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The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wavefunction
representation of relativistic bound states, simple forms for current matrix elements, explicit unitary, and a
trivial vacuum. The light-front Hamiltonian form of QCD provides an alternative to lattice gauge theory for the
computation of nonperturbative quantities such as the hadronic spectrum and the corresponding eigenfunctions.
In the case of the electroweak theory, spontaneous symmetry breaking is represented by the appearance of
zero modes of the Higgs field. Light-front quantization then leads to an elegant ghost-free theory of massive
gauge particles, automatically incorporating the Lorentz and ’t Hooft conditions, as well as the Goldstone boson
equivalence theorem.

1 Introduction

One of the challenges of relativistic quantum field theory
is to compute the wavefunctions of bound states such as
the amplitudes which determine the quark and gluon sub-
structure of hadrons in quantum chromodynamics. In light-
front quantization [1], one fixes the initial boundary con-
ditions of a composite system as its constituents are inter-
cepted by a single light-wave evaluated on the hyperplane
x+ = t + z/c. The light-front quantization of QCD pro-
vides a frame-independent, quantum-mechanical represen-
tation of a hadron at the amplitude level, capable of en-
coding its multi-quark, hidden-color and gluon momentum,
helicity, and flavor correlations in the form of universal
process-independent and frame-independent hadron wave-
functions [2]. Remarkably, quantum fluctuations of the vac-
uum are absent if one uses light-front time to quantize the
system, so that matrix elements such as the electromagnetic
form factors only depend on the currents of the constituents
described by the light-cone wavefunctions. The degrees of
freedom associated with vacuum phenomena such as spon-
taneous symmetry breaking in the Higgs model have their
counterpart in light-frontk+ = 0 zero modes of the fields.

In Dirac’s “Front Form” [1], the generator of light-front
time translations isP− = i ∂

∂τ . Boundary conditions are set
on the transverse plane labelled byx⊥ andx− = z − ct.
Given the Lagrangian of a quantum field theory,P− can be
constructed as an operator on the Fock basis, the eigenstates
of the free theory. Since each particle in the Fock basis is

on its mass shell,k− ≡ k0 − k3 = k2
⊥+m2

k+ , and its energy
k0 = 1

2 (k+ + k−) is positive, only particles with positive
momentak+ ≡ k0 + k3 ≥ 0 can occur in the Fock basis.
Since the total plus momentumP+ =

∑
n k+

n is conserved,
the light-cone vacuum cannot have any particle content.

The Heisenberg equation on the light-front is

HLC |Ψ〉 = M2|Ψ〉 . (1)

The operatorHLC = P+P−−P 2
⊥, the “light-cone Hamilto-

nian”, is frame-independent. This can in principle be solved
by diagonalizing the matrix〈n|HLC |m〉 on the free Fock
basis: [2]

∑
m

〈n|HLC |m〉 〈m|ψ〉 = M2 〈n|Ψ〉 . (2)

The eigenvalues{M2} of HLC = H0
LC + VLC give the

squared invariant masses of the bound and continuum spec-
trum of the theory. The light-front Fock space is the eigen-
states of the free light-front Hamiltonian;i.e., it is a Hilbert
space of non-interacting quarks and gluons, each of which

satisfyk2 = m2 andk− = m2+k2
⊥

k+ ≥ 0. The projections
{〈n|Ψ〉} of the eigensolution on then-particle Fock states
provide the light-front wavefunctions. Thus solving a quan-
tum field theory is equivalent to solving a coupled many-
body quantum mechanical problem:

[
M2 −

n∑

i=1

m2 + k2
⊥

xi

]
ψn =

∑

n′

∫
〈n|VLC |n′〉ψn′ (3)

where the convolution and sum is understood over the Fock
number, transverse momenta, plus momenta, and helicity of
the intermediate states. Light-front wavefunctions are also
related to momentum-space Bethe-Salpeter wavefunctions
by integrating over the relative momentak− = k0 − kz

since this projects out the dynamics atx+ = 0.
The light-front quantization of gauge theory can be most

conveniently carried out in the light-cone gaugeA+ =
A0 + Az = 0. In this gauge theA− field becomes a depen-
dent degree of freedom, and it can be eliminated from the
Hamiltonian in favor of a set of specific instantaneous light-
front time interactions. In fact inQCD(1 + 1) theory, this
instantaneous interaction provides the confining linearx−

interaction between quarks. In3 + 1 dimensions, the trans-
verse fieldA⊥ propagates massless spin-one gluon quanta
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with polarization vectors [3] which satisfy both the gauge
conditionε+λ = 0 and the Lorentz conditionk · ε = 0.

LF quantization is especially useful for quantum chro-
modynamics, since it provides a rigorous extension of
many-body quantum mechanics to relativistic bound states:
the quark, and gluon momenta and spin correlations of a
hadron become encoded in the form of universal process-
independent, Lorentz-invariant wavefunctions [4]. For ex-
ample, the eigensolution of a meson in QCD, projected on
the eigenstates{|n〉} of the free HamiltonianHQCD

LC (g =
0) at fixedτ = t− z/c with the same global quantum num-
bers, has the expansion:

∣∣∣ΨM ; P+, ~P⊥, λ
〉

=

∑

n≥2,λi

∫
Πn

i=1

d2k⊥idxi√
xi16π3

×16π3δ


1−

n∑

j

xj


 δ(2)

(
n∑

`

~k⊥`

)
(4)

×
∣∣∣n; xiP

+, xi
~P⊥ + ~k⊥i, λi

〉
ψn/M (xi,~k⊥i, λi).

The set of light-front Fock state wavefunctions{ψn/M} rep-
resent the ensemble of quark and gluon states possible when
the meson is intercepted at the light-front. The light-front
momentum fractionsxi = k+

i /P+
π = (k0 +kz

i )/(P 0 +P z)
with

∑n
i=1 xi = 1 and~k⊥i with

∑n
i=1

~k⊥i = ~0⊥ represent
the relative momentum coordinates of the QCD constituents
and are independent of the total momentum of the state.

Remarkably, the scalar light-front wavefunctions
ψn/p(xi,~k⊥i, λi) are independent of the proton’s momen-
tum P+ = P 0 + P z, andP⊥. (The light-cone spinors and
polarization vectors multiplyingψn/p are functions of the
absolute coordinates.) Thus once one has solved for the
light-front wavefunctions, one can compute hadron matrix
elements of currents between hadronic states of arbitrary
momentum. The actual physical transverse momenta are
~p⊥i = xi

~P⊥+~k⊥i. Theλi label the light-front spinSz pro-
jections of the quarks and gluons along the quantizationz
direction. The spinors of the light-front formalism automat-
ically incorporate the Melosh-Wigner rotation. The physical
gluon polarization vectorsεµ(k, λ = ±1) are specified in
light-cone gauge by the conditionsk · ε = 0, η · ε = ε+ = 0.
The parton degrees of freedom are thus all physical; there
are no ghost or negative metric states.

2 Properties of Light-Front Wave-
functions

An important feature of the light-front formalism is that the
projectionJz of the total is kinematical and conserved. Each
light-front Fock state component thus satisfies the angular
momentum sum rule:Jz =

∑n
i=1 Sz

i +
∑n−1

j=1 lzj . The sum-
mation overSz

i represents the contribution of the intrinsic
spins of then Fock state constituents. The summation over

orbital angular momenta

lzj = −i

(
k1

j

∂

∂k2
j

− k2
j

∂

∂k1
j

)
(5)

derives from then − 1 relative momenta. This excludes
the contribution to the orbital angular momentum due to the
motion of the center of mass, which is not an intrinsic prop-
erty of the hadron. The numerator structure of the light-
front wavefunctions is in large part determined by the angu-
lar momentum constraints. Thus wavefunctions generated
by perturbation theory provide a template for the numerator
structure of nonperturbative light-front wavefunctions.

Dae Sung Hwang, Bo-Qiang Ma, Ivan Schmidt, and I
[5] have shown that the light-front wavefunctions generated
by the radiative corrections to the electron in QED provide
a simple system for understanding the spin and angular mo-
mentum decomposition of relativistic systems. This pertur-
bative model also illustrates the interconnections between
Fock states of different particle number. The model is pat-
terned after the quantum structure which occurs in the one-
loop Schwingerα/2π correction to the electron magnetic
moment [6]. In effect, we can represent a spin-1

2 system
as a composite of a spin-1

2 fermion and spin-one vector
boson. A similar model has been used to illustrate the ma-
trix elements and evolution of light-front helicity and orbital
angular momentum operators [7]. This representation of a
composite system is particularly useful because it is based
on two constituents but yet is totally relativistic. We can then
explicitly compute the form factorsF1(q2) andF2(q2) of
the electromagnetic current and the various contributions to
the form factorsA(q2) andB(q2) of the energy-momentum
tensor.

Recently Ji, Ma, and Yuan [8] have derived perturbative
QCD counting rules for light-front wavefunctions with gen-
eral values of orbital angular momentum which constrain
their form at large transverse momentum.

3 Applications of Light-Front Wave-
functions

Matrix elements of spacelike currents such as spacelike elec-
tromagnetic form factors have an exact representation in
terms of simple overlaps of the light-front wavefunctions in
momentum space with the samexi and unchanged parton
numbern [9, 10, 6]. The Pauli form factor and anomalous
moment are spin-flip matrix elements ofj+ and thus connect
states with∆Lz = 1. Thus, these quantities are nonzero
only if there is nonzero orbital angular momentum of the
quarks in the proton. The Dirac form factor is diagonal in
Lz and is typically dominated at highQ2 by highest states
with the highest orbital angular momentum.

The formulas for electroweak current matrix elements of
j+ can be easily extended to theT++ coupling of gravi-
tons. In, fact, one can show that the anomalous gravito-
magnetic momentB(0), analogous toF2(0) in electro-
magnetic current interactions, vanishes identically for any
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system, composite or elementary [5]. This important fea-
ture, which follows in general from the equivalence princi-
ple [11, 12, 13, 14, 15], is obeyed explicitly in the light-front
formalism [5].

The light-front Fock representation is specially advan-
tageous in the study of exclusiveB decays. For example,
we can write down an exact frame-independent representa-
tion of decay matrix elements such asB → D`ν from the
overlap ofn′ = n parton conserving wavefunctions and the
overlap ofn′ = n − 2 from the annihilation of a quark-
antiquark pair in the initial wavefunction [16]. The off-
diagonaln+1 → n−1 contributions give a new perspective
for the physics ofB-decays. A semileptonic decay involves
not only matrix elements where a quark changes flavor, but
also a contribution where the leptonic pair is created from
the annihilation of aqq′ pair within the Fock states of the
initial B wavefunction. The semileptonic decay thus can
occur from the annihilation of a nonvalence quark-antiquark
pair in the initial hadron.

The “handbag” contribution to the leading-twist off-
forward parton distributions measured in deeply virtual
Compton scattering has a similar light-front wavefunction
representation as overlap integrals of light-front wavefunc-
tions [17, 18].

The distribution amplitudesφ(xi, Q) which appear in
factorization formulae for hard exclusive processes are the
valence LF Fock wavefunctions integrated over the relative
transverse momenta up to the resolution scaleQ [3]. These
quantities specify how a hadron shares its longitudinal mo-
mentum among its valence quarks; they control virtually all
exclusive processes involving a hard scaleQ, including form
factors, Compton scattering and photoproduction at large
momentum transfer, as well as the decay of a heavy hadron
into specific final states [19, 20].

The quark and gluon probability distributionsqi(x,Q)
and g(x,Q) of a hadron can be computed from the ab-
solute squares of the light-front wavefunctions, integrated
over the transverse momentum. All helicity distributions are
thus encoded in terms of the light-front wavefunctions. The
DGLAP evolution of the structure functions can be derived
from the highk⊥ properties of the light-front wavefunctions.
Thus given the light-front wavefunctions, one can compute
[3] all of the leading twist helicity and transversity distribu-
tions measured in polarized deep inelastic lepton scattering.
Similarly, the transversity distributions and off-diagonal he-
licity convolutions are defined as a density matrix of the
light-front wavefunctions.

However, it is not true that the leading-twist structure
functionsFi(x, Q2) measured in deep inelastic lepton scat-
tering are identical to the quark and gluon distributions.
For example, it is usually assumed, following the parton
model, that theF2 structure function measured in neutral
current deep inelastic lepton scattering is at leading or-
der in 1/Q2 simply F2(x,Q2) =

∑
q e2

qxq(x,Q2), where
x = xbj = Q2/2p · q andq(x,Q) can be computed from
the absolute square of the proton’s light-front wavefunction.
Recent work by Hoyer, Marchal, Peigne, Sannino, and my-
self shows that this standard identification is wrong [21].
Gluon exchange between the fast, outgoing partons and the

target spectators, which is usually assumed to be an irrele-
vant gauge artifact, actually affects the leading-twist struc-
ture functions in a profound way. The diffractive scattering
of the fast outgoing quarks on spectators in the target in turn
causes shadowing in the DIS cross section. Thus the de-
pletion of the nuclear structure functions is not intrinsic to
the wave function of the nucleus, but is a coherent effect
arising from the destructive interference of diffractive chan-
nels induced by final-state interactions. Thus the shadowing
corrections related to the Gribov-Glauber mechanism, the
interference effects of leading twist diffractive processes in
nuclei are separate effects in deep inelastic scattering, are
not computable from the bound state wavefunctions of the
target nucleon or nucleus. Similarly, the effective pomeron
distribution of a hadron is not derived from its light-front
wavefunction and thus is not a universal property.

Measurements from the HERMES and SMC collabo-
rations show a remarkably large single-spin asymmetry in
semi-inclusive pion leptoproductionγ∗(q)p → πX when
the proton is polarized normal to the photon-to-pion pro-
duction plane. Recently, Hwang, Schmidt, and I [22] have
shown that final-state interactions from gluon exchange be-
tween the outgoing quark and the target spectator system
lead to single-spin asymmetries in deep inelastic lepton-
proton scattering at leading twist in perturbative QCD;i.e.,
the rescattering corrections are not power-law suppressed at
large photon virtualityQ2 at fixedxbj . The existence of such
single-spin asymmetries requires a phase difference between
two amplitudes coupling the proton target withJz

p = ± 1
2 to

the same final-state, the same amplitudes which are neces-
sary to produce a nonzero proton anomalous magnetic mo-
ment. The single-spin asymmetry which arises from such
final-state interactions does not factorize into a product of
distribution function and fragmentation function, and it is
not related to the transversity distributionδq(x,Q) which
correlates transversely polarized quarks with the spin of the
transversely polarized target nucleon. These effects high-
light the unexpected importance of final- and initial-state in-
teractions in QCD observables—they lead to leading-twist
single-spin asymmetries, diffraction, and nuclear shadow-
ing, phenomena not included in the wavefunction of the tar-
get.

4 Measurements of Light-Front
Wavefunctions

It is possible to measure the light-front wavefunctions of a
relativistic hadron by diffractively dissociating it into jets
in high-energy hadron-nucleus collisions such asπA →
jetjetA′. Only the configurations of the incident hadron
which have small transverse size and minimal color dipole
moments can traverse the nucleus with minimal interactions
and leave it intact. The forward diffractive amplitude is thus
coherent over the entire nuclear volume and proportional to
nuclear numberA. The fractional momentum distribution
of the jets is correlated with the valence quarks’ light-cone
momentum fractionsxi. [23, 24, 25, 26]. The QCD mecha-
nisms for hard diffractive dissociation can be more compli-
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cated in the case of proton targets. A review and references
is given in Ref. [27].

The fact that Fock states of a hadron with small particle
number and small impact separation have small color dipole
moments and weak hadronic interactions is a remarkable
manifestation of the gauge structure of QCD. It is the basis
for the predictions for “color transparency” in hard quasi-
exclusive [28, 29] and diffractive reactions [24, 25, 26]. The
E791 experiment at FermiLab has verified the nuclear num-
ber scaling predictions and have thus provided a remark-
able confirmation of this consequence of QCD color trans-
parency [23]. The new EVA spectrometer experiment E850
at Brookhaven has also reported striking effects of color
transparency in quasi-elastic proton-proton scattering in nu-
clei [30].

The CLEO collaboration [31] has verified the scaling
and angular predictions for the photon-meson to meson form
factor Fγπ0(q2) which is measured inγ∗γ → π0 reac-
tions. The results are in close agreement with the scaling
and normalization of the PQCD predictions [32], provided
that the pion distribution amplitudeφπ(x,Q) is close to the
x(1−x) form, the asymptotic solution to the evolution equa-
tion. The pion light-front momentum distribution measured
in diffractive dijet production in pion-nucleus collisions by
the E791 experiment [23] has a similar form [33]. Data [34]
for γγ → π+π+ + K+K− atW =

√
s > 2.5 GeV are also

in agreement with the perturbative QCD predictions. More-
over, the angular distribution shows the expected transition
to the predicted QCD form asW is raised. A compilation of
the two-photon data has been given by Whalley [35]. Mea-
surements of the reactionγγ → π0π0 are highly sensitive to
the shape of the pion distribution amplitude. The perturba-
tive QCD predictions [32] for this channel contrast strongly
with model predictions based on the QCD Compton hand-
bag diagram [36].

5 Higher Particle-Number Fock
States

The light-front Fock state expansion of a hadron contains
fluctuations with an arbitrary number of quark and gluon
partons. The higher Fock states of the light hadrons describe
the sea quark structure of the deep inelastic structure func-
tions, including “intrinsic” strangeness and charm fluctua-
tions specific to the hadron’s structure rather than gluon sub-
structure [37, 38]. The maximal contribution of an intrinsic
heavy quark occurs atxQ ' m⊥Q/

∑
i m⊥ wherem⊥ =√

m2 + k2
⊥; i.e. at largexQ, since this minimizes the in-

variant massM2
n. The measurements of the charm structure

function by the EMC experiment are consistent with intrin-
sic charm at largex in the nucleon with a probability of order
0.6±0.3% [39] which is consistent with the recent estimates
based on instanton fluctuations [40]. Franz, Polyakov, and
Goeke have analyzed the properties of the intrinsic heavy-
quark fluctuations in hadrons using the operator-product ex-
pansion [40]. For example, the light-cone momentum frac-
tion carried by intrinsic heavy quarks in the protonxQQ as
measured by theT++ component of the energy-momentum

tensor is related in the heavy-quark limit to the forward
matrix element〈p|trc(G+αG+βGαβ)/m2

Q|p〉, whereGµν

is the gauge field strength tensor. Diagrammatically, this
can be described as a heavy quark loop in the proton self-
energy with four gluons attached to the light, valence quarks.
Since the non-Abelian commutator[Aα, Aβ ] is involved, the
heavy quark pairs in the proton wavefunction are necessarily
in a color-octet state. It follows from dimensional analysis
that the momentum fraction carried by theQQ pair scales
ask2

⊥/m2
Q wherek⊥ is the typical momentum in the hadron

wave function. In contrast, in the case of Abelian theo-
ries, the contribution of an intrinsic, heavy lepton pair to
the bound state’s structure first appears inO(1/m4

L).
The presence of intrinsic charm quarks in theB wave

function provides new mechanisms forB decays. For ex-
ample, Chang and Hou have considered the production of
final states with three charmed quarks such asB → J/ψDπ
andB → J/ψD∗ [41]; these final states are difficult to re-
alize in the valence model, yet they occur naturally when
theb quark of the intrinsic charm Fock state| bucc〉 decays
via b → cud. Susan Gardner and I have shown that the
presence of intrinsic charm in the hadrons’ light-front wave
functions, even at a few percent level, provides new, compet-
itive decay mechanisms forB decays which are nominally
CKM-suppressed [42]. Similarly, Karliner and I [43] have
shown that the transitionJ/ψ → ρπ can occur by the rear-
rangement of thecc from theJ/ψ into the | qqcc〉 intrinsic
charm Fock state of theρ or π. On the other hand, the over-
lap rearrangement integral in the decayψ′ → ρπ will be
suppressed since the intrinsic charm Fock state radial wave-
function of the light hadrons will evidently not have nodes in
its radial wavefunction. This observation provides a natural
explanation of the long-standing puzzle [44] why theJ/ψ
decays prominently to two-body pseudoscalar-vector final
states, breaking hadron helicity conservation [45], whereas
theψ′ does not.

6 Light-Front Quantization of QCD

Quantum field theories are usually quantized at fixed “in-
stant” time t. The resulting Hamiltonian theory is com-
plicated by the dynamical nature of the vacuum state and
the fact that relativistic boosts are not kinematical but in-
volve interactions. The calculation of even the simplest cur-
rent matrix elements requires the computation of amplitudes
where the current interacts with particles resulting from the
fluctuations of the vacuum. All of these problems are dra-
matically alleviated when one quantizes quantum field theo-
ries at fixed light-cone timeτ. A review of the development
of light-front quantization of QCD and other quantum field
theories is given in Ref. [2].

Prem Srivastava and I [46] have presented a new sys-
tematic study of light-front-quantized gauge theory in light-
cone gauge using a Dyson-Wick S-matrix expansion based
on light-front-time-ordered products. The Dirac bracket
method is used to identify the independent field degrees of
freedom [47]. In our analysis one imposes the light-cone
gauge condition as a linear constraint using a Lagrange mul-
tiplier, rather than a quadratic form. We then find that the
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LF-quantized free gauge theory simultaneously satisfies the
covariant gauge condition∂ ·A = 0 as an operator condition
as well as the LC gauge condition. The gluon propagator has
the form

〈
0|T (Aa

µ(x)Ab
ν(0)) |0〉

=
iδab

(2π)4

∫
d4k e−ik·x Dµν(k)

k2 + iε
(6)

where we have defined

Dµν(k) = Dνµ(k) = −gµν+
nµkν + nνkµ

(n · k)
− k2

(n · k)2
nµnν .

(7)
Herenµ is a null four-vector, gauge direction, whose com-
ponents are chosen to benµ = δµ

+, nµ = δµ−. Note also

Dµλ(k)Dλ
ν(k) = Dµ⊥(k)D⊥

ν(k) = −Dµν(k), (8)

kµDµν(k) = 0, nµDµν(k) ≡ D−ν(k) = 0,

Dλµ(q)Dµν(k)Dνρ(q′) = −Dλµ(q)Dµρ(q′).

The gauge field propagatoriDµν(k)/(k2 + iε) is trans-
verse not only to the gauge directionnµ but also tokµ, i.e.,
it is doubly-transverse. ThusD represents the polarization
sum over physical propagating modes. The last term propor-
tional to nµnν in the gauge propagator does not appear in
the usual formulations of light-cone gauge. However, in tree
graph calculations it cancels against instantaneous gluon ex-
change contributions.

The remarkable properties of (the projector)Dνµ greatly
simplifies the computations of loop amplitudes. For exam-
ple, the coupling of gluons to propagators carrying high mo-
menta is automatic. In the case of tree graphs, the term pro-
portional tonµnν cancels against the instantaneous gluon
exchange term. However, in the case of loop diagrams, the
separation needs to be maintained so that one can identify
the correct one-particle-irreducible contributions. The ab-
sence of collinear divergences in irreducible diagrams in the
light-cone gauge greatly simplifies the leading-twist factor-
ization of soft and hard gluonic corrections in high momen-
tum transfer inclusive and exclusive reactions [3] since the
numerators associated with the gluon coupling only have
transverse components.

The interaction Hamiltonian of QCD in light-cone gauge
can be derived by systematically applying the Dirac bracket
method to identify the independent fields [46]. It contains
the usual Dirac interactions between the quarks and glu-
ons, the three-point and four-point gluon non-Abelian inter-
actions plus instantaneous light-front-time gluon exchange
and quark exchange contributions

Hint = −g ψ
i
γµAµ

ijψj

+
g

2
fabc (∂µAa

ν − ∂νAa
µ)AbµAcν

+
g2

4
fabcfadeAbµAdµAcνAeν

−g2

2
ψ

i
γ+ (γ⊥

′
A⊥′)ij 1

i∂−
(γ⊥A⊥)jk ψk

−g2

2
j+

a

1
(∂−)2

j+
a (9)

where

j+
a = ψ

i
γ+(ta)ijψj + fabc(∂−Abµ)Acµ . (10)

The renormalization constants in the non-Abelian theory
have been shown [46] to satisfy the identityZ1 = Z3 at one-
loop order, as expected in a theory with only physical gauge
degrees of freedom. The renormalization factors in the
light-cone gauge are independent of the reference direction
nµ. The QCDβ function computed in the noncovariant LC
gauge agrees with the conventional theory result [48, 49].
Dimensional regularization and the Mandelstam-Leibbrandt
prescription [51, 50, 52] for LC gauge were used to define
the Feynman loop integrations [53]. There are no Faddeev-
Popov or Gupta-Bleuler ghost terms.

The running coupling constant and QCDβ function have
also been computed at one loop in the doubly-transverse
light-cone gauge [46]. It is also possible to effectively quan-
tize QCD using light-front methods in covariant Feynman
gauge [54].

It is well-known that the light-cone gauge itself is not
completely defined until one specifies a prescription for
the poles of the gauge propagator atn · k = 0. The
Mandelstam-Liebbrandt prescription has the advantage of
preserving causality and analyticity, as well as leading to
proofs of the renormalizability and unitarity of Yang-Mills
theories [55]. The ghosts which appear in association with
the Mandelstam-Liebbrandt prescription from the single
poles have vanishing residue in absorptive parts, and thus
do not disturb the unitarity of the theory.

A remarkable advantage of light-front quantization is
that the vacuum state| 0〉 of the full QCD Hamiltonian ev-
idently coincides with the free vacuum. The light-front
vacuum is effectively trivial if the interaction Hamiltonian
applied to the perturbative vacuum is zero. Note that all
particles in the Hilbert space have positive energyk0 =
1
2 (k+ + k−), and thus positive light-frontk±. Since the
plus momenta

∑
k+

i is conserved by the interactions, the
perturbative vacuum can only couple to states with particles
in which all k+

i = 0; i.e., so called zero-mode states. Bas-
setto and collaborators [56] have shown that the computa-
tion of the spectrum ofQCD(1+1) in equal time quantiza-
tion requires constructing the full spectrum of non perturba-
tive contributions (instantons). In contrast, in the light-front
quantization of gauge theory, where thek+ = 0 singular-
ity of the instantaneous interaction is defined by a simple
infrared regularization, one obtains the correct spectrum of
QCD(1+1) without any need for vacuum-related contribu-
tions.

Zero modes of auxiliary fields are necessary to distin-
guish the theta-vacua of massless QED(1+1) [57, 58, 59],
or to represent a theory in the presence of static external
boundary conditions or other constraints. Zero-modes pro-
vide the light-front representation of spontaneous symmetry
breaking in scalar theories [60].
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7 Light-Front Quantization of the
Standard Model

Prem Srivastava and I have also shown how light-front quan-
tization can be applied to the Glashow, Weinberg and Salam
(GWS) model of electroweak interactions based on the non-
abelian gauge groupSU(2)W × U(1)Y [61]. This theory
contains a nonabelian Higgs sector which triggers spon-
taneous symmetry breaking (SSB). A convenient way of
implementing SSB and the (tree level) Higgs mechanism
in the front form theory was developed earlier by Srivas-
tava [62, 63, 64]. One separates the quantum fluctuation
fields from the correspondingdynamical bosonic conden-
sate (or zero-longitudinal-momentum-mode) variables,be-
fore applying the Dirac procedure in order to construct the
Hamiltonian formulation. The canonical quantization of LC
gauge GWS electroweak theory in thefront form can be
derived by using the Dirac procedure to construct a self-
consistent LF Hamiltonian theory. This leads to an attractive
new formulation of the Standard Model of the strong and
electroweak interactions which does not break the physical
vacuum and has well-controlled ultraviolet behavior. The
only ghosts which appear in the formalism are then · k = 0
modes of the gauge field associated with regulating the light-
cone gauge prescription. The massive gauge field propa-
gator has good asymptotic behavior in accordance with a
renormalizable theory, and the massive would-be Goldstone
fields can be taken as physical degrees of freedom.

For example, consider the Abelian Higgs model. The
interaction Lagrangian is

L = −1
4
FµνFµν + |Dµφ|2 − V (φ†φ) (11)

where
Dµ = ∂µ + ieAµ, (12)

and
V (φ) = µ2φ†φ + λ(φ†φ)2, (13)

with µ2 < 0, λ > 0. The complex scalar fieldφ is decom-
posed as

φ(x) =
1√
2
v + ϕ(x) =

1√
2
[v + h(x) + iη(x)] (14)

wherev is thek+ = 0 zero mode determined by the min-
imum of the potential:v2 = −µ2

λ , h(x) is the dynamical
Higgs field, andη(x) is the Nambu-Goldstone field. The
quantization procedure determines∂ ·A = MR, the ’t Hooft
condition. One can now eliminate the zero mode component
of the Higgs fieldv which gives masses for the fundamental
quantized fields. TheA⊥ field then has massM = ev and
the Higgs field acquires massm2

h = 2λv2 = −2µ2.
A new aspect of LF quantization, is that the third polar-

ization of the quantized massive vector fieldAµ with four
momentumkµ has the formE

(3)
µ = nµM/n · k. Since

n2 = 0, this non-transverse polarization vector has zero
norm. However, when one includes the constrained in-
teractions of the Goldstone particle, the effective longitu-
dinal polarization vector of a produced vector particle is

E
(3)
eff µ = E

(3)
µ − kµ k · E(3)/k2 which is identical to the

usual polarization vector of a massive vector with norm
E

(3)
eff · E(3)

eff = −1. Thus, unlike the conventional quanti-
zation of the Standard Model, the Goldstone particle only
provides part of the physical longitudinal mode of the elec-
troweak particles.

In the LC gauge LF framework, the free massive gauge
fields in the electroweak theory satisfy simultaneously the ’t
Hooft conditions as an operator equation. The sum over the
three physical polarizations is given byKµν

Kµν(k) =
∑

(α)

E(α)
µ E(α)

ν = Dµν(k) +
M2

(k+)2
nµnν(15)

= −gµν +
nµkν + nνkµ

(n · k)
− (k2 −M2)

(n · k)2
nµnν

which satisfies: kµ Kµν(k) = (M2/k+)nν and
kµ kν Kµν(k) = M2. The free propagator of the massive
gauge fieldAµ is

〈0|T (Aµ(x)Aν(y)) |0〉 = (16)

i

(2π)4

∫
d4k

Kµν(k)
(k2 −M2 + iε)

e−i k·(x−y).

It does not have the bad high energy behavior found in the
(Proca) propagator in the unitary gauge formulation, where
the would-be Nambu-Goldstone boson is gauged away.

In the limit of vanishing mass of the vector boson, the
gauge field propagator goes over to the doubly transverse
gauge, (nµ Dµν(k) = kµ Dµν(k) = 0), the propagator
found [46] in QCD. The numerator of the gauge prop-
agatorKµν(k) also has important simplifying properties,
similar to the ones associated with the projectorDµν(k).
The transverse polarization vectors for massive or mass-
less vector boson may be taken to beEµ

(⊥)(k) ≡ −Dµ
⊥(k),

whereas the non-transverse third one in the massive case is
found to be parallel to the LC gauge directionE(3)

µ (k) =
−(M/k+)nµ. Its projection along the direction trans-
verse tokµ shares the spacelike vector property carried by
Eµ

(⊥)(k). The Goldstone boson or electroweak equivalence
theorem becomes transparent in the LF formulation.

The interaction Hamiltonian for the Abelian Higgs
model in LC gaugeA+ = 0, is found to be

− Hint = Lint

= eM AµAµ h− em2
h

2 M
(η2 + h2)h

+ e(h ∂µη − η ∂µh)Aµ +
e2

2
(h2 + η2) AµAµ

− λ

4
(η2 + h2)2 − e2

2

(
1

∂−
j+

) (
1

∂−
j+

)
(17)

wherejµ = (h ∂µη − η∂µ h). The last term here is the
additional quartic instantaneous interaction in the LF theory
quantized in the LC gauge No new instantaneous cubic inter-
action terms are introduced. The massive gauge field, when
the mass is generated by the Higgs mechanism, is described
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in our LC gauge framework by the independent fieldsA⊥
andη; the componentA− is a dependent field.

The interaction Hamiltonian of the Standard Model can
be written in a compact form by retaining the dependent
componentsA− andψ− in the formulation. Its form closely
resembles the interaction Hamiltonian of covariant theory,
except for the presence of additional instantaneous four-
point interactions. The resulting Dyson-Wick perturba-
tion theory expansion based on equal-LF-time ordering has
also been constructed, allowing one to perform higher-order
computations in a straightforward fashion.

The singularities in the noncovariant pieces of the field
propagators may be defined using the causal ML prescrip-
tion for 1/k+ when we employ dimensional regularization,
as was shown in our earlier work on QCD. The power-
counting rules in LC gauge then become similar to those
found in covariant gauge theory.

Spontaneous symmetry breaking is thus implemented in
a novel way when one quantizes the Standard Model at fixed
light-front timeτ = x+. In the general case, the Higgs field
φi(x) can be separated into two components:

φi(τ, x−, ~x⊥) = ωi(τ, ~x⊥) + ϕ(τ, x−, ~x⊥), (18)

whereωi is a classicalk+ = 0 zero-mode field andϕ is
the dynamical quantized field. Herei is the weak-isospin
index. The zero-mode component is determined by solving
the Euler-Lagrange tree-level condition:

V ′
i (ω)− ∂⊥∂⊥ωi = 0. (19)

A nonzero value forωi corresponds to spontaneous symme-
try breaking. The nonzeroωi couples to the gauge boson and
Fermi fields through the Yukawa interactions of the Standard
Model. It can then be eliminated from the theory in favor of
mass terms for the fundamental matter fields in the effec-
tive theory. The resulting masses are identical to those of
the usual Higgs implementation of spontaneous symmetry
breaking in the Standard Model.

The generators of isospin rotations are defined from the
dynamical Higgs fields:

Ga = −i

∫
dx⊥dx−(∂−ϕ)i(ta)ijϕj . (20)

Note that the weak-isospin charges and the currents corre-
sponding toGa are not conserved if the zero modeωi is
nonzero since the cross terms inϕ, andω are missing. Thus
[HLF , Ga] 6= 0. Nevertheless, the charges annihilate the
vacuum:Ga|0 >LF = 0, since the dynamical fieldsϕi have
no support on the LF vacuum, and all quanta have positive
k+. Thus the LF vacuum remains equal to the perturbative
vacuum; it is unaffected by the occurrence of spontaneous
symmetry breaking.

In effect one can interpret thek+ = 0 zero mode field
ωi as anx−-independent external field, analogous to an ap-
plied constant electric or magnetic field in atomic physics.
In this interpretation, the zero mode is a remnant of a Higgs
field which persists from early cosmology; the LF vacuum
however remains unchanged and unbroken.

8 Discretized Light-Front Quantiza-
tion

If one imposes periodic boundary conditions inx− =
t + z/c, then the plus momenta become discrete:k+

i =
2π
L ni, P

+ = 2π
L K, where

∑
i ni = K [65, 66]. For a given

“harmonic resolution”K, there are only a finite number of
ways positive integersni can sum to a positive integerK.
Thus at a givenK, the dimension of the resulting light-front
Fock state representation of the bound state is rendered finite
without violating Lorentz invariance. The eigensolutions of
a quantum field theory, both the bound states and continuum
solutions, can then be found by numerically diagonalizing
a frame-independent light-front HamiltonianHLC on a fi-
nite and discrete momentum-space Fock basis. Solving a
quantum field theory at fixed light-front timeτ thus can be
formulated as a relativistic extension of Heisenberg’s matrix
mechanics. The continuum limit is reached forK → ∞.
This formulation of the non-perturbative light-front quan-
tization problem is called “discretized light-cone quanti-
zation” (DLCQ) [66]. The method preserves the frame-
independence of the Front form.

The DLCQ method has been used extensively for solv-
ing one-space and one-time theories [2], including applica-
tions to supersymmetric quantum field theories [67] and spe-
cific tests of the Maldacena conjecture [68]. There has been
progress in systematically developing the computation and
renormalization methods needed to make DLCQ viable for
QCD in physical spacetime. For example, John Hiller, Gary
McCartor, and I [69, 70, 71] have shown how DLCQ can be
used to solve 3+1 theories despite the large numbers of de-
grees of freedom needed to enumerate the Fock basis. A key
feature of our work is the introduction of Pauli Villars fields
to regulate the UV divergences and perform renormaliza-
tion while preserving the frame-independence of the theory.
A recent application of DLCQ to a 3+1 quantum field the-
ory with Yukawa interactions is given in Ref. [69]. One can
also define a truncated theory by eliminating the higher Fock
states in favor of an effective potential [73, 72, 74]. Sponta-
neous symmetry breaking and other nonperturbative effects
associated with the instant-time vacuum are hidden in dy-
namical or constrained zero modes on the light-front. An
introduction is given in Refs. [75, 57]. A review of DLCQ
and its applications is given in Ref. [2].

The pion distribution amplitude has been computed us-
ing a combination of the discretized DLCQ method for
thex− andx+ light-front coordinates with a spatial lattice
[76, 77, 78, 79] in the transverse directions. A finite lattice
spacinga can be used by choosing the parameters of the ef-
fective theory in a region of renormalization group stability
to respect the required gauge, Poincaré, chiral, and contin-
uum symmetries.

Dyson-Schwinger models [80] of hadronic Bethe-
Salpeter wavefunctions can also be used to predict light-
front wavefunctions and hadron distribution amplitudes by
integrating over the relativek− momentum.
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9 A Light-Front Event Amplitude
Generator

The light-front formalism can be used as an “event am-
plitude generator” for high energy physics reactions where
each particle’s final state is completely labelled in momen-
tum, helicity, and phase. The application of the light-front
time evolution operatorP− to an initial state systematically
generates the tree and virtual loop graphs of theT -matrix
in light-front time-ordered perturbation theory in light-cone
gauge. Given the interactions of the light-front interaction
Hamiltonian, any amplitude in QCD and the electroweak
theory can be computed. For example, this method can be
used to automatically compute the tree diagram hard am-
plitudesTH needed to for computing hard scattering ampli-
tudes such as the deuteron form factor orpp elastic scatter-
ing.

At higher orders, loop integrals only involve integrations
over the momenta of physical quanta and physical phase
space

∏
d2k⊥idk+

i . Renormalized amplitudes can be ex-
plicitly constructed by subtracting from the divergent loops
amplitudes with nearly identical integrands corresponding
to the contribution of the relevant mass and coupling counter
terms (the “alternating denominator method”) [81]. The nat-
ural renormalization scheme to use for defining the cou-
pling in the event amplitude generator is a physical effec-
tive charge such as the pinch scheme [82]. The argument of
the coupling is then unambiguous [83]. The DLCQ bound-
ary conditions can be used to discretize the phase space and
limit the number of contributing intermediate states without
violating Lorentz invariance. Since one avoids dimensional
regularization and nonphysical ghost degrees of freedom,
this method of generating events at the amplitude level could
provide a simple but powerful tool for simulating events
both in QCD and the Standard Model. Alternatively, one
can construct theT−matrix for scattering in QCD using
light-front quantization and the event amplitude generator;
one can then probe its spectrum by finding zeros of the re-
solvant.
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