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Some fundamentals of M�ossbauer spectroscopy and of 
uctuating magnetic hyper�ne interactions
are reviewed. An expression for calculation of spin-phonon interaction transition probabilities on
the ground of a Debye model is given. Basic ideas of superparamagnetism and classical results for
low-temperature relaxation rates are presented. A theory of superparamagnetism based on spin-
phonon interaction is introduced. It is shown how to calculate from this M�ossbauer spectra taking
all spin-levels into account. Experimental spectra of ferro
uids are compared with simulated spectra
and found in good accordance.

I Introduction

The M�ossbauer e�ect is based on the \recoilless" ab-
sorption and emission of low energy (E0=10-100keV)

-photons in solids [1,2]. A simple explanation for this
e�ect relies on the Heisenberg uncertainty relation: the
uncertainty in momentum �p � ~=�x of bound atoms
is of the order of 10�23 kgms�1 (�x = 0:1�A ) but the re-
coil moment of e.g. a 
-photon with energy E0=10keV
is smaller (~ � 5 � 10�24 kgms�1), i.e. the recoil which
eventually can excite vibrations (phonons) of the emit-
ting atom sometimes may not be measurable. The re-
coil is then transmitted to the crystal as a whole and
since the mass of the crystal is much greater than the
atomic mass it does not alter the 
-energy (\recoil-
less" emission). The M�ossbauer radiation emitted from
a M�ossbauer source has therefore the exact resonance
energy necessary for absorption in an absorber contain-
ing the same material as the source. Moreover, when
the lifetime � of the excited M�ossbauer energy level
is longer (e.g. � = 10�7s) than the inverse vibration
(phonon) frequency of the emitting or absorbing atom
(e.g. 10�13s) the atom carries out many cycles during
the lifetime and the Doppler broadening of the emitted
radiation averages out. As a result a sharp line with
the natural linewidth � = ~=� at the position E0 is
emitted from the source and nuclear resonance absorp-
tion with an energetic resolution �=E0 = 10�13, suf-

�cient to resolve hyper�ne interactions, is possible [2].
The above mentioned conditions for recoilless emission
limits the M�ossbauer isotopes to those isotopes which
possess low energy nuclear 
-transitions (small recoil
moment), long lifetimes of the excited state (hyper�ne
resolution), high Debye temperature (small �x) and
solid sources and absorbers. These conditions are ide-
ally ful�lled for 57Fe which is indeed the most popular
M�ossbauer isotope. Fig. 1 shows schematically the de-
cay scheme of 57Co, which is used as parent for a 57Fe
M�ossbauer source. The M�ossbauer resonant absorption
and varios re-emissions are also indicated in Fig.1. In
order to vary the energy of the M�ossbauer radiation
emitted by the source in the range of hyper�ne ener-
gies and thus render possible M�ossbauer spectroscopy
it is suÆcient to move the source with some mm/s. The
intensity of the M�ossbauer photons behind the absorber
as function of the relative velocity between source and
absorber represents a M�ossbauer (transmission) spec-
trum as shown schematically in the insert of Fig.1.

I.2 Hyper�ne Interactions

The interaction of the extended nuclear charge with
electrons present in the nuclear volume leads to a shift
of the center of the spectrum (isomer shift) and pro-
vides information on the valence state of the M�ossbauer
atom.
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Figure 1. Decay scheme of 57Co and M�ossbauer resonance absorption and re-emission of 57Fe. Insert: M�ossbauer transmission
spectrum.

An electric �eld gradient present at the nucleus'
site interacts with the nuclear electric quadrupole mo-
ment and results in a (quadrupole) splitting of a single
M�ossbauer line (into two lines for nuclei with nuclear
spin of the ground and excited states, Ig;e = 1=2; 3=2;
respectively). This nuclear quadrupole interaction al-
lows conclusions on the valence, bonding properties and
symmetry of the vicinity of the M�ossbauer atom.

The magnetic hyper�ne interaction is especially im-
portant in our context. The main part of it stems from
the Fermi contact interaction which is the interaction
of the nuclear magnetic dipole moment with a net spin-
up or down s-electron density at the nucleus. It can be
represented by a spin-Hamiltonian [2]

Hmhf = ~S
$

A ~I; (1)

where
$

A is the hyper�ne tensor. When the hyper�ne
tensor is isotropic, i.e. Hmhf = ASzIz with the hy-
per�ne interaction constant A, we can interpret it as a
nuclear Zeeman e�ect due to the �eld Bn at the nucleus'
site (inner �eld)

Hmhf = �gn�BBnI: (2)

For a M�ossbauer isotope with Ig;e = 1=2; 3=2 a six-
line spectrum with relative intensities depending on the
angle between the 
-direction and the z-axis results.
The presence of six lines in a 57Fe M�ossbauer spectrum
thus indicates the presence of a (static) magnetic �eld
at the nucleus which may be caused by long range order
magnetism.

I.3 Fluctuating hyper�ne �elds

Fluctuations of the hyper�ne interactions can alter
the spectra. E.g. when Bn changes it's direction many
times during the lifetime of the excited state the nu-
cleus \sees" only an average zero �eld and the splitting
collapses.

It can be shown that the M�ossbauer absorption
spectrum I(!) observed in the energy (frequency) do-
main, i. e. the number of counts in transmission di-
rection behind the absorber as function of the source
velocity v, is given by the real part of the trace of the
spectrum of the temporal correlation function of the
M�ossbauer radiation operator A (e.g. magnetic dipole
radiation) as [3,4]

I(!) =
2

�
Re

Z 1

0

dte�ptTr(�A(t)A+(0)); (3)

where p = �=2�i!(E0 = ~! = E0v=c) and � is the den-
sity operator of the whole system. It is advantageous
here to use superoperators and Hamilton superopera-
tors Hx (Liouville operators) in order to avoid time
ordering problems when H(t) is not commuting with
itself at di�erent times as is the case when combined
nuclear quadrupole and (non-diagonal) magnetic hyper-
�ne interaction is present. A superoperator Ax acts on
another operator B in the form A

xB = A+B � BA
which is equal to the commutator [A;B] when the op-
erator A is hermitian. The Liouville operators can be
represented in a projector base jij) = ji >< jj of the
Hamiltonian eigenstates ji > and jj > and the eigenval-
ues of Hx are the spectroscopic important di�erences
(Ei � Ej). The product (BjA) is given by (BjA) =
Tr(B+A) and the time evolution A(t) of an operator A
can be written exp(iHt)A exp(�iAt) = exp(iHxt)A(0):
We can then write [4]

I(!) =
2

�
ReTr

�
�A

1

p� iHx
A+

�

=
2

�
ReTr

Z 1

0

dte�pt�eiH
xtA(0)A+(0); (4)

Here a practical diÆculty arises: Hx comprises the
entire solid (nucleus-electrons-phonons- photons and in-
teractions) and the calculation of I(!) involves the in-
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version of matrices with huge dimensions. Two simpli-
fying approaches have been used: the stochastic and ab
initio models. We present here some ideas on the latter
model.

The Hamiltonian of the system is subdivided

H = HIon +HBath +HIon�Bath: (5)

One shows then that under the assumptions
H
x
Bath�Ion << HIon; HBath (convergency of approx-

imation solution) and � = �Ion � �Bath (irreversible
Bath-Ion interaction) the M�ossbauer spectrum is given
by [4,5]

I(!) / ReTrIon(�IonA[p� iHxIon �R(p)]
�1A+); (6)

where the relaxation superoperator R contains matrix
elements of the spin-operator Sq and bath correlation
spectral densities which depend on bath-operators Fq .
Here the ion-bath interaction was described by a dy-
namical spin Hamiltonian HIon�Bath =

P
q SqFq :E:g:

in 2nd order of HxIon�Bath after some tedious calcu-
lation one obtains as relaxation supermatrix elements
[5]

c

(ge)jRjg0e0) =
X
q;q0

"
Ægg0

X
e"

< e0jSq0 je" >< e"jSqje > I 0q0q(!g � !e + ip)

+ Æee0
X
g"

< g0jSq jg" >< g"jSq0 jg > I"q0q(!g" � !e + ip)

� < e0jSqje >< gjSq jg
0 > I"q0q(!g0 � !e + ip)

� < gjSq0 jg
0 >< e0jSqje > I"q0q(!g � !e0 + ip)] (7)

d

with the reservoir correlation spectral densities

I 0q0q(
) =

Z 1

0

ei
tTrBath[�BathF
I
q0(t)F

I
q (0)]dt

I 00q0q(
) =

Z 1

0

ei
tTrBath[�BathF
I
q (0)F

I
q0(t)]dt (8)

where the bath operators F I
q;q] are in the interaction

representation. When I 0q0q and I"q0q are independent of
! (\white noise approximation", normally valid in the
case of spin-phonon relaxation), the matrix elements
(egjRjeg) are transition probabilities W e

g between the
states je > and jg > :

I.4 Spin-phonon interaction

Simplifying, we start with a dynamical spin-
Hamiltonian which represents the spin-phonon interac-
tion in 2nd order perturbation theory (Bq

2 are coupling
constants) [6,7]

HBath�Ion =

2X
q=�2

Oq
2B

q
2(�av + �2av + :::) (9)

with the averaged strain operator

�av =
X
j

�
~

2M!j

�1=2

kj(a
+
j e
�i~kj~r + aje

i~kj~r): (10)

The equivalent operators Oq
2 contain the ladder op-

erators S2
�. We take only direct processes into account

(see Fig.2) where the absorption (annihilation) or emis-
sion (creation) of a phonon leads to a spin transition.

Figure 2. Spin excitation by absorption of a phonon in a
direct process.

The spectral bath correlation density can then be
calculated in the harmonic approximation by introduc-
ing the Debye model. In the long-wavelength limit
(! = vk) we obtain (� = M=V = density, v = aver-
aged sound velocity)
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c

I
0(2)
q0q = I

"(2)
q0q =

3(!m0 � !m)
3Bq0

2 B
q
2

4�~�v5
�

1

e~(!m0�!m)=kBT � 1
(11)

and the spin-phonon transition probabilities (cf. Fig.2) are

Wm0

m =
3(Bp

1)
2j < m0jOp

1 jm > j2

2�~�v5
(Em0 �Em)

3

exp((Em0 �Em)=kBT )� 1
: (12)

d

With these relations paramagnetic spin-phonon re-
laxation spectra of e.g. Fe(III) impurities (S = 5=2)
can be calculated, eventually using e�ective spins - [5]
because the supermatrix for S = 5=2 has already a
rank of (2Ig + 1)(2Ie + 1)(2S + 1)2 = 288 for 57Fe and
is not hermitian. An example for Fe(III) impurities
in monocrystals of LiNbO3 is given in [8]. For big-
ger spins like that corresponding to the total magnetic
moment of magnetic nanoparticles (S = 1000-10000)
the rank of the supermatrix involved would be of the
order of 108, without any possibility of numerical treat-
ment. But it is yet possible to realize calculations for
big spins when only diagonal interaction is present and
thus no superoperator formalism is needed for the com-
bined stochastic-quantum mechanical problem (see be
below in section II.4).

II Superparamagnetism

Superparamagnetism has to do with the thermally in-
duced inversion of the magnetization of small (nano-
sized) magnetic particles. This is an important phe-
nomenon since ultra-�ne magnetic particles are impor-
tant in many systems, e.g. in soils, rocks, argiles, ce-
ramics, paintings, living organisms (ferritin, magnetic
bacteria, magnetically based navigation of animals),
recording media (what is the ultimate magnetic stor-
age density?), catalysts, etc. and ferro
uids.

II.1 Basic ideas of superparamagnetism

When the dimensions of a small magnetic particle
are of the order of the width of a Bloch wall the par-
ticle will be a single domain particle. At low tempera-

tures the spin waves are frozen and thus the magneti-
zation is equal to the spontaneous magnetization Ms.
Since the exchange (or superexchange) interaction is
predominant compared to anisotropy interactions jM j
may be regarded as constant so that the only degree of
freedom of the magnetization would be its orientation
� relative to some (uniaxial) anisotropy axis. When
measuring a property related to the magnetization at
T > 0 it may happen that the magnetization 
uctu-
ates (thermally activated) between easy directions and
the characteristic time of measurement is greater than
the (overbarrier) 
uctuation time of the magnetization.
In this case we say that superparamagnetic behavior
is measured (the measurement method \sees" only the
time-averaged value). From now on we will use the fol-
lowing simpli�cations: only an uniaxial symmetry of
the form [9-12]

E(�) = KV sin2� �MsV B cos � (13)

is present (K = anisotropy constant, V = volume of
the particle), the external �eld B is parallel to the pos-
itive z-direction, all particles are identical in material,
form and spatial orientation and are uniform (no sur-
face e�ects) and isolated (no particle-particle interac-
tion) and the rotation of the magnetization happens by
coherent rotation of the spins (\unison"). Under these
circumstances various authors deduced expressions for
the relaxation time � of reversions of the magnetization
between the easy �z-directions.

N�eel [11] relates the vibrational strain energy of the
particles to its thermal energy and calculates the mag-
netic energy caused by the deformation. At low tem-
perature he obtains

c

��1
�N�eel

= (2K=�G)1=2
0M
�1
s j3G�+DM2

s j�
1=2(1� h2)1=2(1� h) exp(��(1� h)2); (14)
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where G is Young's modulus, 
0 = g�B=~ � ge=m
is the gyromagnetic ratio, � = KV=kBT and h =
BMs=2K is the reduced external �eld (0 � h � 1):

Brown [12] considers a random walk of the magne-
tization on a sphere similar to Brownian motion. In
the classical equation of motion of the magnetization
(Gilbert's equation) a dissipative and random �eld term
h(t) is introduced. A Fokker-Planck equation is ob-
tained which is approximately solved. The result for
low temperature (� << 1) is

��1
�Br � (
0K=�

1=2MS)�(1�h
2)(1�h) exp(��(1�h)2):

(15)
This expression is widely used in the literature but

it's not valid for high temperatures and h � 1.
Bessais, Ben-Ja�el, Dormann [13] �nd more ex-

act solutions of the Fokker-Planck equation by using
Fourier and Chebyshev series and deduce

��1BBD = K
0MS(1 + �=4)5=2��1 exp(��): (16)

Villain et al. [14] analyze paramagnetic like relax-
ation in magnetic molecules with S = 10 due to spin-
phonon interaction. The corresponding relaxation rate
was calculated to

��1V � 3B2(KV )3(2�~4�v5�S4)�1 exp(��): (17)

Jones, Srivastava [15] introduce the \many states
model" in order to calculate M�ossbauer spectra (see be-
low in section II.4). For a large (classical) spin (contin-
uum limit) they also deduce from this model a Fokker-
Planck like equation and solve it in the low temperature
regime and obtain (R / square of a random �eld)

��JS�1 � R�1=2�3=2(1� h2)(1� h) exp(��(1� h)2):
(18)

One observes that all these expressions contain
the same Arrhenius-like exponential factor but vari-
ous prefactors. In principle they are only valid in
the low temperature regime. No microscopic, non-
phenomenological explanation of the superparamag-
netic mechanism is given by the above authors.

II.2 Superparamagnetism by spin-
phonon relaxation

Recently a mechanism for superparamagnetic relax-
ation based on spin-phonon interaction was suggested
[16]. We shortly repeat here the main ideas and results
of this work.

The supposed unison rotation of the spins sug-
gests the attribution of a large spin to the magneti-
zation de�ned by MsV = g�BS. Relating Scos� to
the spin operator Sz and suppressing a constant term
KV , the anisotropy energy (13) corresponds to a spin-
Hamiltonian

Hsp = �AS2
z � g�BBSz; (19)

where g is the electronic g-factor, �B the Bohr magne-
ton and AS2 = KV (height of the barrier for B = 0).
The superparamagnetic relaxation of the particles is as-
sumed to be induced by interaction of the large spin S
with the phonons of the particle (or of a bath). In or-
der to turn over between opposite easy directions the
spin S must pass through intermediate levels charac-
terized by Sz. Eigenvectors of (19) are jSz >= jm >,
with eigenvalues Em = �AS2

z � 2AhSSz for Sz =
�S;�S + 1; :::; S � 1; S: Fig. 3 shows a graph of Em

vs. m and a possible phonon induced spin transition
between the lowest levels of both sides of the barrier.

Figure 3. Anisotropy energy vs. eigenvalues with applied
magnetic �eld. Spin transitions from j � S > to jS > with
�m = �n = 2 are indicated.

II.3 Calculation of a relaxation time for
jS >$ j� S >

The spin transition rate induced by phonons is given
in (12). Considering only the relaxation jS >$ j�S >
under the condition that the occupation of all in-
termediate levels remains constant (pseudo two level
system) and assuming detailed balance, a rate equa-
tions system (master equations) can be established and
solved for a relaxation time �� [16]. In the case of
spin jumps with �m = �n = 2 we obtain (C 0 =
(3(B1p)

2=2�~4�v5)(AS2)3; �� = �(1� h)2)

��1� = C
0
�1 exp(��)(S=2)

6(�(+h) + �(�h))

with
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c

�(�h) =

S
2
(1�h)�1X
i=0

exp
�
��

�
2
S

�2
i2
��

1� exp
�
��
�
2
S

�2
(1 + 2i)

��
(1 + 2i)3(S(1� h� 2i)(S(1� h)� 2i� 1)D)1� h) + 2i+ 2(S(�h) + 2i+ 1)

: (20)

A good approximation up to h � 0:95 is

��1� � 5C 0��1(1� h2)2 exp(���) � 2 � 1013s�1��1(1� h2)2 exp(���): (21)

d

Here S = 3222, � = 5000kgm�3, v=3000ms�1 and
KV = AS2 = 2:67�10�20J was assumed, which are typ-
ical values for a 90�A MnFe2O4-particle with 5 spins per
unit cell of 8.4�A lattice constant [16,17]. For the only
free parameter, the coupling parameter B2

2 , a value of
13cm�1 was chosen, which results in relaxation rates in
accordance with the experiments.

The functional dependence on the anisotropy en-
ergy KV , temperature T and external �eld (h) in the
expressions (14)-(18) and (21) is similar. They contain
the same Arrhenius-like factor and di�er only slightly
in the �eld dependence of the pre-factor, which is pro-
portional to (1� h2)(1� h) in (15) and (18) instead of
(1�h2)(1+h)(1�h) in (21). In view of the completely
di�erent physical approach used this may be remark-
able. Of course all the expressions di�er in the other
factors which appear in the pre-factor since they de-
pend on the parameters involved in the speci�c model.
We conclude that our model adequately describes su-
perparamagnetism.

On the basis of (21) M�ossbauer spectra can be cal-
culated using an e�ective spin. At low temperature
experimental spectra can be reproduced [17]. Spectra
at somewhat higher temperature can approximately re-
produced taking collective excitations, i. e. a thermally
averaged inner �eld, into account. However for higher
temperatures this method fails and calculations based
on the method presented in the following are indicated.

II.4 Multi-level calculation of M�ossbauer
spectra

In the case of isotropic magnetic hyper�ne in-
teraction and diagonal nuclear Hamiltonian (nuclear
quadrupole interaction << magnetic hyper�ne interac-
tion) the expression (6) and (7) can be simpli�ed so that
no superoperators are needed. Furthermore one can
simulate a M�ossbauer spectrum by summing up three
separately calculated spectra consisting of the pairs of
lines (1-6), (2-5), (3-4) in the six-lines spectrum. The
simpli�ed expression [15] for one pair of lines reads

I(!) / 2Re( ~W
$

M
�1

~I) whit
$

M= (i(!�!i)+�)
$

1 �
$

R;
(22)

where
$

W is a row vector consisting of probabilities
(Boltzmann factors) of the (2S + 1) states and M con-
tains the static line positions !i, given by the splitting
(1-6), which is assumed to be proportional to Sz . The

relaxation matrix
$

R has as elements transition proba-
bilities rij =Wij between the states ji >! jj > (i 6= j)

and rii = �
P

j W
j
I (i 6= j). The total M�ossbauer spec-

trum is obtained by summing up the three calculated
two-lines spectra (1-6), (2-5) and (3-4), where in the
calculation of the !i adequately reduced splittings (2-5)
and (3-4), still proportional to Sz, and the same transi-
tion probabilities as in the calculation of (1-6) are used.

As before, for the spin-transitions �Sz = 2 is pre-
sumed. We take therefore only spin-matrix elements,
that contain S2

�, into account, which results in transi-
tion probabilities

c

W
Sz�2

Sz
= C(B=cm�1)2S4

�
1�

Sz
S

��
1�

Sz
S
�

1

S

��
1�

Sz
S

+
1

S

��
1�

Sz
S

+
2

S

�
(4AS)3

�
� 1

S �
Sz
S � h

�3
e

4AS
kBT

(� 1

S
�
Sz
S
�h) � 1

: (23)

Sz = �S; :::;�S � 2
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The Boltzmann factors contained in
$

W are

Wx / exp

 
�
KV

kBT

 
(1 + h)2 �

�
Sz
S

+ h

�2
!!

: (24)

Introducing these expressions in (22) one can simu-

late M�ossbauer spectra. The inverse of
$

M is required
for each value of ! (256 M�ossbauer velocities), involving
a order of 256 times N3 operations for a matrix of rank

N . In our case
$

M is tridiagonal and thus only of the or-
der of 256N2 operations are necessary for inversion. A
further signi�cant saving in computer time is obtained

by observing that in (22) in fact not the inverse
$

M
�1

but only
$

M
�1

~1 is needed. Writing
$

M
�1

~1 = ~V or the
$

M ~V = 1 problem is reduced to solve a set of simulta-
neous linear equations for which requires only an order
of 256N operations [15,18]. This method allows one to
simulate spectra for spins S up to several thousand, cor-
responding to spins found in real systems, on a modest
computer in a few minutes.

Fig. 4 shows some simulations of spectra using this
multi-level relaxation method for a spin S = 3222 at
di�erent temperatures and several external magnetic
�elds. The parameters used in the calculations of the
transition probabilities are that of eq. (21).

Figure 4. Simulated M�ossbauer spectra at di�erent temperatures and zero external �eld (left) and di�erent �elds at 600K
(right). See text.

Despite the above described possibility of rapid sim-
ulation of spectra for a large spin it may sometimes be
necessary to use a smaller (reduced) spin in order to
calculate real spectra. E. g., if the simulation of pow-
der spectra is desired, one has to e�ect an average over
the di�erent orientations of the crystallites relative to
the external �eld- and 
-direction. This implies in the
presence of a �eld component perpendicular to the z-
axis, which results in a mixture of the spin levels, so

that
$

M is no longer tridiagonal. Furthermore, when
size-dispersion is present, as is always the case in real
samples, one has also to sum up suÆciently spectra cor-
responding to di�erent volumes (and anisotropy con-
stant values K, which often depend on the crystallite
size).

Figure 5. Variation of S; S = 3222, 322, 32 (simulation time
= 5min, 20s, 3s).
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We compared therefore spectra simulations for dif-

ferent values Sred of reduced spins at di�erent temper-

atures. The result is shown in Fig. 5. It can be seen

that practically identical spectra are obtained for di�er-

ent spins when the temperature is reduced by a factor of

approximately S=Sred. One can therefore use a smaller

spin Sred in practical simulations.

III Application to ferro
uids

Many ferro
uids are based on nano-sized particles of

ferrites. Static M�ossbauer spectra of ferrites can nor-

mally be satisfactorily �tted by two sextets with rela-

tive total area corresponding to the ratio of 57Fe atoms

on octahedral and tetrahedral substitutional sites (N�eel

model [19]). However, for simpli�cation of the calcula-

tions, we use in the following simulations only one single

sextet with larger (�0.4mms�1) linewidth and suppress

also the quadrupole splitting. In the calculations also

the size distribution (log-normal distribution with mean

diameter d0 and width �) as deduced from the sample

synthesis and electron microscopy has been taken into

account by summing up spectra (sample synthesis by

F.A. Tourinho, UnB, Brasilia). The random orienta-

tion of the nanoparticles has been counted for by using

relative line intensities in the sextets of 3:2:1. Fig. 6

shows experimental spectra of a NiFe2O4 based frozen

ferro
uid in the temperature range T = 90...4.2K. In

the corresponding simulations a reduced spin Sred de-

pending on the crystallite diameter d (size distribution)

de�ned by Sred(d) = S(d0)(d=d0)
3 with S(d0) = 32 and

reduced temperatures Tred = T (Sred=3222) were used.

Similarly, Fig.7 shows experimental spectra and

simulations of a powder of CoFe2O4, precursor of a

cobaltferrite based ferro
uid. The simulations have

been done analogously to those of Fig.6. Considering

the various simpli�cations made the coincidence of ex-

perimental and simulated spectra is satisfactory.

IV Conclusion

Experimental superparamagnetic M�ossbauer line pat-

terns are reproduced by ab-initio simulations based on

a spin-phonon interaction model and taking intermedi-

ate spin levels into account, without using a thermallly

averaged hyper�ne �eld due to collective excitations.

We use spin-transitions probabilities per time W j
i de-

rived from a dynamic spin-Hamiltonian (weak spin-

bath interaction) that induces transitions in the spin

and phonon subsystems and adopt the Debye model in

the long wavelength limit.

With this method one is able to calculate M�ossbauer

spectra for S=3222 within several minutes (provided

that the relaxation matrix R is tridiagonal) on a small

personal computer. Comparison of spectra calculated

with a smaller spin exhibit similar shapes than that

of the \real" spin S, provided the temperature is ade-

quately reduced. Simulations of M�ossbauer spectra of

ferro
uids-ferrites are compared with real spectra and

show good correspondence.

Figure 6. Spectra of frozen NiFe2O4-ferro
uid, d0=10nm (left) and simulations with Sred(d0) = 32 and reduced temperatures,
log-normal size distribution (� = 0.1, d06 = 10 nm), K = 4 � 104Jm�3, no quadrupole interaction.
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Figure 7. CoFe2O4-powder spectra, d0=4.3nm (left). CoFe2O4-simulations, d0=5nm, �=0.1, S(d0)=32, K = 1:6 � 105Jm�3,
(right).
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