magnetic field, and it has permitted to tune the ef- % = / &r (MY, af, = / d*r on (MY (7).

fective interactions among condensate cesium atoms to zero.

The same trick had in fact been used before in the case ofNote that the spin degree of freedom has been ignored in

one of the rubidium isotope&Rb) to obtain a real “ideal”,  this formulation, which therefore applies either to spinless

non Bose-Einstein condensed thermal gas[4]. bosons or to bosons with spin but constrained to a definite
The case of an extended, non-interacting gas of identicalmagnetic substate, as it is in fact the case for magnetic traps

bosons is of course equally simple to deal with in statistical FOr non-interacting bosons of spiand spin-independent

mechanical terms, and became in fact a standard textboolrap one-body potential one would still have to take into ac-

case, in which one is able to take the thermodynamic limit count the2S + 1 degeneracy of the single-particle states.

and derive exact statistical mechanics results (see e.g. [6], The number operator is in this setup given as

section 1.9). In the case of the trapped ideal gas, the possi-

bility of taking a thermodynamic limit (in the usual sense, N = Zalan

at least) is excluded, so that in this case the results will bear n

marks which are specific of the grand-canonical formulation so that the grand-canonical density operator (1.6) can be

and which are moreover possibly artificial, such as particle worked out to acquire the form of a product of single-

number fluctuations. In spite of this, technical convenience particle factors:

]

and thea,,, aIL are boson annihilation and creation operators
associated with the single-particle eigenfunctiang(r).
They satisfy the standard Bose commutation relations

[am> CLIL] = 5mna

and are related to the Bose field operaters”), (i),
which in turn satisfy the commutation relations

e k;T >n(en—p)asan L

e k8T
P Tr (e—kf%r Zn(en—lt)alan) B H ZOC_O 6—,;’3%(%—;1) - H ( en_“)71 .

(enfu)a;an e*kB%T(en*#)aLan

(1.8)

n n 1—e *BT

In the first step above the commutativity of the different mula for the sum of a geometric series. Note that conver-
terms in the exponents has been taken advantage of, whilgence of the series requires that— . > 0 for all n, which
transition to the last form involved using the standard for- implies that the chemical potentialhas the smallest single-
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particle eigenvalue, (say) as an upper bound. In what fol-
lows we define the energy scale so that= 0, so that one

must have-oco < p < 0. i
N)="Tr alan, Tr an Ny),
As mentioned in the preceding section, the valug &f () (Zn: " p) Z p Z< )

fixed by the subsidiary condition that the mean total hum- "
ber of particles (taken in the density operator (1.8)). To this where(N,,) is the mean number of particles in the single-

effect we must evaluate particle leveln. This can be evaluated as
]
(N,) = Tr (ala,p) = (1 — e Tt ) Tr < ane ~wpT(en ”)%l“") =
— _ET,L;“ - —#(En,—H)V _ _ — 2=k (en— N)V
- (1% w)zye FBT - (1 p RBT)d(% #)Ze BT
v=0 kpT v=0
eikB‘#T(e"*/") Z67%
= = =, 1.9
1— e mpTEn=i) ] _ e TET (-9)

where, in the last step, the quantity= e¥sT, known as  which leads to the spectrum
the fugacity, has been introduced. From the bound on the
chemical potentials and our choice of energy scale it fol-

lows that0 < z < 1. For a given temperaturg, it is to €n = €nynyng = hwiny + hwang + fuwsng,
be determined by the subsidiary condition regarding the to-
tal number of particles, since it determines the value of the ni—0.1.2 ... i=1.23

chemical potential at that temperature. A particularly inter-

esting quantity is the mean occupation of the lowest single- For numerical purposes it is convenient to rewrite the final
particle state of the trap, which can be written in terms of expression (1.9) fofN,,) using again the formula for the

the fugacity simply as sum of a geometrical series as
z
Ny) = 1.10
< 0> 1_ 2" ( ) -
which can essentially exhaust the total mean nun{bér (Np) = ze” *5T Z ZVe FBT = Z Ve

when the fugacity: approaches its upper bound.

The actual determination of the chemical potential ] ) ] ]
or of the fugacityz, involves the the single-particle spec- SO that with this choice of trap potential one has
trum e,,, and therefore requires further specification of the
trap potentialV/ (). A simple choice, which is moreover
“realistic” for the current experimental setups, is that of an Z Ve VMRS o~V g —uns
anisotropic harmonic potential Nninans) '

M . .
V(7)) — 5 (wiz? + wiy® + wi2?) The total mean number of particles is then[7]
]
0o 00 00 fw; 00 3
(N = Y Nognams)=>_ > J[zre ™ mr = 2 [[———— = (1.12)
ni,n2,n3= O v=1n1,n2,n3=01:=1 v=1 i=11— kBT

[

From eq. (1.11) one can numerically determine the fu- bosons in the harmonic trap. In the case ofsatropictrap,
gacity z (and hence the chemical potentj@l as a func-  w; = ws = w3 = witreducesto
tion of the temperature. This completes the determination
of the thermal quantum density operaterfor the ideal
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the general expressions themselves in order to characterize

(N) = i 2¥ (1.12) the Bose-Einstein condensation syndrome for the trapped
= (1 _ e,l,k%)d ' ideal gas[8]. Returning for a moment to eq. (1.9), the
total number of particles in excited single-particle states
Before turning to numerical examples, it is useful to use (V) — (Ny), can be written as
|

—ﬂ#(en_ﬂ) et

e kBT 1
N/ = N — N = B D ——— —_— <
(N') = (N)—(No) ;{;1__6 gy gggezéf@n,u>__l
> =y,
ot eFsT _—

max>

(1.13)

The inequality follows from the fact that < 1. Thus,

if (N) > (N’..), it follows thatat least(N) — (N’..) (V)= 1 i (n+1)(n+2)
must occupy the lowest single-particle stage The number max/ 7 9 — oFEF 1

(N} ..) is accordingly called theaturation numbein [8].
For the isotropic harmonic trap, this saturation number canNow letniw /kpT = x andhw/kpT = €. Providedt < 1,
be well approximated in terms of a simple, closed expres- the sum over. can be well approximated by an integral as
sion. The trick is to observe by a simple counting procedure

L[ e+

that in this special case the single-particle energy levels (NL.)— —
X 26 5/2 e’ — 1

The integrands involving? andz in the numerator are reg-

en — hw(ny 4 n2 + n3), n=mni+nz+ng ular asz — 0, and thus one can estimate the corresponding
integrals by replacing the lower integration lirgjt2 by zero
are(n + 1)(n + 2)/2-fold degenerate, so that one has in them. Then
]
* 2%dx /OO - /OO = : — 2
= de = eV dx = / —e_’”dﬂc = — =2¢(3).

The sum of reciprocal powers has been expressed in terms of the Riemann zeta fgfotieee e.g. ref. [9]) which for
s = 3 has the valug(3) = 1.202... . As for the integral involving: in the numerator of the integrand one gets similarly

h d” vr
3§/0 ef—l1:35/0 Z“ dﬂf*3éz =36 x ((2) =36 x 1.6449....

which, for ¢ < 1, amounts to just a small correction to the integral involvirtgin the integrand. As for the remaining
integral, involving the numerat@¢?, the lower integration limit cannot be taken to zero due to the singular behavior of thi
integrand forr — 0. It can however be evaluated as

262 / = 2¢? / e Vrdy = 2§2
g2 € —1 ¢/2 Z

v=1

= —2¢2 In(1 — e~%/?).

Due to the presence of the fact2g? this is again only a
small correction to the first integral wheén< 1. An ad- (N
equate estimate dfV, .. ) for the isotropic harmonic trap, max
whenzl < 1, or equivalentlyiw < kgT, is therefore ob-
tained by keeping just th&(3) contribution, leading to

>~<§)1.202...(k§f)3

This formula is useful to set a temperature scale for the
trapped ideal gas. In fact, the “critical” temperatdrg™
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at which this estimate ofN/, .. ) becomes equal to the total cm, M., being the boson mass in atomic mass units), one
mean number of particlgsV), namely sees thaf’'a™ is about40, 200 and 400 nano-Kelvin for
(N) equal to100, 10000 and100000 respectively.
. fw N
T = << ) ) (1.14)

T kg \1.202...

is that temperature below which the bosons start accumu-, . . . .

o . : harm Anisotropic traps can of course be dealt with going back to
lating in the lowest single-particle statg. Note Fha@c _the more general eq. (1.11), instead of using its isotropic
depends on the total mean number of bosons in the harmo”'%pecialization, eq. (1.12). Here we consider as an exam-

ol

1.2.1 *“Quasi one-dimensional” harmonic trap

trap. The corresponding value ¢fis §. = hw/kpT. = ple the case of a “quasi one-dimensional” trap[7], in which
(1.202.../(N))'/3, which guarantees tha@. < 1 and  w; ~ wy > w3 = w, With w/27 in the 200 Hz ballpark.
hence the reliability of the estimate(iV) is not too small. Thus the harmonic trap is very stiff in the transverse (1 and

2) directions, the corresponding excitation energies being
much larger than that corresponding to longitudinal (direc-

10° f— — tion 3) excitations.
107"
o ~_
10 ~—_ 10° ¢
S T ——
~— 1 - L - =
z 0 ——- N=100 . 100 r T
= 10" | ---- N=10000 ~102 L ~—
—— N=100000 o) Te-o
s o)
10 - <100 L
z N=100
= 10" | N=10000
N=100000
10°
10'6 1 1 1 i
1 he—————————
N ————
r ~
N
O\
\\\
N [ \\\\\
z 05 r \\?\
| | L ) = [ N -
0 0.5 1 1.5 2 oo~
TIT, | \\\\\\\\\\\____
0t -
n n n n 1 n n n n 1 n n n n 1 n n n n ]
Figure 1.1. Occupation of the lowest single-particle stalg/V, 0 0.5 1 1.5 2
and fugacity,, (lowest graph, heavy lines) as a functioniofT, TIT,

for the indicated values of the total mean number of particles in the
isotropic harmonic trap. The upper graph is a logarithmic plot of
No/N to exhibit more clearly the behavior of this quantity in the

s . Figure 1.2. Similar to Fig. 1.1 for the quasi one-dimensional
transition region and above.

trapped ideal gas. The “critical” temperatufé is now given

by eq. (1.16), for the indicated values of the total mean num-

ber of particles in a quasi one-dimensional harmonic trap with
Results obtained by solving numerically eq. (1.12) for wi/ws = w2/ws = 10*. The fugacity and the condensed fraction

the fugacity> and using eq. (1.10) to evaluate the occupancy have been obtained from eq. (1.11), taking transverse excitations

of the lowest single-particle statg as a function of temper- "o account.

ature are shown for an isotropic harmonic trap in Fig.1.1.

The temperature is plotted in units of the “critical” tempera- In order to estimate the saturation number in this case,

ture Tharm given by eq. (1.14) for the appropriate values of we neglect the contribution of transverse excitations in eq.

the total mean number of bosons. Supplying the values of(1.13), which in this way reduces to

the constants involved in this formula one gets

Tham — 45 N5 y(Hz) x 1071 °K =1 1 [~ dz hew
‘ ( ) <ernax> = Z né - = - 5 5 - T < 1
wherer = w/2r is the trap frequency (in Hertz) arg>™ fment =1 & gper—1 kg

is given in degrees Kelvin. Taking = 200 Hz as a ballpark
value for the trap frequency (which corresponds to an oscil- The integral appearing here has been evaluated before, so
lator parameteb = (h/Mw)'/? ~ (20/Mamy)'/? x 1073 that one obtains
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case with larger number of particles. Fg¥) = 10°, z re-

2) mains within 1 % ofl in the entire range shown in the figure,

—% In(l — e %/?) ~ % In (f
kpT <2kBT>

¥B2 )
he o\ hw

i

(N}

max> -

when transverse excitations are neglected completely (as ap
propriate for the limitv; /w3 = ws /w3 — 0o0. One sees that
the rise of the fractional occupation of the lowest level as
the temperature is decreased below the “critical” tempera-
ture is qualitatively similar to that found for the spherically
The “critical temperature” 7°? for the quasi one-  symmetric harmonic trap, but tends to a less abrupt, in fact
dimensional, trapped free Bose gas is accordingly now de-|inear character.

termined by the equation

_ kpTed <2kBT30d>

e hew The uniform ideal Bose-Einstein gas in three spatial dimen-
and, due to the slow variation of the logarithmic factor with sjions, which was actually the case treated initially by Ein-

respect to the linear one, the conditipr« 1 is again satis-  stein in the 1920’s, can be handled with the same tools
fied provided(/V) is not too small, ensuring the validity of used above in connection with the trapped gas. Here we

(1.15)

V) 1.3 Uniform vs. trapped ideal Bose gas

(1.16)

the estimate. _ replace eq. (1.7) by the free particle Schrdinger equation
Numerical results for a trap withy /ws = wa /w3 = 104 with periodic boundary conditions in volumg so that nor-
are shown in Fig. 1.2. This implies an aspect ratia ofi 00 malized single-particle wavefunctions and their respective

for the ground state density, transverse excitation quanta besingle-particle energies are

ing four orders of magnitude larger than the longitudinal

quantum. As in the case of Fig. 1.1, the temperature is . 1 ir R k?
given in units ofT,, now determined from eq. (1.16). The Pr(r) = o ) €k = S0
fugacity z and the fractional occupation of the lowest level, ) ) o
(No)/{N) have been obtained by solving eq. (1.11) numer- The corresponding boson creation and annihilation opera-
ically, without neglecting the transverse excitations. This tors are written 3827 andaj; respectively. Implementing the

in fact affects especially the results for the fugacity, in the quantization volume a8 = L, L, L3 one has furthermore

]
21\ 2 21\ 2 27\ 2
T (Ll) n? 4 (L2) n? 4 (L3> n?
withn; =0,+1,4+2,43,..., ¢ = 1,2, 3. With these ingredients the relation determining the fugacity, which corresponds t
eq. (1.11), reads
1
_ V) _
<N(V)> - Z <Nn1n2n3> - Z Zfle)\%(n%/L%+7L%/L%+n§/[/§) 1 (117)
ni,n2,n3 ni,n2,n3
[
where(N(y) is the total mean number of bosons in volume states to approximate this sum in terms of an integral, for
V and Ar/L < 1,as
27h
M= —— 1.18
= 2MFEgT (1.18)

N L e AxLd [ 2Pde
is the de Broglie wavelength of a particle of magsand (V(zsymax) = 2B, e’ —1 A
kinetic energykpT'. Itis interesting to write down the satu-

—_—
apj2r €5 —1

ration number for this case. It is given by This shows that one can define in this case a saturdgon
sity
<N(/V) > = Z l 2 X / _ / 3
max A3 (n?/L34n3/LE4n3/L3) _ ¢ Prnax = (N(L3)max) /L

ng
where the term witlm; = ny = n3z = 0 is excluded form which remains finite in the thermodynamic lidiV.s)) —
the sum. 00, L — oo with constant total mean densit\ ) /L?.
In order to study the uniform gas in three dimensions, The limiting value of the integral can be obtained in terms
setl; = Ly, = L3 = L and use the appropriate density of of a series of standard gaussian integrals as
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Sy oo ) 0 ) ﬁ o 1 ﬁ 3 ﬁ
wtdr —va® g - VT - _ V" — | =— x2612...
/0 ez _ ] /0 r ;6 v 4 ;1/3/2 4 C(Q) 4 x

so that the saturation density becomes in the thermodynamiciumber of particles. As a result of this, if one enlarges the
limit trap by reducing its frequenay and at the same time in-
creases the number of particles so that the density parameter
(N)/b% is kept constant, one is left with a system with a

3/2 3 o o
Pl — 2.612- -+ x T — = 2612 x (W) ’ lower critical temperaturd*#™, which in fact approaches
A Am2h zero asw'/2. In this way one sees that condensation of

The temperature at which the saturation density equals thd"®€ P0sons in the harmonic trap is a stridilyite system

total density is theritical temperatureof the uniform gas, phenomenoh
given therefore by (cf. eq.(1.14)) An obvious question at this point concerns the ultimate

origin of the different behaviors of the two types of system.
) ) It can be answered, if somewhat technically, in terms of the
_ 2nh? (Nwwsy) \*  2mh? [ (Nwsy) \? basic dynamic ingredients entering in the two statistical cal-
~ Mkp (2.612...L3> - MkgL? <2.612...) culations, namely the single-particle spectra, including de-
(1.19) generacy factors. In the case of the harmonic trap the level
This implies that in an extended, uniform system at a tem- spacing is constant and the degeneracy increases quadrat-
perature smaller that the critical temperatUtegiven by jcally with quantum number, while for the free gas both
(1.19), there will be dinite fraction of the total density  the level spacing (the spectrum having been discretized by
which is associated with occupation of the zero momen- periodic boundary conditions) and the degeneracy increase
tum state by the bosons. This is the standard (and original!)quadratically, effectively inhibiting thermal excitations. In
Bose-Einstein condensation phenomenon. order to test this interpretation one may conceiveahar-

Furthermore, it is interesting to compare in some de- monic Symmetric trap with Single_partic'e Spectrum
tail the expressions (1.19) and (1.14) for the critical tem-

perature, which correspond respectively to the uniform ideal
bose gas and to the ideal bose gas confined in the isotropic
harmonic trap. They have clearly a similar structure, the the corresponding eigenfunctions being ordinary harmonic
critical temperature being given in both cases in terms of aoscillator eigenfunctions. Then the relevant size parameter
single-particle energy scale divided by the Boltzmann con- b is proportional tav—'/2, and one finds thaf. approaches
stant times a fractional power of the mean number of parti- a non-zero limit wheq N') andb are increased with constant
cles. In the case of the uniform gas, this number refers to the(V) /b3.
quantization volum& = L3, which plays the role of a sys- A difference of another nature between the gas in the
tem “size” and also determines the relevant single-particle harmonic trap and the free gas relates to the fact that in the
energy scalei?/ML?. Analogously, in the case of the latter case the condensate density)/L? is spatially uni-
harmonic trap the single-particle energy scaledefines a  form (as also is the total density), while in the trap it has
“size” scale through the oscillator parameter /i/Mw, the spatial distribution of the trap ground-state wavefunc-
the single-particle energy scale being also proportional totion, |¢q ()|, which issmallerthan the total spatial distri-
the inverse square of the size scale. bution of the gas fofl’ > 0. This is due to the fact that

In both cases, therefore, the factor consisting of the en-in the case of the free gas the single-particle ground state
ergy scale divided by the Boltzmann constant is proportional is the zero momentum state, which leads to the statement
to the inverse square of the size scale of the system. In thehat the Bose-Einstein condensation of the free gas occurs
case of the uniform gas this size dependence is compensatetin momentum space”, unlike the situation in the case of the
by the factor involving the two thirds power of the mean trapped gas, in which spatial segregation of the condensed
number of particles when taking the thermodynamic limit, fraction takes place. This latter effect has been in fact used
but not soin the case of the harmonic trap, where the cor- as a signature for the occurrence of condensation in trapped
responding factor involves ttane thirdpower of the mean  atomic gases. Note that a similar segregation occurs also in

T

2 2 2
€nynamg = hw(nl + o + nd)

3The situation is if fact somewhat more complicated than just stated due to the fact that in order to write eq. (1.14) “small corrections” involving higher
powers of the small quantiywere neglected. A more complete appraisal of the situation can be obtained by going back to the saturatiot/ijymbeor
the symmetric harmonic trap including the neglected contributiong.ig\s1creased they remain smaller then the dominant contribution, but scale differently
with b. Thus, in the case of the trapped gas, strictly speaking the critical temperature is not an homogeneous function of the scale parameter.
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the case of the hypothetical anharmonic trap. Since this al-anisotropic by lettingl.? = L andL,/L = Ly/L > 1.

lows for condensation in the “large system limit”, the spatial If these ratios are so large that transverse excitations can be
segregation effect cannot be related to the restriction to finiteneglected (i.e., the restrictiom; = ny = 0 applies), one
systems of the condensation in the harmonic trap. gets, writingnz = n,

1.3.1 One-dimensional free gas (Npy) = Z<Nr(LL)> _ Z Z_lenzé/m — (1.20)
We finally illustrate the dependence on the spatial dimen- "

sionality of the condensation phenomenon by considering The saturation number is given by the same expression with
the case of ainiform one-dimensional ideal gas. To this then = 0 term omitted and witik = 1. For small\p/L it

effect we return to eq. (1.17) and make the system highly can be estimated from the integral

]

L [ 2dz AL2 4r2p2\ !
N/ = — L —kgT | —— Ar/L < 1
< (L)max> A7 /)\T/QL er? _ 1 - )\% B (SMLQ) ) T/ <1,

showing that the corresponding critical temperature goes tovalue represents a minimum value to be attained if conden-
zero as one approaches the thermodynamic limit. The cor-sation is to be achieved. This is at the root of a custom-
responding result for the (quasi) one-dimensional harmonicary pictorial interpretation of the Bose-Einstein condensa-
trap is given by eq. (1.15) which, according to eq. (1.16), in tion as a “collective quantum effect” in which the allowed
fact prescribes an even slightly faster decrease of the criti-degree of localization of different particles, represented by
cal temperature whefiV) andb are increased with constant  A\;5, becomes smaller that the mean inter-particle distance,
(N) /0. represented by;l/?’.

The use of the critical phase space density in order to
characterize the onset of condensation of the trapped gas i
in principle unwarranted. Even the use of the thermal de
Broglie wavelength must be used with caution in view of
According to eq. (1.19), the condensation of a homoge- the spatial quantization restrictions due to the trap potential.
neous system of ideal bosons of magscan be charac- If, however, one invokes semiclassical arguments to treat a
terized in terms oftwo length parameters. One of them sufficiently extended and dense trapped system as being “lo-
is related to the mean interparticle spacing, and can becally uniform” it is easy to derive the semiclassical approxi-
taken as the inverse one-third power of the particle density, mate relation[10]
pp"? = L/(Ns))'/3. The second parameter can be taken
as the thermal wavelength (1.18) associated with the critical pp(0)N35 ~2612... , T="T,

temperaturdl:, Ar,. In fact, eq. (1.19) can be expressed in \;ere nowpp(7) is local density of the trapped gas at po-
terms of the dimensionless quantity A7, as sition 7, pp(0) corresponds to the peak value of the local
density, assumed to be located at the origin of the adopted

ppA, =2612... x 72, reference system. This relation is in fact used experimen-

tally in order to characterize the ballpark values of the pa-

rameters relevant to the onset of condensation in traps, in

substitution for (e.g.) eq. (1.14).

Finally, it is useful to quote expressions for the oscilla-
tor parameteb and for the de Broglie wavelengtky B in

1.4 Relevant parameters and orders of mag-
nitude

It has become customary to use, instead\gfdefined as
in eq. (1.18), a so callede Broglie wavelength\;g =
Ar/+/m, in terms of which one has

ppAip = 2612... , T=T. practical units. One has
This latter quantity is often referred to as thkase space
densityfor the homogeneous gas, and its critical value is 40
often used as a ballpark to characterize experimentally the b~ M x107?cm  and
conditions to achieve Bose-Einstein condensation. Note that
this phase space density becomes larger as the density is in- 1.747

. - AiB = x107*¢ 1.21
creased and as the temperature is lowered, so that the critical " M (amu) T'(uK) " (.21)
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where M (amu) is the mass of the atoms in atomic mass
units, v(Hz) is the frequency of the harmonic trap in hertz

andT (uK) is the temperature in micro-Kelvin. _ PP+ A0 F Doan(T)

1 -~ 7

"N OMERT

which, according to (1.21), is in the0~* cm range for

2 Non-ideal dilute Bose gas [ = 1. Since this is more than three orders of magnitude
larger than the sizes of molecules (or of atomic cross sec-
tions, typically associated to linear dimensions of up to a few

Interactions among atoms constitute an essential ingredi—hundred Bohr radii), scattering processes are under these

ent of nature as we see it, manifested in .the. emstencg Ofconditions effectively restricted towave elastic scattering,
molecules, from simple to very complex, liquid and solid

-~ and are completely characterized by the corresponding scat-
phases both of pure elements and compounds of Var'ou‘ctering phase-shift. This of course effectively restricts the

s.ort's, etc. In the comparaﬂvely very s!mple systems €O immediate correlation capabilities of the interatomic forces
sisting of very cold, dilute, .trapped. atongaseswhich con- . to nuclear simplicity, or even below, at least as long as one
cern us here, atom-atom interactions also play an essent'arlemains in a cold, gaseous phase

role, to begin with, in the very process trough which they The attractive character of the interatomic forces, re-

are prodgged. In fact, an |m'portant step tgwarqs attalnlngsponsib|e for the existence of molecules and of condensed
the conditions for the formation of Bose-Einstein conden- (e.g. liquid and solid) phases at low temperatures signals

sates is the so callexvaporative coolingln this process the however that theyaseous non-ideal many-boson systems
trapis setup in such away that the "fastest’ (more energetlc)which undergo Bose-Einstein condensation are in fact not

atoms are allowed to escape_, leading to a reductlor_l.m _tem'approaching their ground-states as they are cooled, but are
perature through a re-establishment of thermal equilibrium.

i o ) oo rather approaching some excited state, meta-stable at best,
Both the establishment of an initial velocity distribution of

) i ) raising the important question of the degree of stability of
an “universal” (thermal) type and its colder re-establishment

. ) ) L ) this particular, and rather peculiar kind of phase. Qualita-
follgwmg selective dgpletlon_of the |n|t!al one require the tively, the meta-stability is enhanced if the cold gaslis
actpn of ?_tom-?tom Interactions. I_n this way, the recently lute, in the sense that three-body collisions that are the only
achieved “ideal cpndensate of F:esmm a_toms could only beefficient way of disposing of the surplus energy (a process
Pmduc‘?d by making u_se ofa t”fk aIIO\’/,vmg the fatom-atom known aghree-body recombinatigiave a very small prob-
interaction to be experimentally *tuned”. Thus, in order to ability in comparison with with the two-body elastic colli-

produce the “ideal gondensate, the mterapnon strength Ssions responsible for establishing and maintaining thermal
first set to a convenient value for the cooling process; equilibrium

ter the (non-ideal!) condensate is produced, the interaction

strength is set to zero, rendering it “ideal’[2].

The natural ubiquity of bound complex molecular struc- 2.1 Simple effective interaction

tures clearly indicates, moreover, that interactions betweenThe center of mass scattering cross-section for scattering of
atoms are in general extremely rich and complex and alsotwo particles at low enough relative enertk? /2y, i be-

that they must contain enougtttractiveeffects in order to  ing the relative momentum andbeing the reduced mass, so
account for the observed binding. As was put decades agahat only s-waves are affected by the interparticle potential,
by Victor Weisskopf, forces between atoms can be seen asan be expressed in terms of thevave phase shiff, (k) as
being much “stronger” than the strong forces between nu-

cleons, in the sense that the latter have a single, almost do  sin®0o(k) k-0

spherically symmetric two-body bound state (the deuteron), aa - k2 e (2.1)

whereas a typical two-atom system has a huge number ofyhere, has dimensions of length. There is no dependence
spatially very complex molecular bound states. of the cross-section on the center of mass scattering angle.

However, in a gaseous phase and at very low tempera-There are at least two different lessons to be learned from
tures the complexities of the atom-atom interaction are ren-this simple fact. First, very low energy scattering is largely
dered largely ineffective. Considering an atom-atom colli- insensitive to the detailed nature of the interparticle poten-
sion event at values of the relative momentum correspond-tial, as its relevant effects can be characterized by a single
ing to kinetic energie& g1 with T in the sub-micro Kelvin parameter. Second, tewave scattering phase shii(k)
range, the classical turning point for the centrifugal barrier is not very adequate for this purpose in view of the denom-
corresponding to angular momentunoccurs at a relative  inator k2, which requiressin 6y (k) to vanish linearly when
separatiornr; given by k — 0 for anyfinite value of the cross section.
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In order to circumvent this inadequacy of the pa- Inthe case of the hard-core potential this wavefunction van-
rameterization in terms of the phase shift one introducesishes inside the repulsive core, giving a finite result for the

thescattering lengthu defined as bracket which determines the scattering amplitude.
This feature of the scattering amplitude has been used
lim _ 1 to a considerable extent in connection with the many-body
k—0 sin do (k) a’ problem involving two-body interaction potentials which

are possibly singular (e.g, including hard cores). The ba-
sic trick consists in replacing the potential itself by an ef-
L . fective operator which incorporates the correlation effects
description to describe the dependence of the low-energy . . .

. . ) . ~ 2’due to the potential which cannot be treated perturbatively.
cross-section with the relative momentum, this last defini- , . , "
o i o It is known as Brueckner’s theory and has been originally
tion is interpreted as the first term of an expansion, in powers : . . o

. developed in connection with the nuclear (fermionic) many-
of k, of the quantityk cot Jp(k). One can show (see e.g. [1], . . ;

. : _ : body problem[11], but has been immediately applied also
section 5.1.6) that the linear term of the expansion vanishes . .
denticallv. so that it can be generally written as to the hard-sphere Bose-Einstein gas[12]. In the case of the
! caty ! 9 ywr two-body scattering problem this is accomplished simply by

the transition operatdf’ (k?) having the property (see [1],

which therefore coincides (with a defined sign) with the
length parameter introduced in (2.1). In order to refine the

1
kcot do(k) = —— + %UkQ o (2.2)  p.537)
known as theeffective range expansipand the coefficient (E/\V\qbg> = (E’\T(k2)|E>.

ro of the term quadratic ik is called theeffective range
With the use of this expansion, the low energy scattering can
be described in terms of just the two parameteasdr, SO
thatall potentials having given values of these parameters
produce the same scattering at low energies. An important
point to be kept in mind is that the effective range expansion
gives a parameterization of tlegattering amplitudé€since : , ) )
it gives the dependence @mof the only relevant phase shift operator trick with the effect!ve ra”ge expar:smn. O“ne re-
do(k)). Therefore, in order to obtain the scattering length for places the actual atom-gtorp mterapﬂon bY a“contact” (zero-
some given two-body potential one has to solve atwo-bodyrange) two body effective interaction which can be repre-
scattering problem. For instance, for a hard-core repulsivesented as

potential or radius the s-wave phase shift i& (k) = —ka. Anh2a

This is obtained by solving the appropriate Schrdinger equa- Vett (71, 72) = —57—0("1 — 72) (2.3)

tion with scattering boundary conditions. From this result
one finds that the scattering length is equal to the hard-cor

As indicated by the notation, this is in general an energy-
dependent operator, requiring considerable technical labor
when used in more elaborate many-body calculations[12].
A standard approach to the effective interaction cur-
rently used in connection with cold, dilute Bose-Einstein
atomic gases can be seen as a combination of the transitior

wherea stands for the scattering length characterizing the

di d that the effecti ishes. Note that th Sow energy atom-atom scattering. This fact alone indicates
radius, andthat the eflective rangevanisnes. Note that the immediately that this effective interaction is in fact related

parameters of the effective range expansion are finite, even . .
e : ) . 1o the scattering amplitude, and must therefore be seen a:
though the potential itself is not, and neither are perturbative . . . .
belonging to the hierarchical level of the transition opera-

amplm_Jdes, §UCh as the qu amplitude, for this particular tor, rather than to that of the two-body potential. In fact,
potential. This can be readily understood if one recalls that . . ' N
. ) . . _ whenuw,g is treated in the first Born approximation, it repro-
the scattering amplitude can in general be written in terms - -
. : ) duces the low-energy limit of the two-body collision cross-
of the exact scattering solution of the two-body Schrdinger . . . . .
section, written in terms of the scattering amplitudeThe

i +
equat|on|¢>g> as (see [1], p. 512) many-body effective hamiltonian for a systemgfidenti-

u cal bosons in an external trap represented by the one body

fog =— o (k’|V|¢g>. external potentiaV/ () is therefore written as
]
N 2 N 2
P’ . 1 L . dmh*a
Ha= Y (L5 +v00)+5 3 -5 wim A= @4
i=1 2M 2 1#j=1 M

or alternatively, in second-quantized form, as
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Hg = /dBTH(F),

W) (53 + V) 60 + 56 ) @5

g
3
I

whereH(7) is the hamiltonian density, written in terms of Typical densities of gaseous condensates currently obtained
the field operators)f (), () introduced in page 1106. are in the ballpark opp ~ 10> cm™3. Usinga ~ 100rp

Note again that spin degrees of freedom have been ignoredalso as a ballpark value for the scattering length,being

This is of course correct for spinless identical bosons, butthe Bohr radius, one obtainga® ~ 10~%. This quantity is
applies also to the case of bosons with non-zero spin whentherefore apt to be used as small expansion parameter when
they are constrained to just one magnetic substate, as it ine deals with these systems. This is to be contrasted with
the case for magnetic traps. Other situations allowing for the situation of liquid*He, for whichppa® > 1.

different spin states will be discussed below.

The two-body interaction term included in the effective 2.2 Effective mean-field (Gross-Pitaevski) ap-
hamiltonian (2.4), or (2.5), has the peculiar feature that its proximation
attractive or repulsive character depends onsiige of the
scattering length being negative or positive, respectively.
A well known result of effective range theory is that the scat-
tering length of a purely repulsive potential is always posi-

tive. However, if the potential is not purely repulsive, or . . .
e . . . can be obtained variationally by looking for extrema of the
even if it is purely attractive, the scattering length can in . .
energy functional®|H.¢|®) using an ansatz fg) of the

general have either one of the two signs. Thus, from the Hartree type. In wavefunction language, appropriate for use
fact that the scattering length is positive one cannot draw . ype. guage, approp

. o . in connection with the form (2.4) of the effective hamilto-

the conclusion that the potential is repulsive. Actually, even . . .
. N .__nian, this ansatz is

though the atom-atom interaction involves enough attraction
to support a large number of molecular bound states, it may N
possibly be associated with a positive scattering length, in O(7,...,7N) = H o(75) (2.6)
which case it is represented by a repulsive effective inter- i=1
action when the prescription (2.3) is used. One clear im- wherey(7) is a normalized single-particle wavefunction to
plication of this is that a simple prescription such as eq. be determined. Note that all bosons are in the same single-
(2.3) cannot possibly be adequate for the treatment of moreparticle state, so that the symmetrization requirement is ful-
demanding properties of the many-boson system, such asilled automatically. Alternatively one can use the second-
instabilities related to three-body recombination processes,quantized form (2.5) of the effective hamiltonian in together
to cite just one and very obvious example. It is presently with the ansatz
widely and successfully used mainly in connection with ap-

The simplest, but still extremely useful use of the effective
hamiltonian (2.4) (or its second-quantized version (2.5)) is
the derivation of a “mean field approximation” to the Bose-
Einstein condensed state of the non-ideal, dilute gas. This

1

proximate treatments of non-ideal, dilute Bose-Einstein con- |®) = ——afV|0)
densed systems, of their elementary excitations and of sev- VNI
eral of their collective properties, as discussed in continua-where the creation operataf is expressed in terms of the

tion and in the following chapters. field operaton)’ (i) as

The inclusion of the effective two-body interactiogy
also introduces a new length parameter into the many-boson al = /dgr (P (7).
system, associated with the effective range of the interac-
tion, which can be identified with the scattering length
The relation of this parameter to the mean interparticle dis-
tancep}t,/S, pp being the particle density, allows for a quan-
titative characttenzat,on of the “dllgteness" of the system in a,a'] =1 and [ (7), a] = o(7)
terms of the dimensionless quantjtya3. The quantitya®
represents an interaction volume, so that® corresponds  which follow directly from the normalization of the single-
to the average number of particles in the interaction volume. particle wavefunctionp(7) and from the commutation rela-

Calculations are in this case made easier by noting the com-
mutation relations
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2T<E>(X)/Nhw
N

B/b "~ x=plb

Figure 2.1. (a) Energy functional per particle for an isotropic harmonic trap in unitespfvith gaussian ansatz for the single-particle
wavefunction, plotted as a function of the gaussian width parantetefhe various curves correspond to the indicated values of the
dimensionless parameter= (N — 1)a/+/27b. (b) Solutions of equation (2.10) for the indicated values.ofhe straight lines correspond

to the left-hand side of the equation, and thealues of the solutions (extrema @F)(x)) are determined by their intercepts with the fifth
order parabola representing the right hand side.

Now it is easy to see that this functional does not have ational to 3—3. Therefore, ifA < 0 the value of the energy
lower bound when the effective two-body potentiadigac- functional can be made arbitrarily negative by choosing a
tive, i.e., when\ < 0, which amounts to aegativescatter- sufficiently small value of3. This indicates theollapseof
ing lengtha. To this effect it is sufficient to make a gaussian the system when the scattering length is negative.

ansatz for the single-particle wavefunction Remarkably, this fact that has been observed
3 experimentally[2, 13], with some nontrivial characteris-

o(7) — <1> ’ e /267 tics which are quantitatively consistent with properties of

BT the energy functional??). The relevant properties can be

and note that the kinetic energy contribution is positive and spotted by actually evaluating the energy functional with
proportional to3~2, the contribution of the term involving  the gaussian ansatz, assuming an isotropic harmonic tray
the one-body potential is just the gaussian average of a supwith angular frequencw, so that its size parameter is the
posedly non-singular function af, while the contribution  oscillator parameter = \/A/Mw. This is a straightforward
from the two-body potential has the sign)o&nd is propor-  exercise giving as result

]

el — () = Nno | (55 + 5 ) + 0 9

whereaq is the scattering length appearing in the effective til it disappears fory below abou®.25. For given trap fre-
two-body potential parameter. Fig. 2.1 shows a plot of the  quency and (negative) scattering length, this implies the pre-
mean energy per particle (in unitsiab) as a function of3/b diction of “meta-stable” solutions fav smaller than some
for somenegativevalues of the dimensionless parameter  critical number of particlesV, in the trap, which depends
on the values ofi andb. The gaussian approximation to the

_ (N=1a 29 single-particle wavefunction for the meta-stable state can be
7= N (2.9) found from the extremum condition obtained by by setting

the derivative of (2.8) with respect to= (/b equal to zero.
The “collapse” situation is revealed by the mean energy perOne finds
particle going to minus infinity ag/b — 0, but wheny is
not negatively too large, this quantity also has a minimum,
separated from the region of collapse by a kinetic energy 1 v

I . Stz _ .5
barrier” which decreases asbecomes more negative un- 5.3+ -7 =5 o r+2y=z", z>0. (2.10)
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The graphical solution of this last equation is shown in consistent with experimentally measured condensate popu-
Fig. 2.1 (b) for the same negative valuesyo$hown in the lations.
part (a) of the figure. Also included is the case of a repulsive
effective two-body interaction with = 5. The value ofg Assuming the effective two-body potential to haee
which minimizes the gaussian approximation to the energy pulsivecharacter, i.e., fok > 0, it has been proven[15] that
functional is smaller than the trap oscillator paraméttr the energy functionalX?) has an absolute minimum which
a < 0 and larger tharb for a > 0, consistently with the  defines a single-particle wavefunctigr () up to an over-
attractive and repulsive character of the mean field. all phase factor, which can always be chosen sothé&f)
These features are not just artifacts of the gaussianis strictly positive. This wavefunction is a solution of a non-
ansatz, but are preserved in unconstrained studies[14] ofinear, Hartree-like equation obtained by variation of the en-
the energy functional. Calculated values e.g. for the crit- ergy functional with respect tp(), the normalization con-
ical numberN,. associated with the loss of the secondary straint being taken care of in terms of a Lagrange multiplier
minimum in the case of attractive two-body interactions are 7. It reads

]

(<587 + V) 0+ A - Dlp(IPe(r) = ot @1)

and is known as the Gross-Pitaevski equation. Accord- relation to the value of the functional for the corresponding
ingly, the energy functionalX?) has been called the Gross- single-particle wavefunction is easily obtained multiplying
Pitaevski functional, and the many-body stafe con- the Gross-Pitaevski equation by the (conjugate) wavefunc-
structed from its minimizer (for repulsive effective interac- tion and integrating over. It can be expressed in either of
tion) the Gross-Pitaevski ground-state. The Lagrange multi-two forms, also familiar from the relation between Hartree
plier n is seen to be a Hartree-like single particle energy. Its single-particle energies and the total Hartree mean energy

|
n o= Elp+ SNV =D [ drlel -
2%72
= 2810 - N [ 1ot (T + V) el 212

The integral appearing in the first of these two forms is tential, which is actually involved to all orders img. Thus

in fact an integral of the squared single-particle density, it should be rather understood as an approximation of the
which can therefore be interpreted as the average singleBrueckner-Hartree type, widely used in the context of nu-
particle density associated with the single-particle wave- clear physics[16], further restricted by the scattering length

function ¢(7). Furthermore, if the factotV(N — 1) is limit used to obtain the effective two-body interaction. Thus,
replaced byN? in the Gross-Pitaevski functional, and the considerable care and judgment are indispensable when us-
factor (N — 1) is consistently replaced by in the Gross- ing the effective hamiltonian (2.4) in dynamical situations.
Pitaevski equation (2.11) (an essentially innocuous replace-n particular, the physics involved in tligte of the “collaps-
ment for largeN), one can write ing” condensate with attractive effective interactions lies en-
tirely beyond the most optimistically drawn theoretical hori-
n _ 0&[e(r)] _ zon of this effective hamiltonian, even though the observed
N T oN M meta-stability and its limits may still be meaningfully as-

sessed. Also beyond this horizon is the physics of three-

body recombination processes, and therefore also the insta-
bility of the Gross-Pitaevski ground state under such pro-

cesses.

which accounts for the fact that this quantity is interpreted
as the chemical potential.

It should be stressed at this point that this “mean field”
treatment differs from an ordinary Hartree approximation in
that the effective two-body interaction is related to the two-
body scattering amplitudeather that to the two-bodgo-
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2.2.1 The uniform gas and the “healing length” two-body approximationd > 0). The energy of the Gross-

Pitaevski ground state is given by the minimum value of the
Here and in the following subsection we consider some energy functional, which can be expressed using relations
properties of solutions in the case of a repulsive effective (2.12) as

]
Elpo®] = m-FNW 1) [ &ren(i] =
= % [no +N / d’r o5 (7) (— ZE + V(F)) @O(F)} (2.13)

whereny /N is the chemical potential associated with the
minimizer functiony, (7). To obtain this energy one has in R, o
general to solve the Gross-Pitaevsli equation, now a standard —oaz ¥ #o(m) + Aleo(F)Fpo(7) = peo(r)
numerical task[14]. .
In the special case of a uniform gas (for which the poten- r=A{z,y,z}, x>0
tial V() representing the trap vanishes identically) transla- The factor(V — 1) has been absorbed in the normalization
tional invariance requires the solutions to be plane waves, soof the wavefunction by requiring that
that the ground state energy can be evaluated analytically.

Using periodical boundary conditions in a volum@, eq. lpo(F)? = pp.
(2.11) gives for a plane wave of momentémormalized in The relevant solution to this equation can be found by
the quantization volume using the ansatz

h2k2+>\(N*1) _n wo(7) = y/pp tanh kx , x>0,

2M L3 N’

independent of; andz, which satisfies the required bound-

whereN is the number of bosons in volunie®. Now the ary condition atz = 0 as well as the prescribed normaliza-

second form of the expression (2.13) for the energy showstion condition. In fact, substitution into the equation shows
that the minimizer in this case is the plane wave with zero that it is satisfied provided is chosen so that

momentum. Note that this satisfies the stated general prop-

erties of the minimizer. The ground state energy is therefore 2 M

/iZ)\ﬁpp
or
1 N(N-1) h? AMpp 1
o= Az = Nxdrgere S i G

In the last step the expression afin terms of the scat-  With s = h?x?/M. The length¢y; therefore characterizes

tering length has been used, together with the replacementl® scalé at which the effect of the potential wall *heals”,
(N —1)/L* — N/L? = pp, here fully allowed by the as one moves away from it and the density approaches its

thermodinamic limit. asymhptotlc Vallkj]e' f isti les of | h which
An interesting feature of this result is that it reveals a There are thereforthreedistinct scales of length whic

new length parametewhich is relevant for the non-ideal &'¢ rele_vant in the case of_the (uniform) gas, namely_ the
interaction length characterized lay the mean interparti-

gas, given by . . s .
cle distance characterized by,”’” and the healing length,

€y = 1 : (2.14)  characterized by(ppa)~'/?. For adilute gas one has

VAT ppa ppa® < 1, so thata <« p;l/g. Diluteness also implies,

in terms of which the ground state energy per particle of the moreover, that
uniform gas is given a&,/N = h?/2M¢&%,. It is referred s
to as thehealing length or also, alternatively, as thde Pp _
Broglie wavelengttfwhich however should not be confused (ppa)=1/2
with thethermalde Broglie wavelength, introduced ear- g4 that in the limit of a dilute gas one has the hierarchy of
lier). In order to understand its meaning, consider the Gross‘length scales

Pitaevski ground state in semi-infinite space- 0, with an

infinite potential wall atc = 0. This requires that the wave- s 12

function vanishes for = 0, being otherwise a solution of a < pp < &a~(ppa)” 7. (2.15)

ppa® <1
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2.2.2 The Thomas-Fermi regime 2.3 Spin-dependent effective interaction

The values of the parameter eq. (2.9), which can be cur- Present day traps can be set in ways which do not rely on hy-
rently be achieved in condensates of atoms with positive perfine Zeeman displacements for their operation (as is the
scattering length can easily be large compared to one. Ascase with magnetic traps), allowing for the use of atomic
an example, a condensateld atoms of*’Rb, for which  spins as active internal dynamical variables of the many-
a ~ 100r g (rg being the Bohr radius), in an harmonic trap boson gas. Bose-Einstein condensation in such systems re-
with frequencyr = 100 Hz, one getsy ~ 300. In such sults in what is generally called “spinor condensates”.

cases not only the condensate becomes quite appreciably The atomic spinf results from the coupling of the nu-
wider than the gaussian corresponding to the ground stateclear spin with the electronic spin, both of which have half-
wavefunction of the trap (see fig. (b)), but the contribution integer values in the case of the alkali atoms. The nuclei of
of the kinetic energy term to the Gross-Pitaevski functional these atoms have odd charge numbBeso that the isotopes
becomes small in comparison with the sum of the contribu- corresponding to bosonic atoms must have an even number
tions due to the trap potential and to the two-body interac- of neutrons and therefore odd mass numbers. Their lowest
tion. In this case a fair approximation consists in dropping electronic configuration has spﬁwdue to shell effects, and
the kinetic energy term altogether. As far as the minimizer therefore larger values gf occur for the atoms with larger

of the functional is concerned, this approximation amounts nuclear spin. The only stable cesium isotope has mass num-
to treating the condensate as being “locally uniform” with ber 133 and nuclear sp§1 so that the lowest atomic hyper-

a position dependent density, and is therefore known as thefine levels have = 3 and f = 4. 2*Na and®’Rb are spin%
Thomas-Fermi apprOXimation to the Gross-Pitaevski func- nuc'ei, so that they havﬁ values of 1 and 2, anﬁin has

tional. It reads nuclear spirg and f values of 2 and 3.
The two-body effective interaction between atoms with
Errle(P)] = N / d3r * (F)V (7)o(7) spinf # 0 will in general be spin dependent, the spin depen-

dence being however subjected to restrictions based on gen-

A, . o eral symmetry arguments, such as rotational as well as trans-
+5 N /d rle(P)[" lational invariance. Interactions being restrictediwaves,
rotational invariance amounts to the conservation of the to-
Note that the factoV(N — 1) has been replaced by? in tal spin of the interacting pair, and the exchange symmetry

the two-body term. This approximation clearly breaks down required by Bose-Einstein statistics restricts the allowed val-
near the outer edge of the minimizer wavefunction, where ues of the total spin to even values. This restriction follows
the two retained terms become small. However, for large from the symmetry property of Clebsch-Gordan coefficients
enough values of;, kinetic energy corrections tp() are coupling two sping to total spinS
small even there, on the scale of its peak value.

The equation satisfied by the minimizer of the Thomas- et =0t ol o
Fermi approximation to the energy functional can again be
obtained by variation of - with respect top() with the M=mi+my, —f<mi<f —S<M<S.

appropriate Lagrange multipligrto take the normalization  An often used parameterization[19] of the effective, spin de-

condition into account. One gets (cf. eq. (2.11)) pendent two-body interaction consists therefore in general-
izing eq. (2.3) by allowing for different scattering lengths
(b= V(7) = NAp(P)]?) o) = 0 for each of the possible (even) values of the total spin

which is just an algebraic equation that can be readily solvedThls implies two scattering lengths fgf = 1, three fo_r
f = 2, etc. Numbers for these parameters are experimen-

togive fally poorly known (if at all) especially for atoms with the

for > V() higher f values. In regard to simplicity we restrict the fol-

9 H lowing treatment to a spin dependence which is given in

(P = terms of just the standard scalar bilinear in the two spin op-
0 for p < V(7). erators, and generalize eq. (2.3) by writing

p=V(7)
NA

Note that this solution has a discontinuous derivative at
pointsi such thaty = V(). The effect of the neglected
kinetic energy term is essentially to smoothen the minimizer v (7, Fy, 7, Fy) = <>\0 +
wavefunction in the vicinity of these points[17]. The value

of the Lagrange multiplier is determined from the normal-
ization condition

%Fl N F2> 5(F1 - FQ)

. (2.16)
whereF;, i = 1,2 are the spin operators for the interacting
bosons and the constatgand); account for possibly dif-

ferent scattering lengths for different values of the total spin.

/dST lp(P)* =1 This particular form involves only two independent parame-
ters, even though e.g. fgr> 2 it gives f + 1 different scat-

V(@ tering lengths. Of course the relation among them implied

/ o L A g by the two-parameter interaction can in principle be checked
u>V(F) A experimentally. The two independent scattering lengths

or
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andas which are allowed forf = 1, corresponding respec- formulation one considers a spinor set of field operators
tively to S = 0 andS = 2, can always be accommodated ] (), ¥, (7), —f < m < f satisfying the commutation

in the form (2.16), which therefore implies no restriction in relations

this case. Their relation to the parametggsand )\, is then

m_’a T/_’/ :(Smfm/(s_o—_’/7
 anh(ao + 205) [n (7,01, () (7~ )

Ao 3M [wm(mv Y (Fl)] =0.
and What is understood by the qualification “spinor set” is the
N — 4mh?(az — ag) fact that the2f +1 differentm-components transform under
s 3M ’ rotations as a Racah tensor of rafikThe resulting second-

quantized form for a set of spinor bosons with sgircan

so that whemy = ao one recovers a spin independent effec- .
0 > P b therefore be written as a sum of one- and two-body parts as

tive interaction. Forf = 1 states of3>Na one calculates[18]
a positive A, which is of the order of 10% oy, corre-
sponding to a rather weak spin dependence. The value of Heg = /d3r (H1(7) + Ha (7)) (2.17)
a = (ap + 2a2)/3 in this case is about 50 Bohr radii.

In oder to handle the spin variable in a second-quantizedwith the hamiltonian densities

Hi () = Z ¥l (P

mym]

h2v?
{_ 2M

and

A As = = ., , i
Ho (F) = Z |:206m17n'1 6m2'rn§ + ﬁlem; ’ F’rrbzm’2:| w;rnl (mwjng (7’)1/)7”'1 (T)'(/)an‘, (’I")

In the one-body part, the trap potentidl,,, (7) is, in 2.3.1 Gross-Pitaevski and Thomas-Fermi treatments

the simplest case, not only spin-diagonal but also spin inde- ) , )
pendentV (7)8,..v. As written, it may include as well an An effective mean-field treatment of spinor condensates can

arbitrary (but time-independent) external magnetic field. In P€ obtained by a straightforward generalization of what has
the two-body part, the matrix elements of the 1-particle spin beelln d(;)]r\}et;n section 2.2. Again we use an ansatz the nor-
operators},,,» can be written quite generally (i.e., for ar- malized.V-boson state

bitrary spinf) in terms of Clebsch-Gordan coefficients and 1
of a reduced matrix element. In terms of the spherical com- |N) = ﬁaTN|O> (2.18)
ponents N!
. where nowu! is a spinor creation operator defined as
P o= :FFm Ll
0= zy :tl —_— \/i b

al = Z/dST U (F)Y] (7) (2.19)

m

one has, by the Wigner-Eckart theorem

with the normalization condition

, Cf 1f
Fo’ mm/ = fmFUfm =_—mom f F f

where theC symbol is a Clebsch-Gordan coefficient and - " _ _ _ _
last factor is the reduced matrix element. It can be cal- This implies that the single-particle wavefunctigir) is
culated from the same formula and the choice of making now a spinor wavefunction witdf + 1 components.,,, ("),
F, diagonal, with eigenvalueédm. Thus, forf = 1, —f <m < f. Sincey, (7)|N) = VNu, (7)|N — 1) one
(1||F||1) = v/6h. obtains for the energy functional
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2v2
WP = (NHalN) =N 3 / P 71 (=S + Vs ) g 1)+
A
HECEREDY /d it ()Pt (7 + @2.20)
N(N — 1)), , ) ﬁ )
+ 2h2 Z /d T Um,y (’F)umz (W)Um; ("d)um’2 (F)lemﬁ . F’QO'2 .

mym)maml

The variational condition that determines the spinor component functig(g) is

d <<NHeffN> - 772<Um|um>> =0,

variations being taken with respect to thg (7). The term involving the Lagrange multipligraccounts for the normalization
condition on the spinor state. This leads to the coupled nonlinear equations

FFV"‘ .
um 7?) + vam um (F) + -1 >\0 Z |um’ um T) + (221)
(N - 1))\5 n o * — 77
+ 2 Z Em - Fonymy Uml(f?um; (M (1) = NUW(F)
m’/mimy
|
The factorgV —1 are usually replaced by. Inthe Thomas-  Thomas-Fermi equations fof = 1 bosons in a spin-

Fermi limit, the kinetic energy term is negligible and the diagonal trap potentiaV,,,,  (¥) — Vi (7)dmm:. Them-
determination of the spinor component functions is again dependence of the potential may be used, in particular, to
pointwise algebraic. Recall that the trap potentig},, (7) account for the first order Zeeman splitting due to a uniform
is, in the simplest case, not only spin-diagonal but also spinexternal magnetic field, i.eV,,(¥) = Vo(7) + mAg. We
independent; as written, it may include as well an arbitrary get

(but time-independent) external magnetic field. The spin de-

pendent term involves the operator

—

Fm'm/ . F_:mlm 2h2 ( )0'071 11 Cl

n’ o m-m}| —o m1
. . F|f)2
L W Z( 17 Cn’;f,fncnfi —10 fnl with o = m — m’ = m) — my, which includes a condi-
tion on the possible sets ai-values that give nonzero con-
In fact there is no sum over, since its value is determined tribution. Ignoring the kinetic energy term then gives the
by the consistent values of the remainings. coupled Thomas-Fermi equations for the spinor component
As an example, we write down explicitly the coupled wavefunctionss,,(7), m =0, £1

]

= Vi() = (N =1)(ho + As)PT(f')} ur(P) = (N = DA [u”y (Fug(F) — 2|u— (7)|*us (7]

|
=

(7) = (N = 1)(Ao + As)pT(f’)] uo(7) = (N = Ay [2ug (F)us (FMu—1(7) — [uo(7)*uo(7)]

Zls Zls =z

= Voau(®) = (N =1)(Ao + A(s)pT(f»)} u—1(7) = (N = DA [u5 (Fug(7) — 2|ur (7)*u—1 (7)]
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wheré pr(7) = 3 |um (7)]2. this way, the equations become real if this phase isA ¢m
Assuming that theu,, () are real except for an overall —general, this indicates that this approximation is sensitive to
phase, i.e., phase relations among the spinor components. Further un:
derstanding of the phases results from consideration of the
Uy (F) = [ty (7)€", Thomas-Fermi approximation to the energy functional per

the equations become real except for a pha&s, — ¢y — particle (2.20), which is sensitive to the same combination
©_1) multiplying the first terms on the right-hand side. In ©f phases. Itis given by

]

errlo] = N [ a0V (7) + TS5 0 (7Pl (7 +

m mm/’
(2.22)
N(N = 1)\, . . ) . B
+ — s Z /d3r Uyt (T)thgs (F) iy (F)iny (F) iy + Frngms, -
mymimam}
The spin-dependent term is, writing explicitly the weights resulting from the spin matrix elements,
1 *
N(N - 1)>\5/d3r [2 (lua[* + lu—1|*) + |uol? (Jur [ + [u—1/?) = JuaPlu—1* + 2 Re (ug?uru—1) | ,
the last term of which becomes, under the assumptions made above concerning the phases,
2Re (uguru—1) — 2cos(p1 + -1 — 2¢0)|uo|*Ju[[u—1]
|
This gives in fact an explicit expression for the Thomas- 800 ' ' ' ' '
Fermi approximation to the energy functional under the
somewhat more restrictive ansatz in which thg(r) are :
real except for am-independent phase, therefore only allow- 600 L il Er)
ing for -independent phase relations among the spinor com- _ - |“»1|2(’)
ponents. At points where neither of the amplitudeg7) is OFE SRR CANU)
zero, the functional is stationary with respect to phase vari- 3
ations at > 400 1
200 —p1—p-1=0 @
]
or a
200 :
200 — 1 — p—1 = T.
The occurrence of this particular combination of the three
phases results from conservation of the third component of 0 ) ) ) < )
the total spin of two interacting bosons, which allows for 0 10 20 30 40 50
converting onen; = mgo = Q0 pairintoam; = 1, mg = r (um)

—1 pair and vice-versa. Variation with respect to the (ab- Figure 2.2. Solutions of the T-F equations for sodium atoms in
solute values of the) amplitudes yields the Thomas-Fermia spherical harmonic trap with frequené9 Hz, u = 10" Hz

equations as written before, with the adopted choice for theand Ap = —70 Hz. Note that this last value corresponds to
phase2p0 — 1 — ¢_1). an experimentally unrealistic extremely weak magnetic field, of

—4 . .
Thomas-Fermi solutions for spinor condensates arethe order ofl0~* G. The two-body interaction parameters used

3 (= _ 3
much richer than what one obtains in the case of a single\(’iiri);o - ?1)422;.42 pm” (@ = 50 ap) andAs = 0.3 Hz um
component. One of the simplest examples (albeit involving
parameter values which are rather unrealistic in experimen-
tal terms) is shown in Fig. 2.2. Actually two mutually com-
plementary solutions are shown in this figure. In the first

4Strictly speaking one should take into account the fact that when the one-body part of the hamiltonian is diagonal in the spin projections the que
N; — N_; is also conserved, requiring a second Lagrange multipliéfhe effect of this is to replacg/N respectively by; /N + A, n/N andn/N — A in
the three coupled equations above. Whenihidependence of the trap potential comes from an overall first order Zeeman ghithis is in turn equivalent
to a redefinition of the Zeeman shitp — A’; = A 4 A. The solutions obtained without explicitly introducidgand interpretingA 5 as the actual
first order Zeeman shift correspond therefore to the value of the second conserved quantity fok whith
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one, them = 0 density vanishes identically, and a Zee-
man induced relative enhancement of the= 1 density in-
creases towards the surface to the point whererthe —1
density vanishes. At this point the = 1 density joins a
different solution which hasg = u_; = 0, shown as the

1123

tured by the effective mean-field approximation as imple-
mented.

In order to justify this statement, consider again the spin-
dependent effective hamiltonian (2.17) for the cdse 1
with the trap potential reduced to a position independent first

dashed line. This latter solution is unstable (in the sense thaorder Zeeman shift, i.e.

it corresponds to a maximum of the Thomas-Fermi energy

functional) whileu_;(r) # 0 (for the first solution), but
becomes stable (in the sense that it becomes associated
a minimum of the Thomas-Fermi energy functional) in the

outer skin, so that it may be seen as the extension of the cor
responding component of the first solution for larger values

of r.

It should be noted that the phase-carrying quantity

2Re (ug?uju_1) vanishes identically, so that the overall

relative phase of the two nonvanishing components of the
spinor is not determined. This plain computational fact must

me’ (F) I mAB 5mm’-

t((Eorresponding to the neglect of the kinetic energy term in

the Thomas-Fermi approximation, introduce the momen-

tum state operators (using periodic boundary conditions in
a quantization volumg’)

.1 -
am (k) = v/vd&r eF T (7) -1<m<1

be understood as a warning against too stringent limitationsand restrict the hamiltonian to the zero-momentum plane

imposed by the adopted ansatz (2.18) and (2.19), which prewaves.
vent physics intended by the effective hamiltonian to be cap-

]

Heg — Hy

oy
2y

4

—2aT_1a1a1a_1 + Qa(T)a(T)ala_l + QaIaT_laoao)

S VP
ApS. + N —1)

where thea,,, al, are now zero momentum operators,
N,, = al,am, N = 3, N, are number operators and

S ={S.,S,,5.} is the total spin operator the components
of which, for f = 1, can be written as

Sy +1iS, = V2(ahay + a' |ay),
S, —iS, = V2(alag + ala_,),

S, = (aT_la_1 — aJ{al).

+ 2% (5% —2n)

The resulting truncated version of the effective
hamiltonian is then (cf. [20, 21])

Ao n
Ap E m CLI,LCLm + ﬁ g a;rnam/ Q! G, +
m mm/’

(aiaialal + aT_laT_la,la,l + QaIagaoal + Qa]:lagaoa,l —

(2.23)

|
Am|Vm) = Um|Vm) = \ym|ewm|ym>,

where|0) stands for the vacuum state,,|0) = 0. A varia-
tional treatment therefore leads again to the Thomas-Fermi
coupled equations, now written in terms of the coherent am-
plitudesv,,. The possible solution having, = 0 leaves the
relative phase of the remaining two amplitudes undefined.
One can now however confront the approximation in-
volving this ansatz with the exact ground state of the trun-
cated hamiltonian (2.23) by taking advantage of its ex-

be made by noting that the integrand of the Thomas-Fermi

energy functional (2.22) can be obtained from this hamilto-
nian (up to replacement of factoré(N — 1) by N2) using
the spinor ansatz

1) 1 ,
@)= [n) |, > lumlP=N
|I/_1> m=-—1

where thev,,,) are coherent states[1] for the operatoys,
ie.

‘Vm> = el’main*l’;zam‘o> ’

see what this ground state is, note that S2 and S, are
commuting operators, so that the simultaneous eigenvectors
|NSM) of these three operators are eigenstatedpfThe
angular momentum commutation relations for the compo-
nents of the total spin operator give as usual

S?INSM) = S(S +1)[NSM),
S.INSM)= M|NSM), —-S<M<S;

moreoverS < M < N so that the maximum value of the
total spin isS = N. The eigenvalues ol are then
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Ho|NSM) = (ABM + %N(N —1)+ %[S(S +1)— 2N]> INSM).

[

The ground state corresponds to available valueS ahd volume go to infinity at constant density. Thus, if the sys-
M which minimize the eigenvalue df,. When\g > 0 (as tem under consideration is constituted of a given species of
in the example of fig. ) a reduction &f with respectto its  bosonic atoms, associated with a scattering leagth0, the

maximum value will be favored ifA 5 is not too large. thermodynamic limit implies its characterization in terms of
Except for the simplest “stretched” angular momentum a given value of the quantitypa®. The uniform Gross-
states withS = N, M = £N the statedNSM) in- Pitaevski ground state of this system is the minimizer of the

volve spin correlationgthat cannot be properly represented G-P functional, which satisfies the equation
in terms of the spinor ansatz. They can in fact be written ex-
plicitly in terms of the operators!,. WhenM = —S they

’ 2 4dnh2a
are given b - y? 20(7) =
9 y ong VP + = oM7) = pe(r)
(N—5),2 with periodic boundary conditions in volumé the function
INS M =-8)=Nyga's (aEZ - Qa{aﬂl) 0) (") being normalized according to
where the correlations are clearly visible in the operator / d*r|o(7)]* = N, N_ p-
within brackets, which creates a pair of bosons coupled to v v
zero total spin. The normalization factdfy s is[21] The minimizer in this case is just the constant (zero momen-
tum) solution with particle densityp. It is given explicitly
1 —1/2 by
Nys = [2<NS>/2 <N—5> 1S (N+S+1')'} .
2 @s+ntt Sp_ BM N ) 4rH2Na
States with other values ¥/ can of course be obtained dmh?a Y My
from these by using the total spin projection raising oper- When one thinks in terms of the thermodynamic limit, this
atorSy = 5, +1i5y. gives the proportionality of the G-P chemical potentiain

The difficulty found in the guise of an undetermined rel- the system density through the effective contact interaction
ative phase when using the simple spinor mean-field ansatanvolving the scattering length (the energy per particle is
in connection with the spin dependence of the effective two- in this case just/2). On the other hand, it also shows that
body interaction reflects therefore the inability of this ansatz the constant G-P solution remains invariant under a scaling
to capture essential spin correlations. It should be noted,quite unrelated to that which is associated to the thermo-
on the other hand, that the “exact” treatment reviewed heredynamic limit, namely, when the density and the scattering
to pinpoint this fact ignored the possibd®@ncomitantrole length are changed in such a way that the proddet and
of the position degrees of freedom, which are crucial when also the quantization volumg, remain constant. It is easy
considering a trapped system of bosons. A better treatmento see that the G-P functional itself remains unchanged un-
for this type of system should therefore be able to handle der this type of scaling. The Gross-Pitaevkikiit consists
both of these aspectiynamicallyat the same time. Treat- in letting N — oo with Na constant, so that the scattering
ments such as that of refs. [20], which merely replace the lengtha — 0 asN~! andpa® — 0 asN 2. This limit cor-
zero-momentum plane wave used here by one however juditesponds therefore to an extremely dilute (even though the
ciously choserfrozensingle particle wavefunction of course particle density diverges linearly witN) and yet non trivial

fall short of this aim. limit, even though the strength of the effective interaction
goes to zero.
2.4 Gross-Pitaevski limit The special relevance of this particular limit comes from

— the proof given by Lieb and Seiringer that, when it is taken,
The understanding of the success of the Gross-Pitaevski (Gthe above G-P ground-state solution becomexct i.e., the
P) treatment of trapped, dilute atomic condensates has acexact ground state of the full many-body problem. The
quired a new facet since the discovery was announced latdwo-body interaction is given as a two-body potential hav-
in 2001, by Lieb and Seiringer[22] (see also[23]), of im- ing suitable properties, besides giving the correct scattering
portant results concerning the ground state of a dilute bosonlengtha > 0, a sufficient condition for the proof being that
gas with repulsive two-body interactions in a rather peculiar it is everywhere positive (e.g. a pure hard core potential
limit to which the accumulated G-P successes are in somewith core radius:). This is of course “unrealistic”, but real
sense close. This limit, to be called the Gross-Pitaevskicondensates are in fact systems not in their ground states
limit for reasons that will become clear shortly, differs from but in meta-stable states which are however rendered sta:
the usual thermodynamic limit, which consists in letting the ble by the unrealistic assumption, and supposedly without
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important collateral effects. The fact that the G-P solution the relevant solution is normalizable. Since the solution
is exact implies, in particular, that the exact ground state is ¢ ,(7) for the case ofV trapped bosons and scattering
of the simple product form (2.6). This means that the G- lengtha is also assumed to be normalized according to

P limit eliminates all many-particle correlations induced by

the two-particle interaction from the wavefunction. In this /dSr lona(@2 =N

sense, the G-P limit is “many-body trivial”, even though it ’ ’

differs from an ideal gas in several (one-body) ways (e.g. in
the energy per particle). Another side effect of the proof is
that it provides for a justification of the adopted form of the

it changes under scale transformatidvis— N/¢, a — £a
that leave the producYa fixed according to

two-body effective interaction used in connection with the 1

G-P functional at least for purely repulsive two-body poten- PN,a(7) = %wg,ag(?)-

tials. Note that for this type of potential the scattering length

is alwayspositive In this case the G-P density is of course not uniform, and

It is important to stress here that the result of Lieb and keeps afixed “geometry” under G-P scaling. It also becomes
Seiringer depends in an essential way on the G-P functionalexact in the G-P limit, so that in this limit the trapped sys-
not corresponding to a plain mean field approximation of tem ground state is also “many-body trivial”, even though
the Hartree type, but rather to affectivemean field ap-  notideal.
proximation which at best can be described as being of the ~ The successes of descriptions based on the G-P approx-
Brueckner type, as emphasized earlier. The exactness of thgnation can be associated with proximity of the relevant ex-
product wavefunction based on the minimizer of the func- perimental parameters to this particular limit, in which im-
tional does not holdf the effective two-body interaction is ~ portant interaction effects survive in the condensate geom-
replaced by the actual two-body interactipotential etry, while correlation effects are in some sense negligibly

The scaling property relevant for the Gross-Pitaevski small (and vanish rigorously in the G-P limit). Typical val-
limit holds also for trapped bosons, in which case the equa-ues for experimentally achieved condensatesiare 10~7
tion for the minimizer of the Gross-Pitaevski functional ¢cm, N ~ 10°, pp ~ 10'S cm~3, which correspond to

reads ppad ~ 1076, pp'/* ~ 1075 cm and healing length
¢n = (ppa)~/2 ~ 10~* cm. One has thus typically
n:_, . . 4mh2aq y the characteristic three-lengths hierarchy (2.15) of a dilute
[_ZMV + V(T)] p(r) + — oM p(r) = pe(r). system. In the G- P limitd. — 0 with Na constant) this
hierarchy is strengthened as can be seen throughVthe
Due to the presence of the trapping external poteiiiial) dependence of the various lengths:
]
_% 1 1 1 0
a< pp® <& = (ppa) 2 = Ol5) <O+ < O (NY).
|
3 Roles for atomic structure 3.1 Atom-atom resonance scattering and the

. . _ effective two-body interaction
When discussing the condensation process from a theoret-

ical point of view, the atoms which constitute the gas are

treated as identical bosons, possibly endowed with nonzero

spin but otherwise “structureless” objects. This picture is Low-energy resonances can play a decisive role in deter-
of course completely inadequate for practical purposes re-mining the atom-atom scattering length. Since this quantity
lating e.g. to the achievement of confinement, cooling and determines the effective two-body interaction to be used in
condensation of the bosonic gas, since each of these operaconnection with the Gross-Pitaevski functional, the possi-
tions takes advantage of internal atomic degrees of freedomnbility of tuning the position in energy of narrow low-energy
for its implementation in the laboratory. This is of course resonances by means of some external control variable (such
a rich and challenging field of its own, which we will not as an external magnetic field, acting through the Zeeman
consider here, however. The topics included in this chap- shifts it produces) may allow for tuning the value of the scat-
ter refer instead to atomic structure properties in so far astering length, and hence also of the effective two-body in-
they can be used to control (as it is the case of the “Fes-teraction. The resonances one is interested in here are not
hbach resonances”) or enrich (as it is the case of “hybrid “shape resonances” related to the properties of the atom-
condensates” involving different atomic species, atoms andatom interaction potential, but the typically much narrower
molecules, etc.) the dynamics of dilute Bose-Einstein con- and numerousnany-bodyresonances associated to partic-
densates as such, rather than just adding “theoretical realular quasi-stationary states of the two-atom system. They
ism” to the picture. are therefore related in an essential way to atomic structure
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properties, and can be seen as atomic analogues of the “comasymptotic value of the kinetic energy of relative motion of
pound nucleus” resonances of nuclear physics. One generate two atoms. If the pre-collision asymptotic relative mo-
collision theory, which in particular gives a nice account of mentum ish one has therefore

the effects of quasi stationary states of the compound system

on the scattering observables has been developed since the h2k?

1960’s by Feshbach[24], mostly in the context of nuclear = 2un

physics. The use of the concepts of this particular theory

in the atomic domain has led to the denomination “Fesh- The scattering state vecto¥;;), or equivalently its asso-
bach resonances” for the resonances involving internal de-Ciated wavefunctior(r|¥), are further determined by the
grees of freedom of the atom-atom compound system. Theytsual scattering asymptotic boundary condition

are now widely used as a tool for achieving experimental

ikr

control of the two-body effective interaction in many experi- (A =X otk + () € (3.2)
ments involving cold, dilute atomic gases of bosons and also k r
of fermions|[2, 3, 4, 5, 25]. where the argument of the scattering amplitud¢ de-

In the “no Feshbach resonance” case, the determinationtes the angular components of the relative position vec-
of the_scatterlng amplitudeinvolves solving the Schrdinger o 7 This boundary condition implies the plane-wave-like
equation orthogonality relation expressed in terms of the Dirac delta
2 function as
[E 2m V} W) =0 (3.1)
wherep' is the relative momentum angdg is the reduced
mass of the two colliding atoms. The interaction between  The scattering length is a particular way to represent the
the two atoms is described by the poteniialand the en-  extreme low energy (meaninfg — 0) scattering amplitude,
ergy scale is set so that this potential vanishes in the limit of which can in general be extracted from thaave compo-
very large distance between them. For simplicity we omit hent(r]¢, ) of the scattering wavefunction. The asymp-
any explicit consideration of spins. The center of mass en-totic boundary condition corresponding to eq. (3.2) to be
ergy of the colliding system i& > 0, also equal to the satisfied by this particular partial wave is

]

(W 0) = (2m)38(k — ).

. r—oo 1 X ) X s sin(kr + &)
— _ido(k ikr 2109 (k) ikr 1 0
(M) =0 = e Fugy(r)y =3 ik (e — e?%ok)e ) =e OT (3.3)

[

which determines the-wave phase shiffy(k). Thes-wave 3.1.1 Effects of internal structure dynamics
component of the scattering amplitude does not depend on
the angular variables and is given by

We next modify this simple low-energy elastic scat-

e2ido(k) _ 150 (k) S 00 teri ; introd he “Feshbach ”
fu=o) = _ — pido(k) 21100 ering picture to introduce the “Feshbach resonance
2ik k syndrome[26]. When treating the elastic scattering one as-
The phase factar??o (%) is the zero angular momentum “S-  sumes a definite and fixed choice for the internal states of the
matrix”, and the scattering lengthis defined as the limit colliding atoms in the asymptotic region. A crucial missing
ingredient is, however, the existence of other internal states
of higher energy allowing in principle for additional chan-
a = — lim M o that lim f—o) = —a nels, which allow e.g. for inelastic scattering due to inter-
k=0 kO’ k—0" Y ’ nal excitation of one or both atoms. Inelastic scattering will

be energetically allowed if the enerdy is large enough to
leave a positive relative kinetic energy following the excita-
tion process, in which case the corresponding channels are
“open channels”. At energiek low enough so that all in-
elastic channels are “closed”, one always can in principle
50 oo 5 sin(kr +60)  k—o0 a describe the scattering on the basis of an equation like (3.1),
euop(r)  — e - 1 - but then the effects due to the degrees of freedom involved in
the closed inelastic channels have to be accounted for by the
Note furthermore that for very small values bfthe zero atom-atom potential’, which in general must therefore be
angular momentum S-matrix can be approximated as a complicated, energy-dependent object containing the full
internal dynamics of the two-atom compound system. In or-
der to unravel this situation it is preferable to consider the

and the large distance asymptotic behavior of theave
amplitude in the limits — 0 can be expressed in terms of
the scattering length as

2150 (k) ~, e~ 2ika E~0.
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closed channels explicitly, as well as their coupling to the lowest energy internal asymptotic staj@sassociated with

single open, elastic channel. This is essentially what is donethe open elastic channel, one single excited $tatf either

in the Feshbach theory. atom, with excitation energyas measured from the ground
Although realistic descriptions of the low-energy scat- state. We will now generalize the scattering problem (3.1)

tering of two bound many-body systems such as two atomsto deal with the scattering of such a pair of two-level atoms.

can be extremely involved, some important and charac- The hamiltonian governing the dynamics of the two-atom

teristic aspects can be captured even in grossly simplifiedsystem is taken to be

schematic models. Let us then consider, in addition to the

]

oo ® 1+ Voo ®]00)(00] + (Voe + €) © |0€)(0e| + ve ® (|00)(0e| + |0€) (00]) . (3.4)

2/R

Note that each term has two factors, the first acting in the elastic scattering in the only open chanftl) can be de-
position coordinates of the atoms and the second acting orscribed by a single equation of the form (3.1) with an ap-
the space of internal states. The veciofs and|0Oe) corre- propriate effective potentidl’, which can now be derived
spond to respectively to the two atoms being in the ground from the coupled equations (3.6). The second equation can
state|0) and to one atom being in the ground state, the otherbe formally solved for the closed channel amplitude giving
being in the excited state). ThusVy andV;. describe the
interaction of the two atoms in each of these two channels, _ 1

K K L. . . . |¢O€> 2 Uc‘w00> . (37)
while v, is an additional interaction which couples the two E—¢— 2772 — Voe
channels, i.e., is able to change the internal state of one of . . _ ) .
the two atoms. The term involvingas first factor accounts ~ Substituting this on the first equation yields
for the energy of the internal stat&) being higher than that

of |00).

2
_ The ;tatg—vect_c;rs of the two.atom system described by | _ P _ Voo — Ve 1 . ve | [1h00) = 0
this hamiltonian will, correspondingly, be of the form 2nR E—e— 2%? — Voe
|U) = |1g0) @ |00) + [hoc) @ |O€) (3.5) which identifies the appropriate effective potential for elas-

where the first factors are the position space amplitudes (ortIC scattering” as the explicitly energy-dependent object

“channel amplitudes”) corresponding to the indicates inter-
nal states of the two atoms. Thus the scattering problem we 1

have to solve now involves solving the Schrdinger equation Vi="Voo + ”CE e P Vo v
2R €

., FE<e.

[E— H][¥) =0 The inverse operator first introduced in eq. (3.7) can be
with H given by (3.4), the statel';;) being of the form (3.5)  expressed with the help of the eigenvectors of the closed
and satisfying appropriate boundary conditions. channel hamiltoniap? /2. + V.. At negative channel en-

As a first step it is easy to rewrite this equation as a setergies one can have a discrete set of bound sfatésvhich
of two coupled equations for the two channel amplitudes, vanish asymptotically and satisfy
by taking its scalar product successively with each of the )
two channel internal states. One obtains in this way pan Voo [6n) = nlébn)
2,U/R Oe n Tn|Pn) s

M < 07 <¢n‘¢n’> = 5nn’

while at positive channel energies > 0 the spectrum is
continuous and the eigenstates are scattering stafesat-
isfying scattering boundary conditions and the equation

p2
[E - - VOO} o) = veltboc)

2
e L I
HR

The channel potentialgy, and V,, and also the cou-
pling potentialv. are again assumed to vanish at large sepa- p?
rations of the two atoms. Thus, if the total center of mass en- |:2NR T VOE} &) = 11l¢n) N
ergy E is less thar, the amplitude,.) will behave asymp-
totically as a decaying exponential, indicating that this chan- The effective potential for elastic scattering can thus be writ-
nel is then a closed channel. Under these circumstances, theen in terms of the closed channel eigenvectors as

h2k?

= > 0.
2R
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V= Voo + Zvc\%)E_i@n\vc +

€—1Tn

OO 3
W/O d’k Uc|¢n>E_7
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1
(Pnlve, FE<e.

€—n

[

The denominator in the continuous spectrum part of this op- auxiliary results from scattering theory. The first step is to

erator does not vanish as long as the channel remains
closed but, since,, < 0, the part associated with the dis-
crete spectrum becomes singular at enerdiesuch that
E —e—mn, = 0, and is very strongly energy dependent
in the vicinity of each one of these singularities.

3.1.2 Single closed channel bound state and resonance
scattering

For the sake of simplicity, let us assume that there is just one

bound statd¢y), with eigenvalue-e¢ < 7y < 0, so that a
singularity in fact develops &t < £ = Eg = e+ 19 < ¢,

and hence in the energy interval corresponding to pure elas
tic scattering. How does the singularity affect the elastic

scattering amplitude in its vicinityy ~ Ey?

In order to answer this question, note that the energy
dependence coming from the contribution of the continuous
spectrum is slow in comparison with that associated with the

bound state singularity. Thus it is permissible to lump it to-
gether with the channel potenti&l, and define an effective
“background” channel potential

1
Voo = Voo +

1 Rl
— d*k v, _
oy ), e
which is only slowly energy dependent ndar= E,. The
open channel amplitude then satisfies the equation

<¢n ‘Uc

1
E—

p? -
[Emmwﬁwmamww

<¢0|vc|w00]}f>

(3.8)
where the asymptotic momentutis related toE as usual,
i.e. E = h%k?/2ug. This equation has to be solved for
Yooz With scattering asymptotic boundary conditions of
the form (3.2).

This can be done in a variety of ways, of which we

Ey

note that equation (3.8) is equivalent to the pair of coupled
equations

Ny
|:E — 2#7}% - VOO:| W)OOE> = UC|¢O>a

[E - EO} o= <¢0‘vc|w00];> (39)
since it can be recovered from them by eliminating the c-
number amplitudex. The first of these equations appears
as an inhomogeneous equation which can be solved by us:
ing the appropriate Green’s functi@ig of the differential

operator on the left hand side as

|7/)00;;> = |X00}€> +Gg Uc|¢0>a

where|x,,z) iS a solution of thedhomogeneoutorm of the
same equation. It describes elastic scattering by the back-
ground effective potentialyy alone. Substitution into the
second equation determinesas

o= <¢O‘IUC|XOOE>
E—FEy— <¢0|Uc GEg Uc|¢0>

leading therefore to the desired solution

<¢O‘UC|X00E>
E — Ey — (¢o|ve GE ve|do)

‘¢00E> = |X00E>+GE 'Uc|¢0>

The effect of the singularity ab = Ej is entirely con-
tained in the last term of this solution, which shows that the
singularity itself is modified by the additional, also energy
dependent termiggp|v. Gg vc|go). In order to make the
structure of this term more explicit, recall that the appropri-
ate Green’s function appearing there can be written as (cf.

choose that which is possibly least dependent on invokingref. [1], section 10.3)

]

d3K'

@)

Ge= [

P .
o g ool = )8 — ) ool

E/ - thIQ
)

whereP denotes the principal value of the singular integral and the background scattering states have been assumed

normalized as in eq. (3.2). This gives

>k ‘<¢O‘UC|X00]€/>|2
@r?  E_FE

(¢o|ve GE ve|do) = P/

_m/

3K
Wlwc)lvc\xoo,gﬂ%(E —E)

T
EA0—270.
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Note thatA, and I'y are real energy dependent quanti- is herenotmerely a perturbative approximation, buteact
ties, their energy dependence coming from that of the back-expression.
ground scattering states. We are thus led to

3.1.3 Resonant phase shift in low energy scattering

{PolvelXooR) (3.10) Our next task will be to extract from eq. (3.10) the effects of
E—Ey—Ag+ile” ™ a very low energy resonance on thevave phase-shift and
on the scattering amplitude. What is implied here by 'very
This solution shows that the effect of the singularity as- |ow energy’ is the effective suppression by their respective
sociated with the closed channel bound state appears as agentrifugal barriers of all higher partial waves.
additional component in the elastic scattering state which  Asin the case of eq. (3.3), thewave component of the
appears multiplied by a resonant complex factor. To the ex-packground elastic scattering wavefunction appearing in the

tent that the energy dependence’af and ofl' can be ig-  expression for the width (3.11) can be written as
nored, the squared absolute value of this factor has a Breit-

Wigner profile which peaks at the enerffy= E, + A, and
has a width.

The various ingredients in the seemingly elaborate ex-
pression (3.10) can actually be interpreted in a rather trans- -
parent way. As already mentioned, the first term just repre- Whered is the background-wave phase shift produced by
sents the energy-smooth background elastic scattering. Thdhe effective potentialy, and the functioniir (r) is inde-
second term carries the resonant contribution, which resultsP&ndent of angular variables, regular at the origin and slowly
from transitions mediated by the channel coupling interac- Varying withk. The matrix element which appears in the ex-
tion v, from the open channel to the of the bound statein pression for the width is therefore mdependent of the angu-
the closed channel. This is what the amplitddg|v.|x,,z) lar components of’. The energy delta f_unctlon_then a_llows
in the numerator of this term stands for. Once these tran-©Nne to perform the momentum integration explicitly with the
sitions feed the bound state amplitude, it acts as a sourcdesult
for an additional amplitude in the open channel, this be- LR .
ing given by the factor involving the background Green's Lo = —5 k [{@olve[or)|” = 27k
function,G gv.|¢o). The energy dependent denominator ac-
counts for the dynamics of the two-atom system while in
transit through the closed channel or, in other words for the
propagation of the system through the closed channel. It
contains information about the energy of the bound state _ MR -2
and takes into account the ever present possibility of leak- V= Gapz [Golvelton)]
ing back to the open channel through the matrix elementjs sjowly varying withk. Note that this parameter has di-
(¢o|ve G ve|do), whichintroduces the energy shifl, and  mensions of energy times length.
the widthT'y. The latter also guarantees the enforcement of  \we next extract an expression for the fesfvave phase
the time-energy uncertainty relation. In fact, the expression ghift §,, including the resonant contribution, from the scat-

\%@) = |X001’5> +GEU0‘¢0>

— ido(k)~ r—00 8 sin(kr + o)
(MXoor) = € o )uOk(r) 5 e —

where a linear phase-space induéedependence has been
made explicit and the newly defined “reduced width” param-
eter

for the width can be written as tering state (3.10). To this effect we use an asymptotic ex-
pression for the-wave Green’s functiotr ;g written in
B terms of the regular background scattering solutigp(r)
Ty = 2 / gmy3 (@0lteoog) PO(E ~ E) - (312)  which reads
so thatl'y /A is just Fermi’s Golden Rule expression for the g et o

transition rate out of the closed channel bound state to the  (r|Gg=o)|r’) — -
open channel background continuum through the action of
the channel coupling interactian. Note however that this  which gives, upon substitution in (3.10),

]

r—00 1 —ik 2i6, il' ikr
r —  —— e T — e [ 1 — e’
< |,¢)00k> 2ikr [ < E—FEy— Ay + 7;%
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from which we can read thewave.S-matrix as ergy dependence comes from the “background” scattering
involving the open channel alone) is shown in Fig. 3.1. The
Ty resonant phasér grows most rapidly throughy = 7/2
2000 _ ,2ibo E—Ey—Qo—ig — (2000 ;28R at the energyFy, + A, for which the denominator vanishes.
E—FEy—Ap+ Z% As the energy’ sweeps across the resonangggrows by

~ m, the change betweery4 and3x /4 occurring in an en-

ergy interval of widthl'y. Our concern here is however with
To/2 cases in which the_ener@o + Ay is. cl_ose enough to zero

E—Fy— Ay so that one can write the phase-shift in terms of the scatter-

. _ _ ing length ashy + 6z = 6o ~ —ka = —k(a + ag), we
The characteristic b_ehawor of the res_onan_t phase shift for 4obtain for the full scattering length, including the resonant
narrow resonance, i.e., a resonance in which the energy de

. . contribution
pendence of'y and A, can be ignored (recall that this en-

where the resonant contributiép to the phase shift is

tandg = —

]
. . 1 1 To/2 L ~ oy
(l—a+aR*a+khglO%tan m—@*m:d*g.
|
314 effectively change the detuning by changiy Thus, if

go Is the detuning forB = 0, including the linear Zeeman
shifts, due taB # 0 one can write

e=¢g+AuB

whereAp is an effective, difference magnetic moment mea-
suring how the detuning varies witb as the elastic channel
threshold and the closed channel bound states react differ-
ently to this field. In this case the full scattering length can
be seen as a function of the magnetic figld

1.57

d, (radians)

_o/Ap Ap
= = 1 12
a UH_BOfB a<+BOB) (3.12)
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whereBy = —¢o/Ap is the field strength at which the de-
E +A tuning vanishes, and g = v/aApu characterizes the width
of the resonance in terms of magnetic field strength.

Figure 3.1. Resonant phase shift for a typical narrow resonance Typical behaviors of the scattering lengthas a func-

as a function of the energf. The phaseé s grows fromr /4 to tion of t_he external magnetic ﬁe!B in the neighborhood
37/4 in an energy interval of widtif. of the field valueB, corresponding to zero detuning are

shown in Fig. 3.2. The case represented on the left cor-

The energy = Ey+ A, marks the position of the resonance responds to a resonance 4#Na for which B, = 907 G
energy with respect to the threshold for elastic scattering andand Ag = 1 G. This was the first Feshbach resonance to
is usually referred to in this context as the “detuning” of the be observed through their effect on the properties of Bose-
resonance. Einstein condensates[3], which in particular confirmed a

This expression for the full scattering length shows how previously calculated value of the magnetic field width pa-
its “background” (off-resonance) value is affected by the rameterAg. In the case represented on the right of the fig-
resonant scattering. The parameters which determine thaure the off-resonance scattering lengtls negative, but be-
resonant modification of the scattering length are réae comes positive in a domain of values 8f > By. This
duced widthy and the detuning. When the detuning is suf-  situation is in fact found in a resonance&tRb for which
ficiently small, the resonant modification may be dramatic By = 155 G andAp = 11.5 G. This resonance has been
not only for the magnitude of the scattering length, but also studied by means of photoassociation spectroscopy[27] anc
by changing its sign. Moreover, whenever the atomic statesthen used in an experiment to control the strength of the
defining the open elastic scattering channel and the closeckffective atom-atom interaction in a cold sample®sRb
channel bound state) have different magnetic moments, gasabovethe critical temperature for condensation[4]. By
in the sense that their energies vary differently under the in-disturbing the system out of equilibrium and measuring the
fluence of an external magnetic field of stren@thone can  equilibration rate as a function of the magnetic field, it was
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- a<0
a0 A >0
A>0 ®

Figure 3.2.Left: typical behavior of the near resonance full scattering length wihen0 andA g > 0, as for the resonance &y ~ 907
G in 2> Na. Right: same but foiz < 0, as for the resonance &, ~ 156 G in 8°Rb. Note changes of sign in both cases.

observed that the equilibration rat@nishedat the field 3.2 Feshbach resonances and molecular con-
value for whicha = 0. This corresponds therefore to ex- densates

perimental realization of an ideal gas. This same resonance

has been subsequently used to obtain stable condensates of

*°Rb atoms. A remarkable property of this resonance is thatThe mechanism underlying Feshbach resonant effects in
it has allowed for the formation of condensates with mea- g|astic atom-atom scattering involves the formation of two-
sured values of the scattering length in excess of as large agom states of molecular type, which are not stationary states
about 9000 Bohr radii[5]. on account of their coupling to the open elastic scattering

Experimental and theoretical “Feshbach spectroscopy”channel. The most naive form of bringing this process to
studies have also been carried out f6tCs, motivated both ~ bear in the context of the many-body problem is to use the
by attempts at using this type of atom for Bose-Einstein con- resonance modified scattering length to write the two-body
densation and by the special role it plays as time and fre-effective interaction between atoms. This is in fact what is
quency standard[28, 29]. The scattering length for atoms inimplicitly or even explicitly assumed in many cases, without
the lowest hyperfine state has tBe> B, behavior shown  meeting any gross inconsistencies on the experimental side.
on the left part of Fig. 3.2, wittB, = —8 G. This negative , ,
value means that the resonant state does not cross the elastic HOWeVer, it was soon realized that one should be deal-
scattering threshold as the field is increased from zero. Thelld in such cases with richer many-body dynamics, in which
scattering length varies from~ —3000 Bohr radii at zero N the neighborhood of a Feshbach resonance a dynamic

magnetic field up ta ~ 1000 Bohr radii atB = 55 G. It equilibrium situation may be reached in the many-body sys-
is observed to vanish faB — 17 G[28, 2]. This is there- tem involving dimer formation and decay back to the elastic
; channel, leading do condensates hybridized by the presence

for tuning the scattering length in a very broad range with Of @ molecular, or dimer phase. This suggestion has in fact
small magnetic fields. This flexibility has in fact been cru- been made and elaborated in terms of a definite theoretical

cial for achieving the Cs condensate, as it allowed to adjustM°del by Timmermans et al. in ref. [26]. As will be dis-
the residual interaction in oder to optimize conditions for cussed shortly, this model possibly leads to results which

the various steps of the cooling process. Once the condenMay Nnot fully agree with the naive point of view, signaling
sate was formed, adjustment of the external magnetic fieldthat at least a more detailed understanding of the atom-atom
to 17 G led to an experimental “ideal” condensate. effective interaction in the presence of resonant effects is

needed[30].

fore a very broad resonancé f ~ 25 G) which allows

Finally, it should be noted explicitly that the property
a = 0 results in fact from a cancellation between two con- The model adopted by Timmermans et al. basically im-
tributions to the scattering amplitude which are of a differ- plements coupled equations analogous to (3.9) in a many-
ent nature, namely the effective potential scattering in the body context, allowing for the conventional treatment of the
elastic channel and the resonant contribution involving vir- effective two-body interaction. This is achieved by introduc-
tual transfers to the closed inelastic channel and back. thusijng into the second quantized hamiltonian a new field oper-
even though the wavefunction of a scattering pair of atoms isator, () associated with the dimer stat& ) and commut-
asymptotically indistinguishable from the wavefunction of a ing with the field operator associated with the single atoms,
free pair, it is entirely different from the latter within the in-  written as«, (7). The coupling of a pair of atoms to the
teraction region. The “ideal gas” behavior results therefore dimmer state, described by the coupling potentiah egs.
from insensitivity of the relevant propertiesdifutesystems  (3.9), is represented in the hamiltonian density by an inter-
to the outwardly healed interaction wounds. action term of the form
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The constanty is related to the reduced widthof the in-
. . volved Feshbach resonancecds= 2rh%y/M.
Hine(7) = o (0] (70 (F)0a ) + (Y0 (P (7)) ) e
Additional terms of the effective hamiltonian density are

This term represents an effective contact interaction of analogous to eq. (2.5) for each of the two fields, including
strengthe which either converts a pair of atoms into a dimer the detuning parameter and an additional effective two-
or, conversely, transforms a dimer back into a pair of atoms. body interaction term involving different fields. They read

]

Ha(7) 4 ) 4 o) = 300 (=T + Vo)) )+ L)+

ol (S 2+ ) ) + RO ) +

+ Aapl (FYUL (P)a Py (7),

the effective hamiltonian being therefore

Ho — / & [Ha(F) + Ho(7) + Hao(7) + Hins (7). (3.13)

Note that the mass of the dimers has been written as being twice the mass of the atoms, and different trap potentials hav
allowed for each of these two species. It can be also easily verified that the operator

N = N, 128, = / G IAGES / &g} (7 (7)

is a constant of motion off.. Since each dimer accounts for a pair of atoms, this operator represents the total numbel
atoms present in the system in either form. Sinceand N, by themselves areot constants of motion, we may conclude
that stationary states of the hybrid system will in general involve correlated quantum fluctuations of the two species wi
however become negligible in the case of a uniform systemi(j,e= V;, = 0) when one takes the thermodynamic limit[31].

In order to obtain a simple mean-field approximation of the Gross-Pitaevski type one must thereforeatiecandelations
between fluctuating numbers of atoms and dimers. This is usually done by means of a coherent ansatz[26, 32]

gty = ef 47 (e (PIBLE =L (0l o d*r (w7} ()= (1) g (3.14)

which leads to an energy functional of the form

(uqup|Her|uqup) = /d3r up (7) <— ﬁ;\Vj + Va> ua(7) + /d3r ug (7) (— hj‘]\V; +e+ VE)) up(7) +
/d3 oA + /dB w1+ [ @ o (PP +
ta / @7 (i (F)ua ()2 + (7 (7)2)

Variation with respect to the amplitudeg () andu, () with the constraint on the total number taken care of by means of a
Lagrange multipliep: now yields Gross-Pitaevski coupled equations

(_ %

o Vot Al + A9 ) ) + 2o ) = o)

h2v?
(0 + =+ i Ml + Ao ) )+ 2 7) = 27 (3.15)
with ¢ determined by the subsidiary condition on the total mean number of atoms

(N) = (uqup| N|uaup) = (N,) + 2(N,) = /d3r (lua (P)* + 2|up (7)) = N.

The mean squared dispersion in the total mean number of atoms introduced through the coherent ansatz can also be
evaluated. It is different from zero, and results from the combined uncorrelated fluctuativpsaofl IV,
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of = (V%) = (N)? = (N7) + 4(N]) — (No)? = 4(I4)? = oy, + 40X,
Alternatively, one may allow the displacement functiansandw,; of the coherent ansatz (3.14) to be time dependent

and obtain the time dependent generalization of the coupled Gross-Pitaevski equations (3.15) by using the time-depende
variational principle

5/dt (ih(uaub|gt|uaub> - <uaub|HeH|Uan>> =0,

where variations are to be taken with respeai t67, t) andu, (7, t). One obtains in this way

Oug (7t h2v?2
m% _ (_ Ve Ao (D + )\ab|ub(f")|2) o (F) + 20 () (7)
Oup(7 t Ve
m% = <_ o Tt Ve dlus (M) + )\ab|ua(F)2> up () + aug (7) (3.16)
This time dependent mean field approximation conserves the total mean number of atoms, since equations (3.16) imply
[
9 &1 (Jua(7 ) [* + 2Jup(7,1)]*) = 0 o dug 2 9 .
o a7 o{7 : W=t = (Nalua (D] + A us(8)?) a(y) + 20up (t)u; (1)
Thus the mean number prescribed by an initial condition h% _ A D124\ 02 ‘ 24
will be preserved at all subsequent times. Nt (£ + Aolun(®)F + Aaplua ()[7) un(t) + g 1),

The stationary equations (3.15) may be easily solved
(particularly in the Thomas-Fermi approximation) for a va-
riety of parameter values. Independently of this, however,
their form alone reveals that, although a pure dimer station-
ary solution is possibleu, = 0, u; # 0), there can be no
stationary solution in whichy, = 0, i.e., a dimer compo-
nentmust always be preserithis follows from the fact that
in this case the second equation requires that one also mu
haveu, = 0. The dimer fraction in the ground state depends
on the detuning, and therefore can be varied by changing th
value of an external magnetic field. If the detuning is large
and negative, egs. (3.15) reasonably predict large dimer f=
fraction, in possible conflict with the naive point of view, n
according to which the scattering amplitude should simply The variablef describes the splitting of the total atom num-
approach its background value. ber density into atomic and molecular densities, the limiting

A particular case of the time-dependent equations (3.16)values corresponding respectively to all-atoms and to all-
that can be solved in a relatively simple way is that of a spa- molecules situations. It turns out to be an action variable
tially uniform system (so that one must havig = V;, = 0) canonically conjugated to the angle variable corresponding
which remains uniform at all times, so that the functiags  to the relevant relative phase In fact, the equations of mo-
andu, are time-dependent complex constants. The dynami-tion for the uniform, hybrid system can be re-expressed in
cal equations they satisfy are then terms of f andy as[31]

The complex character of the amplitudes is a direct con-
sequence of the coherent ansatz (3.14), which allows for
fixing the phase of each of the two condensates. Writing
Uap = |uaqple’®er, inspection of the equations of motion
shows that only the relative phage= 2¢, — ¢, is dy-
namically relevant. Moreover, since the total atom number
gensityn = |ug|* + 2|uy|?| is & constant of motion, one
expressu,| and |uy| in terms ofn and a single additional
evariable £, which can be conveniently defined as

Ausl” — ual” —1<f<1

G 2 )T P sing,

dy £ N n\p NAab ay/n 1+ 3f
ok A 1— g — — S Q. 3.17
dt AR R TGt Mt A by ey Al 317)
It is easy to check that these equations are in fact classical hamiltonian equations corresponding to the hamiltonian function
€ n)\, 5 M 5 MAab 5 2ay/n
hfhfﬁ’ 25(1 ) +8h(1+f) + = (1—f)+ A (1= 1)1+ f cosep.
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The curvesh =constant in thef x ¢ plane are the phase- stimulated inter-species transitions[40, 41].
space trajectories of the solutions of egs. (3.17).
_ On the experimental side, perhaps the most conspicgou%_4 Molecule formation
signal of the nearby presence of a Feshbach resonance in the
pioneering experiment of Inouye et al.[3] was an enhancedBound molecular states such gs) (see Fig. 3.3) in the
loss of atoms, leading to the complete loss of the system.elastic channel which is open for the condensate atoms (la-
The mechanisms taken to be responsible for such loss actubeled as & + «” in the figure) are not significantly popu-
ally involve internal atomic degrees of freedom which are lated by spontaneous electromagnetic transitions. They will
not considered explicitly in the simple two-channel model. however have important dipole coupling to bound states in
Under static external field conditions, the dimer component closed and rather high-lying channels involving an appro-
relates in fact to a highly excited vibrational molecular state priate electronic excitation in one of the atoms (such as the
in the closed channel, which can be easily de-excited in achannel labeledd + «*” in the same figure), and these will
collision with another atom[33]. This is in fact an enhanced in turn dipole-couple down to bound molecular stadtes$ in
three-body recombination process due to the formation ofthe elastic channel. This second-order coupling can be stim-
the resonant, longer lived dimer. The kinetic energy releasedulated by properly tuned external radiation sources, leading
in this process leads to the loss of the atoms involved. In theeffectively to the decay of the zero relative energy contin-
case of the®®Rb Feshbach resonance the role of this loss uum state to the bound molecular state.
mechanism was much less important, possibly due to the
low density of the condensate in this case. In fact, a recent \
experimental success relating to this system now strengthens |\I>
the dimer hybridization picture. As already observed in ref.
[26], a sudden change of this field should cause the two co-
herent phases to be out of equilibrium, leading to subsequent
oscillations of the dimmer (and of the atom) fraction in time,
as found from the time-dependent generalization (3.16) of
the Gross-Pitaevski coupled equations and also seen in the a>® |a>
particular case of egs. (3.17). This type of oscillation with |~y T =T
a frequency which depends on the detuningand hence
on the applied magnetic fiel®, has in fact been observed
near theB, = 156 G resonance if°’Rb[34]. The oscilla-
tions were however observed in thiomiccomponent, the
molecular component being experimentally very elusive.
Just recently, a different line of experiments succeeded ) )
in directly observing the formation of molecules[35] and Figure 3.3. St'm“']?ted second-order prcl’cesf leading fr.omha state
also of molecular condensates mediated by a Feshbach reﬁsria;rl'gﬁ :ﬁ?{&gﬂ%ﬂi‘% ? iLﬁé:fngé?a?: gltg;é ?rzattﬁ?dligél ee_
onances in systems of Co_‘lelrm!or_llcatoms[36_, 37]. Due _to . coupled ‘a4 + a*” channel. The molecular state has binding energy
the requirements of Fermi statistics, the cooling of fermionic . ., andw. are the frequencies of the external sources, which
atoms requires systems containing a mixture of two compo-imply detuningsA; andA..
nents (which may be e.g. two different spin states) in order . ) )
to allow for the s-wave interactions. The experiments in The experiment described in ref. [39] uses thus proce-
refs. [35, 36] used’K atoms, and that in ref. [37] usi.i dure in a condensate of magnetically trapjéRb atoms
atoms. Bose-Einstein condensation of a molecular phase irin the f = 1, my = —1 hyperfine state, the intermediate
equi"brium of th|S Condensate W|th a two_component Fermi from S to theP |eVe|. MOIeCUIe forma“on was detected as

gas. Some theory of such systems is today in the early stage@n increase in thioss of atoms after exposure to the stim-
of development[38]. ulating fields whenv, — w; was close to the value of the

binding energy:. The loss has been understood as due to
molecule formation and subsequent escape from the trap.
3.3 Molecules in atomic condensates and hy- The molecules in this experiment are produced essentially
brid atomic condensates by stimulated “atrest”, allowing for unprecedented accuracy in measuring
transitions the molecular binding energy. Interesting side many-body
effects are an observed density dependence of the value o
Stimulated electromagnetic transitions (Raman or otherwisews — w; for maximum loss (630.020 MHz at a peak density
contrived) provide a versatile tool to manipulate internal of 0.77 x 10** cm~3 and 630.023 MHz &.6 x 104 cm™3)
atomic degrees of freedom in atomic condensates, besideand of the line shape, which becomes broader at larger val-
being many times used also in their production process. Inues of the condensate density.
this final section we describe briefly a process of coherent  The system of atoms and molecules coupled by the ex-
stimulated recombination of atoms which produces specific, ternal driving fields can be described by equations of mo-
“cold” molecular states[39] and discuss the coupled dynam-tion of the form used in connection with the Feshbach res-
ics of a two-species atomic condensate in the presence obnances, egs. 3.16, with an appropriate reinterpretation of

a+a*




A. F. R. de Toledo Piza 1135

parameters. The density of molecules) is described in 12 1> m =2
terms of the amplitude; (7). The constant in the term that . ‘*’;W
couples atoms and molecules and the detunifgpt to be 7Tmf=70

confused here with the molecular binding energy!) are now Tme1 =2

set by the intensities and frequencies of the external driving ~m ——2 '
fields, and therefore in principle completely “tunable”. To /

bring the model closer to real experimental situations loss !
mechanisms can be introduced phenomenologically into the N
coupled equations[26, 31]. !

Ii f=1
3.4.1 Hybrid atomic condensates m=-1
11-1> m=0
Second order stimulated processes can also couple two dif- m=1

ferent hyperfine states of the condensate atoms, as illustrated _ _
in Fig. 3.4 for the case studied in refs. [40]. When a driving Figure 3.4. Stimulated second-order process coupling the hyper-
pulseis applied one may end up with a system involving two fine statelf = 1,m; = —1)to|f = 2,ms = 1) in *'Rb. The

S - . . frequencies are; ~ 6.8 GHz andw; ~ 2 MHz, in the microwave
dlstlr)gmghable types of atom which may be described by 8,4 radiofrequency ranges respectively. The stte 2, m ; — 0)
hamiltonian density of the form acts as an intermediate state in the second order stimulated process.

47rh aZ 4mth%a,9

0| 64(7) + 9] P04 T2 (7 (7

2
Zw* [—V + & + Vi(F) + ] (7)

wherey (7) andy () are field operators corresponding to  motion, the presence of the internal energy parametdss

the two different atomic species, thg are their associated not dynamically relevant.

scattering lengths and ; is the scattering length describing

the scattering of different species. Note that the two species  If, on the other hand, the external driving fields are kept
may interact differently with the trapping arrangement, lead- on continuously, one needs also an interaction hamiltonian
ing possibly to species-dependent trap potentials. Since thelescribing the coupling of the two species, which can be
number of atoms of each species is in this case a constant ofvritten as

]

Hine = o (0] () + 03 (F01(®) . H=Ho+ Hine. (3.18)

With this extra term in the hamiltonian the number of atoms acquire dynamical relevance as they affect the equilibrium
of each of the two species is no longer a constant of motion.mean values of the population fractions. Together with the
Since the total number of atoms is conserved, one will in coupling strengtly, they are determined by the driving field
general have correlated quantum fluctuations of the two con-frequencies and intensities.

stituent populations, similarly to what has been discussed in A possible mean field approximation of the Gross-
connection with the coexistence of atoms and molecules inPitaevski type for this system can be obtained by using a
section 3.2. In this case the internal energy parameters coherent ansatz similar to eq. (3.14), i.e.

]

lurug) = ef r (@UIO—ui @ () of &*r (u2(@VLE—u3 ((w2() |0y

Using this ansatz the energy functional has the same form as the hamilféniary’ ¢3rH(7) with the field operators (and
their adjoints) replaced by the c-number functien&”) (and their complex-conjugates). The average total number of atoms
is, on the other hand,
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(el [ 032 6l Purs) = [ 3 s

Fluctuations in the total number appear as a result of ignoring the correlation in the number fluctuations of the two spe
Variation of the energy functional using a Lagrange multipligo take the subsidiary condition regarding the average total
number of atoms into account gives the now very symmetric extremum coupled equations

h2v? Arh2a dnh%a ﬂ ﬂ ,
T O T O + TR | 6 () + e =
h2v? ﬁ Arh2a dnh%a H H .
o )+ T P+ T )+ an @) = pe@) (@19
|
A simple alternate ansatz which explicitly preserves the and
conservation of the total number of atoms exists for conden- N_1
sates involving tyvo ator_nic species, however. It is written in (N; U1U2|Ni2|N§ Uip) = T_<Ni>2 +(N;)
terms of thehybrid creation operator
to obtain
1
t— 3 t t ) (N;)
o = — [ (] + @0l oA = v (1- 20
in which the factorV—1/2 has been introduced for later con- Which shows that the number fluctuation is in feetiuced
venience. Note that. with this definition. the condition with respect to the uncorrelated poissonian fluctuations as-

sociated with the coherent ansatz. The reduction factor de-

5 ) ) pends on the fraction of the atoms which on the average are

/d r (lun (M + ua (M) = N (3.20) in each of the two coupled internal states, and therefore does
not go away asv becomes very large.

gives for the annihilation operatarand its adjoint the stan- When the ansatz (3.21) is used, the functiong”) de-
dard boson commutation relatida,a'] = 1. This leads  scribe the spatial distribution of the internal hybridization
then to theV-atom ansatz of eachandall of the N atoms, which as a result of the
(“Brueckner”) mean-field approximation occuplye same
1 N ingle-particle state. This coherent internal superposition
Niupus) = N o). 321)  Single-pa - perpositi
|N; uruz) VNI (a ) 07 ( ) takes the place of the coherence of “two condensates” which

one is led to consider when using the coherent ansatz.

The solution of equations (3.19) is very simple in the
case of a uniform system, but even so the results are not en
tirely trivial. For definiteness we adopt the point of view
of the sharp number ansatz (3.21). The functiens) are
now complex constants which it is convenient to write in
polar form as

Evaluation of the energy functional with this ansatz
is straightforward using the commutation relation
[:(7),a’] = u;(¥)/v/N. The result is essentially the same
as that obtained in the case of the coherent ansatz, the dif
ference being just additional factofdé(N — 1)/N? in the
two-body terms involving:; anda,. Variation of the func-
tional with what is now thenormalizationcondition (3.20)
accounted for in terms of a Lagrange multiplierleads N
thereforeagainto the equations (3.19), albeit with the third u; () — \/7%-6“‘”
terms on the left hand side multiplied bV — 1) /N . _ o v

Thus whenV is large the functions; (") are determined ~ Where) is a quantization volume. Furthermore, the nor-
from the same set of equations. In the case of the shargnalization condition (3.20) can be taken care of explicitly
number ansatz (3.21), however, one can evaluate a possiblyy Parameterizing the; in terms of a mixing anglé as
meaningful fluctuation in the mean number of one of the two
species. To this effect use x1 = cosf, o = sinf.

With these simplifications it is preferable to work directly
R with the energy functional rather than with the coupled
(N5 ugue|N; | N ugug) = /dBr lus (7)]? = (V;) equations. It becomes
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Figure 3.5. Internal mixing angle in the case of a uniform hybrid condensate as a functioA & for A/a = —3 (left) andA/a = 0

(right). The upper curves on both graphs correspong te= 7, while ¢ = 0 in the lower curves. Full and dashed lines correspond
respectively to minima and maxima of the energy functional.

4 One step beyond the Gross-

H) e A Pitaevski description
N = %—&—C—i— 3 cos? 20+ A cos 20+ sin 260 cos ¢
Gross-Pitaevski (G.-P.) theory, including the effective two-

] ) body interaction based on the scattering length, draws its
wherep = ¢, — ¢y is the relative phase between the two mgst fundamental (if not most important) support from the
species and the newly defined dimensionless coeffic@nts  results of Lieb and Seiringer[22] concerning the GliRit.

AandA are This limit carries a strong statement bearing on the ground
state of the many boson system (with purely repulsive two-
body interactions!), which essentially declares its “many-

Anh2N body triviality” (absence of many-body correlations, see
¢ = MY (a1 + az + 2a12) section 2.4). Therefore it is very uninformative on any fea-

Anh2N tures that involve such correlations in an essential way, rang-
A = ——(a1 +as —2a12) and ing from ground state properties under conditions falling

64Mjl)7rﬁ2N short of t_he .G.—P. limit to the nature and spectrum of low
A = 3 + W(‘“ —ay), lying excitations.

One decisive first step towards dealing with these mat-
ters was taken long ago by Bogoliubov[42], on the basis of
whered = €; — €5 is the detuning parameter. an heuristic approach which appears adequate for dilute sys-

Extrema of this function with respect to the relative tems, although such systems were not experimentally avail-
phasey will exist whensin ¢ = 0, which impliesy = 0 able at the time. Its concepts were soon re-elaborated from
orp = . The extrema with respect to the mixing angle alternate points of view with a rather strong but unfulfilled
0 are eas“y determined for given values of the parametersaim of Obtaining results valid for at least not-so-dilute Sys-
from the stationarity condition tems (see e.g. refs. [12]).

Some of the main approaches to such matters, within the
particular and now experimentally rich domain of dilute sys-

1 O(H) A A tems, will be treated in the sections to follow.
——— =0= — sin40+ —sin 20+cos 20 cos p = 0.
N 00 2a «

Note that only two independent combinations of the vari- 4.1 Bogoliubov’s quasi-particles

ous parameters appear in this equation. Some solutions arghe problem treated by Bogoliubov consisted in determin-
shown in Fig. 3.5. For sufficiently negative valuesAfo ing the nature of the low lying excitations of a Bose-Einstein
one has two distinct minima whek/« is in a certain vicin-  ¢condensate, and in particular its dispersion equation in an
ity of zero. extended, homogeneous system, which means the depen-

An analysis of these solutions from the point of view of dence of the excitation energies on their momentum. Of
the coherent ansatz leads of course to similar results. It carcourse the atom-atom interaction plays an essential role
be found in ref. [32]. here.
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Although one can obtain the results due to Bogoliubov When the density of the system is such that there\apar-
in a variety of different way? it will be useful to presentit ticles in the quantization volumg, the effective mean field
here in the light of being some sort of perturbative correc- ground state is
tion to the pure G.-P. effective mean field picture, as this will

also make way for the developments to follow. D) = 1 (GS)N 10).
Consider then the effective hamiltonian (2.5) for the sim- Vv N!
plest case of a uniform system, i.e., wittir) = 0. Itiscon- ¢ js obvious, however, that such a state an eigenstate

venient here to use a momentum representation defined inyf 7 .. on account of the two-body term, which in partic-
terms of normalized plane waves satisfying periodic bound- ;5 contains a contribution’.a! .ag ao which, when act-
ary conditions in a quantization volumé The momentum . . q-—q

ing on |®), will convert a pair of zero momentum bosons

representation of the field operators is then given as into two bosons with momentag. The corresponding am-
1 . plitude will moreover contain a bosonic enhancement fac-
aj; = — /d3r eF TPt (7). tor of /N(N — 1). These terms represent propensities of
A% the hamiltonian which are completely frustrated within the
They satisfy usual boson commutation relations. In this rep- bounds of the G.-P. approximation, which only takes into

resentation the kinetic energy is diagonal and the hamilto- @ccount terms in whichll the field operators are zero mo-
nian is written as mentum operators.

Now observe that, due to momentum conservation, the
number of zero momentum operators in any term of the ef-

2k? A ; + fective hamiltonian can be zero, one, two or four. In view of
Her = Z ol % 5y Z O+ R — "B R the expected large population of the zero momentum state
k k1k2.q and its consequences in terms of bosonic enhancement fac

(4.1) tors, a less drastic truncation would result if the only terms
The sum over three momenta in the two-body term takesleft out would be those with at most one zero momentum
momentum conservation explicitly into account and the ex- operator, and hence with three or fauwnzeromomentum

plicit assumption is made that> 0. operators, corresponding to single-boson states expected f
The minimizer of the G.-P. functional for this hamilto- be weakly populated. This would leave us with the not-so-
nian is just the constant zero-momentum plane wia«é) . truncated hamiltonian
]
A h2k? A -
e = @agagaoao + Z { oM a%a,; + B (a%aikaoao + agaga_ga,; + 4a£a$aoag)} =
k=0
= H|+ H(; .
[

The termH|, acts only in the zero momentum sector, while plicated by entangled quantum fluctuations of these partial
the termH, is characterized by a quadratic dependence onnumbers. The standard way to circumvent these complica-
non-zero momentum field operators. tions is again to decorrelate by factorization the zero mo-
This hamiltonian clearly conserves the total number of mentum and the nonzero momentum parts of the state vec-
bosons (i.e., commutes With = o ata];), but of course tor at the expense of the conservation of the total number

not the number of bosons in the zero momentum state, or the?f bosons. Furthermore, in order to keep the density of the
number of bosons in non-zero momentum states when con-SyStem under control, one constrains the average number o

sidered separately (i.e., does not commute \dith= agao atoms in the quantization volume by means of the Lagrange
or with N' — Ny). Therefore its ground state will be com- Multiplier », and considers thus
]

N ~ 2.2 A 4
L — N = H) — uNo + Z K of ,u> a%aﬁ + v (a;%aikaoao + agaga_,;a,; + 4a;%a(')aoa];)}
k=0

5In particular, they may be obtained by linearization of the time-dependent Gross-Pitaevski equation (the one-component counterpart of egs. (3.1
the small amplitude oscillatory regime around the stationary equilibrium solution, see e.g. Chapter 13 of ref. [10].
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One way to implement this factorization without impos- (z|No|z) = |2|> = N.
ing further ansatz restrictions on the non-zero momentum
part, assume that the zero momentum part of the state vectovariation of the functional leads to the equation
is frozen in a coherent state

|z) = ezag*z*a°|0> <));|z|2 - u) z=0 Thence |z]*= ?u =N 4.2

which will in particular produce the appropriate bosonic
enhancement factors once the average number of atoms igliscarding the trivial solution = 0. Thusz = v/Ne* and
properly adjusted. In the spirit of a perturbative treatment of ;, = AN/ V.

the quadratic terms, the values:cdind and. are determined The effective hamiltoniah.; extended to the non-zero
by minimization of the zero momentum energy functional momentum sector is next obtained as the partial expectation
with the proper number constraint: value of H'; — 1N in the statg/Ne?). The phasey is in

fact of no consequence since it can be absorbed by redefin-
ing the phases of the # 0 states, and will accordingly be

- A . X . .
§ ((z|H(') ~ ,uN0|Z>) =4 <W|Z|4 - M|22> =0, omitted in the following. One obtains
]
AN? h?k?
_ Ta T _
fet = o +Z( ) & 2vz(“ al g+ oz +dafag) =
k=0
AN? h2k? dta )\N n
= +22M ra 2VZ(aa ~+a_pag+2a ak). (4.3)
k£0
|
In the final expression the Lagrange multipliewas substi- whereéhgﬂf) is a c-number term resulting from normal order-
tuted by its value obtained in (4.2). ing the “non-dangerous” terms. Thus the net result of this

The now standard way to deal with such an hamiltonian procedure is i) to generate a set of normal mode-like excita-
involves “canonical transformations” of the field operators tions with energyiw;, and momentunk created by the op-
of the form eratorsnj;; these are the Bogoliubov “quasi-particles”, and

i) to give a correctionSth)f) to the G.-P. ground state energy.
N = upag + vral e u —v? = 1. Note that this ground state must now be taken'as thg “quasi—
particle vacuum”, defined as the state which is annihilated
This type of transformation preserves the commutation rela-PYy any of the operators;.
tions and can be inverted, with the result

_ T . .
ap = UkMg — VkT_g- 4.1.1 Easy route to the quasi-particles

Substitution in (4.3) yields a quadratic form in the operators
U 77,%- The transformation coefficients,, v, can then be
determined so as to eliminate what Bogoliubov called the
“dangerous terms”, involving two creation or two anihila-
tion operators. As a result of this the hamiltonian (4.3) is
reduced to the form

The procedure described above to obtain explicit expres-
sions for the transformation coefficients, v, and hence
also for the important quantities, andéhi?f) can, of course,

be followed “verbatim”. It is not, however, the shortest, or
the more elegant route. A better approach on both of these
aspects[32] involves, as a first step, rewriting the hamilto-

AN2 nian (4.3) in terms of the coordinate-like operatagsand
het = 55 + oy +3 hwpnlng momentum-like operators; defined as
E
|
_a_,;—i—a% _a,;*ai,; s
wE—g o =m0 =i
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These definitions are easily inverted, giving the momentum space field operators in termanafp;;. Substitution in (4.3)

then gives

AN?Z

heff = 2y

2| (o

k£0

AN
—‘r? IE.’IIﬁE

B2 k>

4aM

h2k?
-¥ (%

AN
———DpP_j +5y )
k+£0

The last term is a divergentnumber sum over momenta which will contributeﬁfogf) and will be dealt with below.
The appropriate canonical transformations to obtain the quasi-particle excitations are now simple scale transformatio

—

Pg

{ ka,g
/T

Writing heg in terms ofz; andp;, and choosing the scale factdrg so that the coefficients of the andp-dependent terms

are equal, i.e.

NG

h2k? AN) B2k 1 nk?
+ 5 = —+ implying Uk =% 24M ’
<4M % AN T2 RRE | AN
one is left with
/\N2 B2k )\N h2k2 h2k;2 AN
bt = —z( ZV V) (a5 i) =
/\N2

2>
_Z<4M

)\N i‘z?kQ h%? LDNY (51
Z V MR

where the quasi-particle operators are related to the scaled coordinate-like and momentum-like operators in the same v

theay, aT’2 are related to the;, p;:

n_g g

N

Dp =

m—n
iv2

[T P/l = i0g 0 -

The transformation coefficients, andvy, relating the quasi-particle operators to tkkeaj; are also easily obtained. In fact

(1+T3)ag + (1 —-T3)a' .

CT_g + ZﬁE B :L’_E/Fk + ZTka
T V2
from which it follows that
1+T% 1-T7?
= d == k .
Uk 2Fk al Vi 2Fk

- 9T

Varppa = f

M¢n

e 20 _ T
VM M

We turn now to the effects of non-zero momentum stateswhere ¢; is the healing length (2.14). The sound veloc-

on the condensate dynamic properties.
particle energies are seen to be given by

_|R%K% (R2K%2 20N k—0 APp
h“”“_\/QM <2M LY ) — N ™

A remarkable outcome of this calculation is the phonon-like
linear dependence withk at low momenta. The slope is

usually referred to as theound velocity;, which can be ex-
pressed as

First, the quasi-ity is therefore a quantity which remains unchanged under

the Gross-Pitaevskimit. The linear dispersion equation at
small momenta has in fact been associated by Landau[43]
with superfluidityof the condensate, as it prevents a particle
moving in the condensate to lose energy by creating conden-
sate excitations for phase-space reasons.

Second, collecting the various contributions to the cor-

rection to the ground state ener eﬁ , Which includes now
another divergent sum of zero-point-like energy terms com-
ing from the quasi-particle hamiltonian, one is left with
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© _ 1 R2k* (R2k* 2ANY h%k? AN

5heﬂ_2Z<\/2M oM TV 2M Y
k0

still a divergent result! The divergence occurs for large momenta, as can be rewriting the summand (with obvious abbreviate

notation) as

2 by e AQ 2 AB 3
\/6k(€k+2ApP)—€k—/\pp:€k<1/1+ epP—l— pp) s L pP+ 2§P+...7
k k

(A3 2€k

[

where the last result has been obtained by expanding thg45],
term with the square root. When the sum o¥eis trans-
formed to an integral, the factéf of the momentum space o
volume element will cancel the asymptotic? dependence v(F1,T2) =X 55— [ | — 7=|0(F1 — T2) ] .
of the first term, causing the integral to have a linear di- 0|y — 7|
vergence _proportlonal o, . This divergence ha_s been These two forms of the potential give equivalent reseits
very specifically addressed in ref. [44], where it is shown ceptin order A2, where the effect of the more accurate ver-
that it results from the particular form of the two-body ef- sion is simply 'Eo cancel out the second order term causing
fective potential as implemented in the starting effective o givergence. In particular, the two forms of the effec-
hamiltoniar?. This effective potential, written as tive potential are completely equivalent within the Gross-
L. L. Pitaevski mean field approximation.

v, 72) = A 0(71 —72), Introducing this amendment to the correction to the
must be seen as a truncated version of the more accurate efground state energy, one is left with the now regular expres-

fective potential, introduced as thpseudopotentiain ref. sion
]
0 _1 h2k2 [ h2k2 R A2p3%,
Oher = 2%: (\/ oal \ 21 TP ) T TR g )
k#0

It can be calculated replacing the sum by an integral over particles. When the quantum fluctuations due to these exci-

momentum space[44] with the result tation modes are taken into account by redefining the ground
I 195 state as the “quasi-particle vacuum”, an energy correction

5h£2f) = 2APP 20 Sopdd. arises which is proportional t()ppa3)1/2. In order to ob-
2 15ym tain this correction one must take special care in check-

This result has been first derived by Lee and Yang in ing the consistency of the second order contributions of the

1957[46] using a different method. It amounts only to a two-body effective potential. The pseudopotential recipe of

small correction in the dilute limip,a® < 1 and in fact ~ Huang and Yang[45] avoids the second order divergences in

vanishes in the Gross-Pitaevsikit. a way which is consistent with the kinship of the effective
It is perhaps useful to summarize the main points of interaction with the two-body scattering amplitude.

the preceding discussion, in which some effort was spent

in trying to enhance the possibility of examination rather

than belief. First, one takes into accowit-diagonalmo-

mentum space matrix elements of the two-body effective in- 4.1.2  Ground state depletion

teraction in which two of the four states involved are dif-

ferent from the macroscopically populated zero momentum The ground state state vector in the Bogoliubov approxima-

state. This is considered as a perturbation of the condensedion |® ) is the vacuum of the Bogoliubov quasi-particles

mean field ground state and determines a set of “normalanda coherent state of zero momentum single particle states,

excitation modes” which constitute the Bogoliubov quasi- i.e.

6Cf. in this respect the treatment of the same problem in ref. [43]. Here the perturbative treatment of a two-body interaction potential is explicit, and
the regularizing correction is obtained as the second order perturbative correction to the zero-momentum only ground state. Note that this point of view i
untenable when the effective two-body interaction is related to the two-body scattering amplitude, since in this case the second order term is spurious.
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the action of the effective two-body interaction. This dis-
tribution is usually called thelepletionof the condensate,

ng|®p) =0, all k: ao|®g) = VN|®p). from the fact that particles found in these states must have
been removed from the zero momentum condensate. Strictly
The first of these properties implies that there peeti- speaking, violation of the conservation of particle number

clespresent in non-zero momentum states, since the quasiin this calculation does not conform this meaning, however.
particle operators; are linear combinations of creation and Actually the depletion is here an additional distribution of
annihilation operators. One of the byproducts of the above particles which can be simply calculated from the expres-
calculation is therefore a perturbative estimate of particle sion which gives the number of particles with momentum
number distribution in non-zero momentum states due to k£ # 0 in the quasi-particle vacuum, namely

|
1-12)° LS
n~z<fI>B|aJﬂa~\<I>B>:U£: ( 7) _ Si7 op L
k k k 41_% —
sar (zar +2M0p)

where use has been made of the previously obtained expresstate will be approximated by a “self-consistent vacuum” of
sion forT";.. Note that this expression refers to a givexctor quasi-particle (normal mode-like) excitations associated to
momentum, even though it depends only on it magnitude  creation and annihilation operatofs, ; related to the cor-

It diverges as:—! for smallk. Due to this isotropy one can

define a depletion density per intervaliohs responding momentum space compona%tst,; of the field

operator through the canonical transformation
dn YV
dk — (273)
in which the divergence for smalt has been controlled
by the momentum space volume element. It is also easywherez, is ac-number andi2 — o2 = 1. Fork # 0 this is
to check that this depletion density approaches zero fastof course just the Bogoliubov transformation leading to the
enough for large S0 that its integ_ral, which correspo_nd_s quasi-particle operators, but fér= 0 the possibility of a
to the "total depletion” in the Bogoliubov ground state is fi- . n,mper displacement of the particle operator is included
nite and also given in terms of the diluteness factor of the through the parametes,. The interpretation of this param-
condensate as eter follows from the fact that the state vec{fy which is
annihilated by the displaced operatgrhas the property

2
47 k ng

agp =cp+ z0(5,;70 = (uk??,; — UknT_E) + 205;5,0 , (4.4)

8N

Ntot = ﬁ (pPCL3)1/2

Note that this expression also vanishes in the Gross- c0l0) = 0 = (a0 — 20) [0) = 0 = ao|0) = 2]0),

Pitaevskilimit, in which ppa® — 0. i.e., it is the eigenstate of the annihilation operatpmwith

eigenvaluez, and hence ( up to an overall phase) the coher-
4.2 Self-consistency looks worse ent state

A crucial element in the Bogoliubov approach is the canon- 10) = |20) = ean$—25au|0>.
ical transformation leading from the particle field operators ,
to the quasi-particle operators, which is there used to ob-Note that one could have performed the Bogoliubov trans-

tain normal-mode-like excitations with non-zero momentum formationbeforeintroducing the zero momentuemnumber

added perturbativelu on top of a zero-momentum Conden_dlsplaceme_nt, with equalent results. In fact, in this case

sate. An improvement over the perturbative character of this®Ne would first have written

approach consists in starting from a slightly more general ~ _t

canonical transformation which will allow both for a co- aF = Uollg — VKT _

herent condensate and for quasiparticles and to determingng then introduce the zero momentum displacement by

both ingredients self-consistently. This is, in words, what is defining

known as the Hartree-Fock-Bogoliubov (HFB) approxima-

tion, which we proceed to develop in continuation[47, 48]. e = 1z + Codi .
The dynamics is based again on the hamiltonian (4.1), kook k,0

the system being assumed to be uniform and treated inCombining these two steps one is left with

a momentum representation defined in terms of periodical ;

boundary conditions in quantization volure The ground ap = Ukl — VkN_p + (uoGo — voCS)fs;;,o



A. F. R. de Toledo Piza 1143

which is equivalent to (4.4) and establishes the relationof volume V) a Lagrange multiplier: is introduced. Again
to (o. one finds that the phase of the zero momentum displace-

The canonical transformation (4.4) therefore makes all mentz, can be absorbed by redefining the phases of the
the ingredients used in the Bogoliubov treatment again fully k¥ # 0 single-particle states, so that this quantity will simply
available. However, this transformation will now be used in be taken as real in what follows. One obtains in this way
a way that attempts to determine its parameters in a simul-terms having zero to four quasiparticle operators, collected
taneous, “self-consistent” way instead of in the sequential 'espectively ag;, with i ranging from zero to four. Thus
way used in that treatment. .

The first step is straightforward, if algebraically rather Hog — 1 Z aiag . Z h; . (4.5)
cumbersome. In consists in substituting the transformed op- k ;
erators (4.4) into the effective hamiltonian, normal-ordering
the quasiparticle operators and sorting the resulting termsNow if |®) is the (normallzed) quasi-particle vacuum, i.e.
according to the number of normal ordered quasiparticle »;|®) = 0 for all k, then the expectation value &g — N
operators they contain. In order to enforce the appropriatein this state reduces to thenumber part.,, which is given
density (average number of particldsin the quantization by

]

A A A 1
ho = —z3p + 2VZO+Z (e — pu+2X23) v %—vzgz:u,;v,;—kv Zv% —|—§ ZUEUE
k k E

wheree, = h%k?/2M. Note that there is no guarantee that the sums over momenta which appear in this expression are
finite. Ignoring this question for the moment, and proceeding to the formal minimization of this quantity with respect to the
parameters of the canonical transformations, leads to the equations

872'0:0 = 2 —,u—f—v zo—i—Z(%k—ukvk) =0
k

ok Ohg O A (22 =3, uprvp

Ohy | Ohodus _ g, - 3 (8= Do) (4.6)

vy, Ouy, Ovuy, er + 27 (ZO + ZE’ vk,) — U

|

where theu;: andv;: have been parametrized in terms of the It turns out that these same equations imply that the
hyperbolic angler; as “dangerous terms” ok, andh, vanish (i.e., terms contain-

ing only quasi-particle creation operators, which therefore
do not annihilate the quasiparticle vacuum). The only re-
ug = cosh oy, and v = sinh oy, , maining such term occur ih,, contains four quasi-particle
creation operators. Thus, the quasi-particle vacuum fails to
so as to take into account the conditiof — v7 = 1. The  be an eigenstate df.z — 1V on the account of this term
subsidiary condition on the number of particles, on the other only.
hand, gives the additional equation
R The interesting remaining part is of course the “non-
(BIN|®) =N = 22+ Zvi =N. dangerous” part ofi;, which reads
k

A A2
=Y g, b= | et 5 D wewe | | = 5 (28— Do
E k!

El
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Note that 4.2.1 Difficulties with the contact effective interaction

It has been mentioned that the results obtained for the HFB
0 )2 approximation were formal in the sense that the convergence
hwp  — 4§Z§ Z ug Vg = AHrB of the sums over momenta was not being checked explicitly.
B It so happens that, for the case of the contact effective two
body interaction included in the hamiltonian (4.1), the sum
so that the dispersion equation for the quasiparticles of theover the anomalous density contributions that are ignored in
HFB approximationdoes nothave the interesting phonon the Popov approximation aret convergent. This may be
behavior of the simple Bogoliubov approximation at small seen as follows. Firsassumehat the sum for the anoma-
momenta. The quantithyrp is usually referred to as the lous density converges. If so, then the second of egs. (4.6)
“HFB energy gap”. One of the factors contributing to this shows that for sufficiently large the hyperbolic angle,
energy gap is the sum which can be recognized as giving theand hence also its hyperbolic sine which corresponds, to
contribution of the non condensate particles to the so calleddecrease as~2. The sum is however to be taken over all di-
pairing (or anomalous) density associated with the quasiparrections of the momenta as well, and this contributes a factor
ticle vacuum k2 from the volume element in momentum space. Simgce
approaches one from above, for largeit follows that the
. sum in fact cannot converge.
(pair) _ _ 2 . . .
pp = (Plaga_g|®) = Z505 o — ukvk - One easy way to avoid this divergence[48] is to replace
] . the contact effective interaction by a finite range one, such
The “normal” density can also be split into condensate and 53¢
non-condensate contributions as

p](;norm) = <¢|a£aE|®> = ZS(SE’O + U}% : 471'77,2(], 1 3 |7 —72|?
. , V(i —T) — ——— () T 4.7)
A “gapless” approximation can therefore be obtained from M Vb
the HFB approximation by simply ignoring the contribution
of the non-condensate particles to the pairing density. Thiswhich reproduces the usual form of the contact interaction
approximation is known as the Popov approximation[47, in the limitb — 0. The two-body matrix elements of this
49]. interaction in momentum space involve

Arh2a  b242 v—o  4Amh2a A

_ 1 3. g7 _ b—0
V(q)—v/dre V(r) = MVe MY Y

The two-body term of the effective hamiltonian (4.1) becomes

Z V(q)a£1*5a£2+§aﬁ2 aEl
E1.k2,q
and the paring density contributions e.g. to the second eq. (4.6) appear in the form
(4 — Lo VIF = Ealyug, v, )
ex+ ((VO) + V() 22+ g, (VO) + V(E-Fi)) oF, ) — n

tanh 20, =

the divergence being now controlled by the momentum its relation to the actual physical situation, since the finite
transfer dependence of the two-body matrix elements. Withrange of the potential, which is the ingredient which is es-
this choice of effective two body interaction the HFB ap- sential to make the theory finite, is in fact not tied to it in
proximation is finite but still features a gap in the quasipar- any reasonably secure manner. Recall, furthermore, that the
ticle dispersion equation. adopted zero momentum fit to the usual function of the scat-
tering length makes the finite range potential conceptually
akin to the scattering amplitude associated with the realistic
atom-atom interaction.

This approach certainly produces a calculable self-
consistent mean field theory on which one can, in particu-
lar, mount further improvements, by considering small am-
plitude fluctuations around the mean field. This has been  One question which can be put at this point is whether
pursued in ref. [48] and will be briefly reviewed in the next the full recipe of Huang and Yang[46] for the pseudopoten-
section. What remains in relatively less secure grounds istial is useful in this connection. One way of approaching this
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guestion is to try and evaluate the ground state energy in thebe too far away from other nucleons, their center of mass
HFB approximation, which means to evaluate theumber behaving as a free particle with the appropriate total mass.
term hy of the hamiltonian expressed in terms of the shift This correlation property is replaced in the self-consistent
parameter, and of normal ordered products of quasiparti- mean field treatment by an attractive average potential gen-
cle operators. Self-consistency makes this task much moreerated by all nucleons and also binding them. In this way
demanding than the corresponding one in the simple Bogoli-the mean field treatment replaces “not being too far from the
ubov approximation, however, since the values of the vari- rest” simply by “being confined by the common average po-
ous parameters appearing/ip are actually determined by tential”, keeping all the nucleons together without they hav-
the extremum conditions (4.6) derived fram itself. There ing to keep track of each other. This is achieved, however,
seems to be no calculation done along these lines in termsat the expense of breaking the translational symmetry of the
of the full pseudopotential, and there possibly will never be hamiltonian through the introduction of the average localiz-
one. ing potential. One of the solutions to the RPA equations to
identify excitation modes of such a system will be the total
4.3 Elementary excitations on worse looking momentum operator, thg generator of spatial translat.ions of
the system, with excitation frequency equal to zero, imply-

richer foundations ing the absence of a restoring force as a consequence of the

Static solutions to self-consistent mean field approximations SYmmetry (see e.g. ref. [50], section 8.4.7).
such as Hartree-Fock and Hartree-Fock-Bogoliubov are in-  In the context of the Bose-Einstein condensates these
teresting starting points for studying stability and normal features remain true and can be taken advantage of when
modes of excitation. One of the interesting and often ex- ON€ USes as a starting point to study excitation modes the
plored features of such theories is that continuous symme-Self-consistent HBF approximation. Although the relation
tries of the hamiltonian which are broken in the mean field Of calculated results to the actual physical situation involves
solution reappear as solutions of zero frequency, associated® question of the effective interaction which is used, gen-
with the generators of the broken symmetry transformations, €'al properties which are not oversensitive to it, such as the
in the so called Random Phase Approximation (RPA) treat- fate and role played by the energy gap in the BHF spectrum
ment of the excitation modes. The symmetry breaking itself @ Well as the fate and role of the broken symmetries, can be
can be seen as the resource explored by the mean field treafi@fely investigated using self-consistently a finite range po-
ment to take important correlations into account within the tential such as the one introduced in the preceding section.
limitations imposed by the mean field constraint. A possible starting point for this brief review of the main
Possibly the example of this syndrome that is most sim- results of ref. [48] is the observation that the generator of
ply visualized is the generation of the self-bound charac- the symmetry which is broken by the HFB treatment is the
ter of atomic nuclei within the Hartree-Fock approximation. number operato®V. = 3 - aTEa,;, which can be written in
The finiteness of the bound nuclear system is clearly a cor-terms of the quasiparticle operators and theumber dis-
relation property, each nucleon being correlated so as not tgplacement as

]
- 2Up Vg
N =2+ vf + 20(uo = vo) (o + 1) = ) {5 (ntar' =+ men_g) + D (ud + v3) nlng.
i i>0 50 i
[

where the restriction on the second sum means that each paithat besides quasiparticle creation and annihilation opera-
of opposite vectorg, —k in to be included only once. The tors, two-quasiparticle operator terms also appear. It turns
first two terms are the only ones to survive when the expecta-out that contributions of the forming, are not relevant for
tion value is taken in the quasiparticle vacul@#m, and must  the equations of motion to be derived for the excitation op-
therefore give the number of particl8& The operator part  erators, while it is important to include the quasiparticle cre-
should emerge as a zero frequency normal mode in the deation and anihilation terms. Thus the general ansatz for the
sired RPA treatment, and thus its form serves to indicate theglementary excitation operator with momentuiris taken
minimal structure needed for the excitation operators to betg pe

determined. The quasi-particle representatiodiVoshows

]

f f

N 50 o B
ot = . . qg+P/2"'—q+P/2 .

Qp =wpnp+ypn 5+ Xgp o070 | aP

q>0

Ng—B/2"-q-B)2

VIF6q,0
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Figure 4.1.Left: Numerical dispersion equation for RPA elementary excitations on the HFB quasiparticle vacuum. The calculation |
been done assuming a not so dilute system with= .01. The momentum scale is plotted in unitsfgfa, and the energy scale is in units

of h?/2Ma?. The full line represents a discrete phonon-like branch, and the dashed line represents the threshold of a continuum. At
momentumP the threshold is at twice the HFB gap. Note that the discrete branch essentially merges with the contifuam/gla.
Right: One and two quasi-particle fractions in the composition of the discrete branch. The shift from one quasi-particle to two-quasipar
dominance at? ~ 0.75 h/a suggests an “avoided crossing” situation, with most of the one quasi-particle strength located within tl
continuum branch for higher momenta.

where ther 5, y5 and X, 5, V. 5 are coefficients to be de- ticles with relative momenturg.

termined. These two groups of coefficients, which refer to The total momentumP of an excitation mode is a
one and two quasi-particle components of the sought nor-sharply defined quantity, so that the RPA equations deter-
mal modes (three, or more, quasiparticle contributions to themining the coefficients: 5, v and X 5 5 have to be
excitation operator are ignored), are coupled to each other, solved for each value off (or of JUSt the magmtudeP
through the threg quaS|p§1rt|c!e pagtof th.e. decomposition . due to rotational invariance). Implementing the equations
(4'5.) of the effective hamiltonian. In a_ddmo_n the four quasi- i, yormg or periodical boundary conditions in a quantization
particle termh, couples the two quasi-particle components volumeY, reduces them to large matrix equations which are
among themselves. Note that all terms create a momentunt,, ever amenable to numerical solution. They yield, for
P, either through the addition or removal of one quasiparti- eachP, a set of mode®)”.! whose associated coefficients
cle or through the addition or removal of a pair of quasipar- are chosen to satisfy the normalization condition

UT T* O T* O XT*. XO T* VO _
(@ [Q7, Q3] 19) = a2, ypyp+;)( TXT s = YTV ) = by,
9=

Solutions obtained for a gaussian effective two-body in-
teraction of the form (4.7) witlh = 3,96 a and assuming e (P) = lz5° — lypl
that the diluteness parameier® is .01, are summarized in
Fig. 4.1. What one obtains for each valueffs a discrete, ~ While the contributions of two quasi-particle terms
lower energy solution in addition to a “continuum” (within
the limitations of the scheme based on the adoption of pe- . .
riodical boundary conditions) of solutions starting aPa c2(P) = Z (|X~p|2 Iifqﬁl2) =1-ci(P)
dependent threshold energy which goes to the limit of twice g>0
the HFB gap forP — 0. The set of discrete solutions form
a low energy discrete branch of excitations with phonon be- remain small. This dominance of one quasi-particle terms

havior, and merge d@ = 0 with the the symmetry generator ~decreases a# increases and is replaced by a two quasi-
N. particle dominance near the values where the energy of

the discrete branch approaches the continuum threshold an
o eventually merges with it.

Reference to the dependence of the coefficientsy 5 This behavior suggests an “avoided crossing” situation,
and X 5, Y 5 on the total momentun® gives additional  as the one free HFB quasi-particle energy and the threshold
information on the composition of the normal modes. As for two free quasi-particles cross. At values Bfbeyond
shown on the right hand graph of Fig. 4.1, for low momenta the onset of the two quasi-particle dominance in the discrete
the discrete branch is dominated by the one quasi-particlebranch, the bulk of the one quasi-particle strength is to be
contributions found spread in the continuum branch.
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5 Many mode traps, localization and  measurement processes also becomes more relevant in this
- context. This final chapter will be dedicated to “a bird’s
interference eye view" of these topics. Before turning to the modeling of

many-mode setups, it is useful to review some typical exper-

As discussed in Chapter 2, the state of a dilute Systemimental facts observed in connection with such situations.

of very cold trapped bosons (in the sense that the system

finds itself esentially in its ground-state) can, to a very 5.1 Quick survey of phenomena with some in-
good approximation, be described in terms of a single one- terpretation hints

body wavefunction, which minimizes the appropriate Gross-

Pitaevski functional. In particular, this result becomes rig- A most famous first observation is that of Andrews et al.[51],
orously valid in the Gross-Pitaevski limit (see section 2.4), in which a sausage shaped condensate is pinched in the mid-
independently of possibly ellaborate varieties of trapping dle by a very high optical barrier, which essentially cuts it in
potentials, provided they satisfy the general requirementstwo pieces. When these are allowed to expand by removal of
of local regularity and confinementi, .., V(7) = oo, the trap and barrier, they generate interference fringes vis-
see ref. [15]). Some potentials, such as “many wells” po- ible under absorption imaging. This experiment has been
tentials can lead to nearly degenerate solutions, so that recarefully analysed in ref. [52], in terms of a time-dependent
striction to the single minimizer state may not be physically Gross-Pitaevski initial conditions problem in a way which
appropriate, as it artificially freezes the possibly interest- is consistent with the use of a single, initially bi-localized
ing dynamics which involves the quasi-degenerate group ofwavefunction. The observed interference fringes can in this
modes. On the other hand, to the extent that one increasesase be obtained from the one body density. Thus, if after
the relevant sector of the phase space by considering manyexpansion the time evolved wavefunction can be represented
guasi-degenerate single-particle modes one also allows folover some region as a superposition of two plane waves (the
a richer choice of observables, which may or may not be two different momenta resultung from contributions of the
in fact brought to measurement procedures in the labora-two initially disjoint parts to the amplitude in that region),
tory. One may therefore expect that closer scrutiny of the then the density is there given by

]

d(F) ~ aeiEl'F+ beik ™ p(7) = |a]* + |b]* + 2 Re (ab*ei(ﬁl_’%)'?)

This is then simple one body interference, the many body To illustrate it in the simplest possible way, consider the state
nature of the condensate serving just obtaining the necesof two free identical bosons
sary measurement statistics in one shot[53].
A different type of interference effect which may occur
in a many boson system was pointed out, even before the ex- S S Ty
; ) ; (r,72) = (e
periment of Andrews et al., by Javanainae and Yoo[54]. This V2V
type of interference does not appear in the one-body density
and is basically a correlation effect, requiring the implemen- The full probability density associated with this exchange
tation of a many body observable for its direct measurement.correlated wavefunction is

]

81152.?2 + eiﬁl-eriEQﬂ) )

— — 1 - — 5 N
|®(7,72)]* = V2 (1 + cos(ky — ko) - (71 — 7«2)) = 2 cos

which shows interference fringes in thelative position of similar situation ocurs whefy/2 particles occupy each one
the two bosons. Thus, interference fringes would be seen inof two plane-wave states, in the sense that the measurement
the reiterated measurement of tbative positiorof the two of N — 1 conditional positions, each measurement being
bosons in identically prepared systems. At the same time,conditioned byall the precedingesultsshows interference

the one body density associated with the two boson wave-fringes similar to those observed in the one-body density in
function ® (77, 7) is easily seen to be constant, so that reit- the case of single wavefunction consisting of the superpo-
erating a one body position measurement yields a flat distri-sition of two plane waves. A single full set of conditioned
bution. The point of Javanainen and Yoo in ref. [54] is that a position measurements, for sufficiently larye(N = 1000
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in a simulation shown in ref. [54]) in fact exhibits the many as in this case an elongated condensate was divided length

body exchange correlation fringes clearly enough. wise into two also very elongated parts by a controlable bar-
rier.
A different setup which again can be interpreted in terms
all of the dominance of a single, multiply split wavefunction oc-

curs in the experiment of Anderson and Kasevich[56]. Here
the vertically arrangee 30 portions of a multiply split con-

3] densate are allowed to leak, the various leakages suffering
free falls from their respective initial positions. Under these
conditions one observes at a given time the existence of
zones of measurable density, which can be accurately repro-
duced in terms of constructive interferencendiree falling
coherentWKB amplitudes

2

n—1
10 200 300 400 500 I(q) = Z T(Z) sen ¢ (q) (5.1)
Figure 5.1. Intensity/(q) (in arbitrary units) obtained from eq. J=0 !
(5.1) withn = 6 and the realistic parameters for the Anderson and

' ) o v 372 where
Kasevich experimenjy = .425 pmand% 5/2g ¢;’~ = 1.130.

The horizontal scale is ipnm. Compare ?Nit?] Fig. 4 of ref. [56]. 2Mg
. . k(@) =\ =5z (@ + jao)
Recently, a related experiment has been reported by Shin
et al.[55] involving however entirely different aspect-ratios, and
|

? / / e M . /
@j(Q):/ k(q')dq" = / — V29(¢' + jao) dg’ =
Y —J40

M o
V29 (q+ jgo)*?.

W Do

The vertical axis; is oriented downwards and the positions lowing removal of the trap which changed markedly with the

of the leaky condensate portions afgqp, j =0, ..., (n — eventual blurring of the interference pattern. This has been

1). interpreted in terms of the confinement of atoms to definite
A more recent but to a certain extent similar situation oc- sites in the case of sufficiently high barriers, with loss of def-

curs in the experiment of experiment of Cataliotti et al.[57], inite phase relation between different pieces of the original

in which a trapped condensate is subjected to a comb of opti-condensate, in the manner of a bosonic Mott transition.

cal barriers before being released. Measured density profiles

after an allowed expansion time shows two ejected portions

travelling in opposite directions away from a central resid-

ual portion. A very schematic “one wavefunction” model . )

for this behavior is provided by the behavior of the density 5.2 Simple models for split condensates

associated with the free evolution of an initial wavefunction

given by The simplest case of a system with many modes is a system

5 with two modes and, appart from its direct relevance to ex-
#(x) o e 22 cos kx, kb> 1. perimental setups like those of refs. [51, 55], it will be use-

) . o ful to analyse this case in detail also in order to see what is
Sincecos® kz = (1 + cos2kx)/2, this wave function is in really involved and what simplifications can be introduced
fact the coherent superposition of three wave packets mov-in the modeling of more complicated situations. Note that
ing with mean velocitie® and+2hk /M respectively. Ifthe  the systems considered in section 3.4.1 are in fact two mode
cos® kz modulation of the gaussian is replaced by a more systems, but the two modes there refer to two different types
general periodic function, Fourier analysis would give anal- of hoson (e.g.two different internal states of a given atomic
ogous results involving a richer superposition of differently spacies), while here the focus will be on a sigle type of boson

moving wavepackets. evolving in a nearly degenerate pair of spatially orthogonal
Still more recently, Greiner et al.[58] observed similarly modes.

producedthree dimensionahrrays of condensate pieces.
Here, by varying the barrier height between neighboring
sites they have been able to observe interference patterns fol-
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that these excitations are in any case much higher than the
doublet splitting. In this case a possible simplification of the
problem consists in restricting the dynamics to a two-mode
phase space. This is implemented introducing the creation
operators

ol = / Erulr ) (2)61 (7).

() = L) ER(D)
V2
the functionu(r, ) being the frozen transverse wavefunction
Figure 5.2. Schematic representation of a two-well trap, with the a.nd%(z)’ L= 1,2 being the qua&—degenerate longitudinal
corresponding lowest energy single-particle doublet. The lowest elgenfunctlons forthe loweSt doublet '_n the two-well trap. In
member of the doublet has a nodeless wavefunationand the  this way,y.. () are localized, non-stationary wavefunctions
energy splittingAE = E» — E,; determines the oscillation period ~ peaking in each of the two sides of the barrier.
between the two non-stationary, localized stdtes+ ¢2)/v/2 as The basic hamiltonian to be used to characterize the dy-
2rnh/AE. namics of the system is the usual second-quantized effective
hamiltonian with the contact two-body effective interaction

A typical situation of this kind arises in the case of (2.5)restricted to the two modesThis restriction is easily
a double-well trap such as the one represented schematiimplemented using for the field operators the substitution
cally in Fig. 5.2. Laboratory situations are of course three-

dimensional and can be arranged in a variety of aspect ratios, Y(F) — Z u(ry )os(2)ag,
ranging e.g. from long sausages pinched at the middle by an +

imposed barrier[51] to also long sausages split lengthwise i . . t
in half by an interposed wall[55]. Different aspect ratios im- PHr) — g u*(ri)ei(z)ak

ply also different energy ratios of excitations in directions
transverse to that crossing the barrier, and it will be assumedwhich, after some trimmings to be discussed shortly, gives

Hyg — Hpy = E+a1a+ +E_ala_+a (aia_ + aT_a+> +

A A_
+7+a1aia+a+ + TaT_aT_a_a_ . (5.2)

Here the constant®&y stand for the diagonal matrix ele- four mode wavefunctionsgy_. Due to the localized charac-
ments ter of these wavefunctions, however, integrals over products
of four wavefunctions that are not all equal are much smaller
than the two which have been retained. The paraméters
are therefore essentially equal and given by

2
By = (ups| o + Viugs).

Note that if the delocalized functionsy;, i = 1, 2 are taken

as eigenfunctions qf?> /2M + V with eigenvalues?;, then Ay =) / d3r u4(m)<pi(2) .
E. =FE_ = (E;, + E3)/2. The parametes stands for the
off-diagonal matrix elements The trimmed hamiltonian (5.2) is nothing but a bosonic
) version of a two-site Hubbard model (in short, the two-site
o= <W,i|2pW + Viups), (5.3) Bose-Hubbard model), in which the “hopping _term“rela_tef
to tunneling between different wells and there is an “in site
taken to be equal, the wavefunctions being both real. Again,two-body interaction, in addition to possibly different one-
for eigenfunctions of? /2M + V one finds thaty = (E; — body site energies. The above “derivation” can moreover

E5)/2 < 0. This reveals, in particular, that this term is re- be extended to more sites and/or dimensions, by picking
lated to the periodic tunneling of partiches across the barrier.Wanier functions[59] as the appropriate generalization of

The two-body part in fact gives rise to sixteen terms in- the two-well localized wavefunctions. The standard form
volving space integrals of the various distinct products of of the trimmed model hamiltonian is
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A
Hpp = Z Eia;rai +a Z (a;raj + a}ai) + 3 Zajazaiai , (5.4)

<i,j>

where< i,j > in the second sum denotes that the sites rendering of the dependence of effective mean-field proper-
andj are neighbors. ties on degrees of freedom kept active in the model, such as
mean occupations of the different sites. While in the Gross-
This argument shows therefore that, in presence of aPitaevski treatment this is taken into account by the nonlin-
spatially periodic trap potential which gives rise to a large ear term, in the Bose-Hubard model it is limited by freezing
number of quasi-degenerate independent modes one carance and for all a set of quasi-degenerate orbitals, such as
by restricting the phase space to just the quasi-degeneraténe wavefunctionsip; andugs, in the case of the two-well
modes, using a representation in terms of localized wave-trap of Fig. 5.2.
functions (typically a “single” Wanier function) one is led,
with only some mild trimmings, from the Gross-Pitaevski
problem to the Bose-Hubbard model. The restriction to the
guasi-degenerate modes is the most severe limitation of thdn this case one considers the hamiltonian (5.2) vkith =
Bose-Hubbard model. This restriction in fact constrains the E_ =0andAy = A_ = A, i.e.

5.2.1 Results for a two-well system

|
N A .
Hpy =« (ala_ + a'_a+) + 3 (aj_ah_a+a+ + aT_aT_a_a_) . (5.5)
|
and realizes imediately to have been left with a particular 7o = a1a+ —ala_
case of the hamiltonian that was considered in section 3.4.1. 3= 9 )
In particular, since the confining trap is taken into account t t .
in terms of the choice made for the relevant orbitas;, J= 20 taa N
1 = 1,2, there is no explicit reference to the position degree 2 2’

of freedom besides that which is related to the indite@d ~ which constitute Schwinger’s well known realization of
the localized character of the corresponding orbitals. Fur-the angular momentum algebra it terms of two bosonic
thermore, there are no two body interactions between bosonsnodes[60]. They are therefore frequently refered to as
in different sites, and the total number of bosons “quasi-spin” operators in this context[31]. The role played
by the operatot is revealed by the relation
N = aiaJr + ata,

is clearly a constant of motion. 9 sa . 9 N
A convenient way of dealing with the two-mode hamil- Jitdy+dy=J(J+1) = S\t
tonian (5.5) within a sector of the second-quantized phase
space having a definite number of particlgsis to define 5o that the value of the quasi-spin is half the number of

the operators bosons in the considered sector. The two-site hamiltonian
(5.5) can be expressed in terms of the quasi-spin operators
Jy=J1 i = alcq , as
]
A
Hpy = 200145 [(J+Js)(J +Js = 1)+ (J = Ja)(J = Js = 1)]

20y + AJ(J — 1)+ AJ;. (5.6)
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The second term is a constant of motion, and the two re-To see what this state is, recall the relations between the lo-
maining terms are non-commuting cartesian components ofcalized wavefunctionsip to the quasi-degenerate, delo-
the quasi-spin. This reveals at once that one can diagonal<calized wavefunctionay, » which imply the relations

ize the hopping term proportional t by choosing a rep-
resentation in terms of the simultaneous eigenvectors of the ay
square of the total spin and of the componédnt and in V2

this case the on-site tWO-bOdy effective interaction term will where the anihilation operatorﬁ,2 are associated to the
have off-diagonal matrix elements. Or, alternatively, one can quasi-degenerate single particle state rather than with the lo-
diagonalize the on-site two-body effective interaction term, calized states. Straightforward algebra then gives immedi-
by choosing instead the representation in whi¢hi—1) and ately

Js are diagonal, and in this case the hopping term will have

off diagonal matrix elements. The ground statedo# 0, 2J, = aiaf +ala, = a’{al _ agaz ,

which implies a completely impermeable barrier, is the state ] ]

|J = N/2,J; = 0) which corresponds to an equal number SO that the eigenstatg’ = N/2,.J, = N/2) is the state
of bosons in each well (assumifgto be even, and arepul- I which all N partlcles_ are in the lowest one of the quasi-
sive effective two-body interaction). Conversely, the ground degenerate single particle deublet, and therefore fully delo-
state in the casg = 0, and assuming < 0 (cf. the discus-  Calized. It can be expressed in terms of the common normal-

sion following eq. (5.3)), is the statd = N/2,.J; = N/2). Efzed eigenvectors of (J + 1) andJ3 after a simple calcula-
ion:

a1 £+ as

\J = N/2,.J; = N/2)

N\ N 1 ai—i—ai N
e (af) '0>:m<\/§ ) 0) =
N —n n
s () () ) -

N
— 2N1/2Z\/muzz\f/zjgz(N—2n)/2>. (5.7)
n=0

It will be convenient to refer to the alternate representationsto +.J, their scaled couterparts
in which the hopping term and the on-site two body effec-
tive interaction are diagonal simply as tligrepresentation G = Jr , J= N
and theJ; representation respectively. J 2

The preceding discussion provides enough elements forwhich have eigenvalues in the rangé to +1. The spec-
a qualitative understanding of the dynamics implied by the trum of the scaled operators therefore becomes very dense
model hamiltonian (5.5). One sees that the hopping term fa-in the semiclassical regime and may be treated as a continu-
vors delocalization of the particles so as to promote the rel-ous variable. At the same time, from the angular momentum
evance of the lowest member of the quasi-degenerate doucommutation relations satisfied by tlig, namely
blet; and that, on the contrary, the on-site two body effective
interaction favors the most symmetric state of theepre- [Jj, Jk] = i€jp i,
sentation, havings = 0, which means half of the particles \yparec., is the completely antisymmetric symbol, it fol-
localized in each of the two wells. In general the spectrum |« that
of Hgy will consist of N + 1 states in theV boson sec-

tor. The eigenvalues and eigenvectors can be obtained by S 20 ,

diagonalizing the hamiltonian matrix in any of the two rep- 755 7k] = N kL

resentations. so that the scaled operators approximately commute in the
semiclassical domaitv > 1. Furthermore, in this domain

5.2.2 Semi-classical domain the object

A semi-classical domain exists fof > 1, and in this case a e} = =1ijs dn) = eru (5.8)

formulation of the dynamics in classical terms may be use- 2

ful. To this effect, consider, instead of the three operators plays the role of the Poisson brackets of the dynamical vari-
Ji, k = 1,2,3, which have eigenvalues in the interval/ ables represented by the scaled operators. The quasi-spin
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hamiltonianper particlecan now be written in terms of the  surface in thejs x ¢ phase space. An example of the
scaled operators as surface representing the classical hamiltonian (per particle)
(5.9) can be seen in Fig. 5.5(a) below.
It is worth noting that these semi-classical results can
LHBH = hpg = aji + Aﬂ (1 + 1) + Aﬂjg ) also be obtained by using as ansatz for the hamiltonian (5.5)
2J 4 N 4 a product of coherent states for the two modes

Recall that the parametdris related to the “basic” strength
parameten = 47h?a/M of the effective two body interac-
tion by an integral over the fourth power of the mode wave- and introducing explicitly the constraint, | + [z_|? = N
functions, which is if the order of magnitude of the inverse together with the definitions = (|z|? — [2_|?)/N. The
volume of the system. ThereforeV is of the order of the  expectation value of the hamiltonian (5.5) turns out to be
constant\ times the mean density of the system. just (5.9), the angle variablg being the relative phase be-
To the extent that thg; can be treated as classical vari- tween the two coherent condensates; Arg(z;z* ). This
ables, this hamiltonian can be used to obtain their equationgthen provides for an interpretation of the angle variable of
of motion by using the Poisson brackets (5.8). In this way the quasi-spin treatment. The fact thet this angle variable

‘Z+Z_> = eZJr‘ll*ZiaJreZ—ai*z*_a, |0>

one obtains is canonically conjugate tg;, which measures the popula-
_ tion inbalance of the two localized states, indicates that, in
i = {ji,hpu} i—=1.2.3 a quantum regime, the population inbalance and the rela-
dt ’ ’ o tive phase of the condensates are quantities which maintair

from which it it easy to check thaf_>_, ;2 is a (classical) complementarity relations to each other.

constant of motion. The variablgs are in fact the carte-
sian components of a unit, classical quasi-spin vector which5.2.3  Quantum domain
rotates in time as dictated by the equations of motion. The
variable which is canonically conjugatedip= cosd is the
azimuthal angley of this rotating vectorg being the usual
colatitude. The “classical” hamiltonian (cf. ref. [61]) can

thus be written in terms of canonical variablgsy as

The quantum mechanical ground state of the two-site Bose-
Hubbard hamiltonian in either of the forms (5.5) or (5.6)
cannot be associated with a sharp value/gf(i.e., of the
population inbalance) due to the presence in the hamilto-
nian of the hopping term, proportional t§ and therefore
non commuting with/;. Since the total number of particles

B AN 1 is a constant of motion, this means that there will be cor-

2 / 9
BH = ~4 <1 TN +]3> tay/l—jscosp. (5.9) related quantum fluctuations of the two number operators,

aLaJr anda' a_.

Here the relatiosin # = /1 — j2 has been used. Note that, The quasi-spin representation, including the fact that the

since0 < A < m, the suare root must be taken with positive operatorJ(.J + 1) is a constant of motion, makes the prob-

sign. lem “soluble”, in the sense that eigenvalues and eigenvectors
The canonical equations of motion are can be obtained from the diagonalization of finite matrices.

In such a numerical procedure, the eigenvectors injthe
representation

de AN | J3

— = —/J)3— Q@———=CO08

dt B J3 17j§ ¥ ;

dj n

% = ay/1-j2sing, Hppy|E,) = Eq|E,), En) = > cD)J,m),
m=—J

(5.10)
give directly the corresponding distributions of the occupa-
tion ratios for the two localized states in the form of the ar-
raysof2J+1=N+1 numbers{|c§£f) |2}. The correspond-
ing distribution in the relative phase between the two con-
densates, which is conjugate to the distribution of occupa-

and the classical stationary states are at the values of
and j3 for which the time derivatives vanish. This implies
sin ¢ = 0, so thaty = 0 or ¢ = 7, the coresponding values
of j3 being respectively the solutions of

(AN cos o tion inbalance, can be obtained by taking a discrete Fourier
3| 5 - —F— ] =0, cosp = 1. transform of the energy eigenvectors in thaepresentation

2 V1-3

Thus solutiongjs = 0 with o = 0 or 7 always exist, other 1 J .

solutions being given by/1 — j2 = 2acosp/AN. For &n = NI RS e 3 ) -J<v<J.

a < 0 only the possibilityy = 7 remains for these other ==

solutions, which furthermore will exist as real numbers only

if 402 < A2N2. The minimum energy static solution for It is then given by the arrag|éy”|2}, which is complemen-

a < 0isatjs = 0, p = 0. Other solutions correspond tary to the array which describes the distribution of occupa-
in this case to maxima or saddle points of the hamiltonian tion ratios. Examples of such distributions are shown in
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(b)

(@)

0.8

0.6 0.01

0.4

action
0.2

20 40 60 80 -1

0.4
0.02

0.3
0.01

0.2

action

0.1

20 60 80

Figure 5.3.Top: (a)Distributions of population inbalance (full line) and relative phase (dashed line) for the ground state of the two site
Bose-Hubbard model witt' = 80, a = —1.0 x 10~% Hz andA = 0.0146 Hz). In the case of the population inbalance, the labels on
the horizontal axis are to be read2(sn + J), —J < m < J = 40. In the case of the relative phase distribution they are to be read as
40(1 4+ ¢/7), which corresponds tp = —7 at the origin andp = = at full scale;(b) Discrete Wigner function for the same case. The
axis labeled “action” refers tgs, that labeled “angle’refers tg. Bottom: Same as the top figures, with the barrier somewhat lowered
(A unchangeda = —1.9 x 1072 Hz). One sees clearly the better definition of the relative phase and some loss in the definition of the
population inbalance between the two wells.

Fig. 5.3(a) for two different heights of the interwell poten- rectly from the amplitudes which appear as expansion co-
tial barrier. Note that these adiscretedistributions, whose efficients of the considered energy eigenstaig) in the J;
entries are labeled respectively by the eigenvatuef J; representation as in eq. (5.10). This procedure has been used
(or, equivalently, by2m/N) and by the discrete set of an- in ref ([31]) and is discussed in detalil in ref. [62]. It is im-
gles2rm/(2J + 1) = 2rm/(N + 1), which appear in the  plemented basically in the following steps. Given the array
discrete Fourier transform. of aplitudes{c\s’}, —J < m < J, and assuming thaf is

Alternatively, one can visualize both distributions simul- an integer, which implies thaY is even, one first constructs
taneously by calculating a discrete Wigner distribution di- the matrix

J .

1 27 l

. (n) (n)* o em v
r(k,1) ST m:Eﬁ] Con’ €l 1y €XP [ 5T 1 1k;(m + 2)]

where the range of the integétrandi is —J < k, ! < J and the inde{m + [} denotes the value ek + [ cyclically confined
to the range-J, J of the basis labels. Explicitly, one has

m+1l+J
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where Floorg) denotes théargestinteger (negative for < 0) less than or equal to. The desired discrete Wigner phase-
space representatimé?) (p, q) of the statg E,,) is then obtained as the double (discrete) Fourier transform

2711

(2J + 1) ay(p, q) = \/ﬁ ;exp {W(pk + ql)} r(k,1).

in fact be obtaining by summing the Wigner function over
the complementary variable. The case of a still stronger hop-
ping term,a = .1, also for N = 80, is shown in Fig. 5.4.
The Weyl transform of the corresponding quantum hamilto-
0.01 nian is shown in Fig. 5.4(b), while part (a) of the same figure
- shows its classical version.

There is a somewhat subtle property of the hamiltonian
which gives rise to an important property of its eigenstates,
concerning the experimentally important class of one-body
observables. This property is best expressed in terms of the
number operators for thé, representation, namely those
associated with thTe delocalized membeys, i = 1,2 of

. . ) . the active doubletz;a;, i = 1, 2. It consists in the fact that,
s She e fanclr o (he 810U S o even though these nurmber operators are not themselves cor
—0.1. The classical lowest energy state is represented in this Stants of motion, the hamiltonian does not mix eigenstates of

0.02

action

-1

o = N A ;

phase-space diagram by the single pgint 0, js = 0. Increas- either of them whose eigenvalues differ by @d number
ing the number of particles decreases the relative variances of theof particles; or, in different words, the hamiltonian admits
population inbalance and relative phase distributions. the modularconstants of motion

In this expression the range of the integgrandq is also p = (71)(1;% i—192 i e

bounded as-J < p,q < J, and the properly scaled vari- ' o T

ables corresponding t3 andy areq/J and2xp/(2J + 1) [P, Hpy] =0, i=1,2. (5.11)

respectively. The Weyl transform of the hamiltonian can be
obtained in exactly the same way, replacing the amplitude This property can be easily verified by re-expressing the

product&ﬁﬁ)cggil} by the matrix elements/,m | hpy | hamiltonian (5.5) in terms of the operatats a} and noting
J, {m~+1}) multiplied by the number of stat@ + 1, when that each term either maintains the occupancy of each state
evaluatingr(k, ). fixed or changes it bywo particles. Due to the conservation

Figure 5.3(b) shows the discrete Wigner functions for of the total number of particles the number_o_perattjm_&,
the ground states whose population inbalance and relativel = 1,2 are themselves correlated, so that it is sufficient to
phase distributions are shown in the parts (a). The latter canconsider just one of them, sa)}al.
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Figure 5.5.(a) Energy surface representing the classical Bose-Hubbard hamiltonian for two sites, eq. (5.9) multiplied by the numbe
particles (V = 80), for A = 0.0146 anda. = —0.1; (b) Discrete Weyl transform of the quantum hamiltonian /r= 80 and for the same
values ofA anda.
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As a consequence of this property, the eigenvectors ofwherel is the unit2 x 2 matrix. SinceTrp = N, one has
(5.5) can be chosen to be simultaneous eigenvectofs of 2A+ B = N andJ; = B/2, orj; = B/N, and the pa-
(they will automatically fulfill this property except for rea- rameter relevant for the visibility ig; (or j;, or B). For
sons of degeneracy) and as such divided in two classes acthe two cases shown in Fig. 5.3, in whiéh = 80 and the
cording to the eigenvalues of the modular constants of mo-dominant term in the hamiltonian is the on site two body ef-

tion. In particular, a non-degenerate ground sté&g will fective interaction, withlA = 0.0146 Hz, one hasB = 36.3

be an eigenstate @,. This has important consequences for (for a = 1.0 x 10~ Hz), which corresponds tp = .454,

its one-particle density matrix andB = 68.9 (for « = 1.0 x 10~3 Hz), which corresponds
to j; = .860.

p(F,7) = (Dol ! (7) ()| o) ,

which in the case in hand can be expressed as a two by two>-3 M{iny site one dim?_nSionaﬂ arrays, peri-
matrix in the.J; representation odic boundary conditions

A more general class of systems to which many of the above
(%Iﬂm\%) <<I>0|a§a1|¢>0> results still apply is _that of oqe-dimensional arrays of con-
p= ( (@ |aTa Do) (@ |a]‘a £ > densate fracnqns with periodic boundary pondlthns, wh|ch
01%1%21%0 01%2%210 has been studied recently, form a mean-field point of view,
by Paraocoanu[63]. The idea is to arrangecondensate frac-
tions in a “circular array”, so that the the the first one is also
next to thev.—th one. The Bose-Hubbard hamiltonian for
this system has the form (5.4) with degenerate sit&s< 0
fori=1,...,v.),l.e.

In fact, the operators appearing in the off-diagonal matrix
elements change the eigenvaluefdf and therefore their
expectation value vanishes when taken with respect to an
eigenstate of this operator.

As a consequence of the modular constant of maktpn
we find therefore thathe one body density matrix is diago-
nal in the J; representationThis means that the delocalized
statesuyp;, ¢ = 1,2 are the natural orbitals which carry the H,(;I}) =a Z (U;ja‘j + a}ai) Z a; a a;a;

coherence properties which are relevant for one-body ob- <iyj>

servables. Correlations introduced into the ground state by (5.12)

the non comitativity of the hopping term and the on-site two- where the sum over nearest neighbors includes the term
body effective interaction will affect just the relative weights a{al,c + a,ﬁcal. The operators;, aI, i1=1,...,v. refer to

of the two quasi-degenerate modes. This immediately sug-the single particle states of a localized (Wanier) base. One
gests a considerable stability of aogpe bodyinterference  car however introdice a complementary base by defining the
patternsassociated with the nature of the doublet wavefunc- alternate creation and anihilation operators

tions, the effect of many-body correlations being manifest

rather in their visibility. These patterns are in fact entirely

determined.by the one body density matrix, wuich in fhe Al = Z o— 25Dk i al, n=0,. . v —1
representation takes the form

p=A1+ B |up:){up| in terms of which the hamiltonian becomes
]
o) _ 2mn A
Ve T
Hy —~ Al AT AA,, (5.13)
n=0 €n ,p,q=0

i.e., in the complementary base the hopping term is diago-diagonalizes the one-body density matrix associated with

nal. The indices:, p andgq in the two body term run fror the simultaneous eigenstatesify and of this “modular
to v, — 1, and the indiceg + n, p — n are to be understood momentum”. This constant of motion allows now for the
as modulov, (9. v. +2 =2, —v.+1 =1, v, = 0). classification of the energy eigenstates of the model.in

The structure of this term therefore reveal the conservationclasses according to the value of the total modular momen-
of the “modular momentum” associated to the index of the tum. Thus, for an eigenstat®,),
creation operators of the complementary base.
;
Thus the complementary base plays in this case the same Poa = (Rol Ay Apl®o) = 1y0pq
role as the/; representation in the two-site case. Not only it In fact, wheng # p the operator defining the one body den-
diagonalizes the pure hopping & 0) hamiltonian, butalso  sity matrix element changes the value of the total modular
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momentum of|®y), so that the coresponding matrix ele-
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(4]

ment vanishes. One has therefore again a situation showing
marked propensity for the preservation of one-body interfer-

ence patterns, even if with varying degrees of visibility, as

(5]

the competition of hopping and on site two body interactions

reduces the coherence of the one body density matrix.

.

— alpha

-0.8 -0.6

(6]

[7

—_—

8

—_

9]
(10]

(11]

Figure 5.6. Dependence of occupation numbers #(diagonal matrix
elements of the one body density matrix in the complementary rep-[12]

resentation) with hopping parameter The two body interaction

parameter i\ = 1 + «. Occupation numbers are calculated with

a mesh of0.1 in «. In this caseN = 10 andr. = 5. The two

(13]

lowest occupations are doubly degenerate each and correspond to

then # 0 states. The upper points corespond torthe 0 state.

The hamiltonians (5.12) and (5.13) are also “soluble”
in the same sense as the two site Bose-Hubbard hamilto-

(14]

nian, i.e., eigenvalues and eigenvectors can be obtained b){
numerical diagonalization of finite (if possibly very large) 15]
matrices. These methods again indicate considerable per-

manence of large occupations of the-= 0 state of the com-

(16]

plementary base in the ground state one body density matrix

up to fairly strongly dominating on site two body interaction [17]
effects. An example of this is shown in Fig. 5.6, where re-
sults for a loop containing five condensate fragments with 18]
a total of ten particles are shown. The occupations of the

five different states of the complementary base are such tha
those corresponding te andr, — n are equal. This then

f10)

gives in general three different occupation numbers, two of
which appearing twice. The non doubled occupation os that[20]

for n = 0, which dominates over the range|//A >~ 0.1.
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