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We use numerical simulations of a well-known phase-transition model to study reversals of the geomagnetic
field. Each ring current in the geodynamo was supposed to behave as a magnetic spin while the magnetization
of the model was supposed to be proportional to the Earth’s magnetic dipole. We have performed a size-
dependence study of the calculated quantities. Power laws were obtained for the distribution of times between
reversals. Some of our results are closer to actual ones than the corresponding to previous simulations. For
the largest systems that we have simulated the exponent of the power law tends towards values very near -1.5,
generally accepted as the right value for this phenomenon. Some possible trends for future works are advanced.

Keywords: Ising model; Reversals; Computer simulation

I. INTRODUCTION

During the last decades many research efforts of statistical
physicists have been devoted to the study of the earthquake
problem [1]. However, it is far from being the unique geo-
physical subject where statistical physics could bring some
light. Let us mention the problems of magnetic storms [2,3]
and geomagnetic reversals [4]. We will focus our attention on
geomagnetic reversals.

The field produced at the interior of the planet has its main
source in a complex system of internal currents that eventu-
ally produce geomagnetic reversals. They are periods during
which the Earth’s magnetic field swaps hemispheres. Many of
them have been documented. Periods between geomagnetic
reversals present power law distribution functions, which can
be the signature of some critical system as the mechanism of
their source [5]. There are other mechanisms capable of pro-
ducing power laws (for example, superposition of some dis-
tributions [1], self-organized criticality [6] and non-extensive
versions of statistical mechanics [7]) but we will not extend on
them upon here. In Fig. 1 we present the sequence of geomag-
netic reversals from 80 million years (My) to our days. The
data was obtained from the most recent and complete record
that we have found [8,9]. Fig. 2 presents the distribution of
periods between reversals, it follows a power law,

f (t) = ctd (1)

where f (t) is the frequency distribution of periods between
consecutive reversals, c is a proportionality constant and d is
the exponent of the power-law and the slope of the graph in
log-log plots. For the present case we have approximately
-1.5 as slope value.

The magnetic field needs a finite time to change its
direction (the time between the moment at which the dipolar
component is no more the main one and the moment at
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FIG. 1: Representation of geomagnetic reversals from around 80 My
ago to our days. We arbitrarily have assumed -1 as the current polar-
ization. We have not plotted the period from 80 My to 165 My (for
which also a record exists) for the sake of clarity. There was a period
with no reversals from 80 to 120 My (the beginning appears in the
plot). The period from 120 My to 165 My was very similar to the
period from 0 to 40 My (in number of reversals and in the average
duration of reversals). The data was obtained from Cande and Kent
[8,9].

which it is again the main one but building up in the opposite
direction). This time is in the average around 5000 years. It is
small if compared to the smallest interval between reversals
already detected ( 10,000 years) and to the average interval
between reversals. There are clustered periods of high activity
from 40 My ago to our days and during the period 165-120
My (not shown), a period of low activity between 80 and 40
My ago and a period of almost null activity from 120 to 80
My.

The sequence of Earth’s magnetic field reversals seems to
be a non-equilibrium process. One can infer this from Fig. 1
where the average time interval between successive reversals
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FIG. 2: Frequency distribution of periods between reversals from 80
My to our days. The slope of the solid line is around -1.5. The data
was obtained from Cande and Kent [8,9].

seems to increase with geological time. Unfortunately, the
reversal series is unique and relatively small, there is no other
similar record (for earthquakes, for example, exists a record
for each fault, and from the Moon obtained during the Apollo
program).
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FIG. 3: Distribution of virtual dipole moment (VDM) values for sam-
ples not older than 10 My. Negative values of VDM correspond to
reverse polarization and are represented by 119 samples. Positive
values of VDM represent normal polarization and are represented by
142 samples. The data was obtained from Kono and Tanaka [10].

Contrary to the record of reversals (known from 160 My
up to nowadays) the record of magnetic field intensities exists
just for around 10 My [10]. Fig. 3 shows the distribution of
Earth’s dipole values for the last 10 My. The distribution
of dipole values for actual reversals (Fig. 3) follows a func-
tion between a bi-normal and a bi-log-normal distribution.
However, the number of experimental points is also small
and there will certainly be changes in these facts when new
measurements become available.

Geomagnetic reversals have called a great attention since

their discovery and this interest remains nowadays. Works
devoted to the study of the time distribution of geomagnetic
reversals include, among many others, statistical studies on
reversals distributions and correlations [5,11-13], modelling
of the problem [14-16] and experimental studies [8,9,17-
19]. Gaffin [11] pointed out that long-term trends and
non-stationary characteristics of the record could hamper a
formal detection of chaos in geomagnetic reversal record.
It is our opinion that actually it is very difficult to detect in
a consistent manner that geomagnetic reversals present any
systematic characteristic at all, without mattering which this
characteristic could be (including chaos). Its nature remains
an open question.

In this work we use the 2D Ising model near Tc to mimic the
Earth’s magnetic field and its reversals. Ising systems have
already been used to simulate reversals of the Earth magnetic
field [16]. Our work differs from it in that while they used the
Q2R automata we have used a regular Metropolis updating
algorithm around the critical temperature. Some of our results
also differ essentially from them and are closer to actual ones.

The study of geomagnetic reversals can contribute to the
comprehension of important processes in Earth’s evolution.
This includes from the internal dynamics of the planet to
processes involving the evolution of living organisms. The
Earth is continuously bombarded by charged particles mainly
born at the Sun. Large fluxes of those particles are incompat-
ible with life. Fortunately, only a tiny fraction of them hits
the Earth’s surface. The most part is deviated by the geomag-
netic field. However, during reversals the field intensity de-
creases drastically which means a more intense bombarding.
The ”magnetic shield” is reduced. Those increases in the flux
of particles could have interfered in life cycles of the planet.

II. THE MODEL

Simulation of the core by three-dimensional magnetohy-
drodynamic equations is an extremely difficult task [14,15].
To diminish the number of degrees of freedom an alternative
way is to use N coupled disk dynamos models [20]. Follow-
ing Seki and Ito [16] we further simplified the last one by
associating spins to currents.

The Ising model is some kind of paradigm among magnetic
models for condensed matter because it is the simplest one
that presents a phase transition at temperatures different from
zero (in D > 1, where D is the dimension). But Ising models
have found applications in areas away from solid-state
physics, for example, in immunology [21], stock market
theory [22] and earthquake dynamics [23], among many
others. In this work we use the 2D Ising model to simulate
the Earth’s dynamo, particularly the reversals of the Earth’s
magnetic field.

Our motivation for using the Ising model to simulate the
Earth’s dipole comes from the relative success of a previous
work by Ito and Seki [16] and, at the same time, from the



14 Brazilian Journal of Physics, vol. 38, no. 1, March, 2008

fact that the dipole suffers reversals, in a similar way to the
Ising model near the critical temperature. From the practical
point of view the motivation comes from the possibility of
generate good synthetic data with simple models to diminish
the problem of limited availability of experimental data.

In absence of external field the Hamiltonian H for the Ising
model is:

H =−J ∑
i, j

sis j (2)

where the sum runs over all neighbor pairs, si and s j are spins
and J is the interaction constant between spins. The critical
temperature of the Ising system for 2D is Tc = 2.269 in units of
J/kB, where kB is the Boltzmann constant. By definition, each
spin si can assume only two values or orientations: 1 and -1.
It is worth to mention that the Ising model was introduced by
Wilhelm Lenz in 1920 and exactly solved for one dimension
by his student Ernest Ising, in 1925, and in two dimensions
by Lars Onsager, in 1944. It was shown that for 2D there is a
phase transition.
In our model we assume, following Seki and Ito [16], that
each spin represents a current ring in the Earth’s dynamo (i.e.,
that turbulent eddies behave as magnetic spins).

The magnetization M for the model is defined as:

M = ∑N
i=1 si

N
(3)

where the sum runs over all the spins and N is the total number
of spins. It can take values between -1 and 1. It is assumed in
our model that the magnetization represents the geomagnetic
dipole.

Now we call the attention to the fact that the magnetic mo-
ment of eddies are of vectorial nature (they are not restricted to
values +1 or−1) and, in principle, they exist in a broad range
of sizes (limited uniquely by the core size). Later will be clear
that in ferro-magnetic-like simulations domains of spins with
the same orientation can be considered to represent larger ed-
dies while, in anti-ferrimagnetic-like simulations this distinc-
tion have to be imposed by us. On the other hand, the idea of
neighbor eddies is customarily used in the study of such phe-
nomena (we refer the interested reader to the book by Merril
et al. [4]).

Many efforts have been made to enlarge the size of simu-
lated Ising models when trying to represent systems of phys-
ical or biological nature [24]. The reason is simple: the
numbers of elements in condensed matter physics and bio-
logical systems are usually huge, around 1023 and 1014, re-
spectively. Physical models for the Earth’s magnetic field are
mostly based in a small number of adequately connected dy-
namos. Using small 2D Ising systems to simulate their inter-
action and behavior must sound a natural choice. We have
performed simulations on 2D square Ising systems at temper-
atures near Tc and studied some of the relevant characteristics
of the distribution in time of magnetization reversals (transi-
tions between states of positive and negative magnetization).
We have applied periodic boundary conditions [25]. At the

same time we have studied the size dependence of distribu-
tions. We have used LxL systems where L = 5, 10, 20, 30, 40
and 50.

We believe that the Ising model near Tc could be a good
model for reversals of the Earth’s magnetic field because of
the critical character present in the Ising model and suggested
by figures 2 and 3 (see below). The resulting magnetic field of
the Earth is the superposition of several components (dipolar,
quadripolar, and so on). When we simulate reversals through
2D Ising systems we are mainly focusing on the dipolar mo-
ment (which is the main component the most part of the time).
In this way, we are able to mimic the essentially 3D Earth by a
2D Ising system. The rotation of the Earth imposes a preferen-
tial direction to the possible orientations of magnetic moments
associate to eddies. From both dynamo-like and convection-
like approaches, the structures in the core are of tubular type
with symmetry axes parallel to the rotation axis of the Earth.
At the same time, those structures traverse the core from the
bottom to the top (top meaning the ”superior” hemisphere and
bottom meaning ”inferior” hemisphere). This facts support
the simulation of a 3D system by a 2D one. The magnetic
field, however, never reaches the value ”zero”. It diminishes to
values very near zero in other directions than the north south
one.

III. RESULTS AND DISCUSSION

A. Ito and Seki simulations
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FIG. 4: Frequency distribution inter-reversal periods (Ito and Seki
model). The solid line slope is -0.5 which means -1.5 for a normal
(not above-a-given-value) histogram, as in Fig. 2.

We started by reproducing the simulations by Ito and Seki.
The two main results are shown in Figs. 4 and 5. Fig. 4
presents the distribution of periods between reversals. The
distribution follows a power-law with around -1.5 for the slope
value. In Fig. 5 we present the distribution of magnetization
values. There are two approximately symmetric peaks (like
in the actual distribution, Fig. 3) and a valley around the zero
magnetization value (like in real measurements also). How-
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FIG. 5: Frequency distribution of magnetization values (Ito and Seki
model). Note that the central valley is around 50 percent of the peaks
highs while for actual measurements (Fig. 3) it is less than 10 percent.
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FIG. 6: Time dependence of the magnetization for temperatures
slightly below Tc (T = 2.26). a) A sample of 1000 MCS/s pertaining
to a long run. b) A longer sample (up to 10000 MCS/s). Both cases
correspond to a 5x5 system size.

ever, we note that the relative high of the valley is much more
higher than for actual measurements (Fig. 3).

B. Ferromagnetic Metropolis simulations

Next, we have simulated the Ito and Seki model using in-
stead of the Q2R a Metropolis updating algorithm. In Fig. 6
we show some typical time dependence of magnetization for
temperatures slightly below Tc. They qualitatively resemble

the results presented in Figs. 3 and 5 of reference [16]. How-
ever, they are quantitatively different from them (see below).
Fig. 7 shows the result of eliminating all the fluctuations in
Fig. 6b. We have only marked the jumps through the value
zero and assigned a value 1 to all the positive values and -1 for
the negative ones. Note the pictorial and qualitative similari-
ties between Figs. 1 and 7. In particular, note that Fig. 7 also
presents clustered periods of greater activity (between 7000
and 10000 MCS/s) and of lower activity (between 6000 and
7000 MCS/s and around 1000 MCS/s, for example).
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FIG. 7: A binary version of the dependence in Fig. 2b. It was as-
signed a value 1 to all values M > 0 and a value of -1 for all values
M < 0. Note the similarity with Fig. 1 where actual reversals are
presented.

Figure 8 shows the distribution of intervals between consec-
utive reversals (T=2.26) for different system sizes. The bold
straight line is a guide for the eye in all cases. The distrib-
ution follows a power law. However its apparition presents
a size dependence. For larger periods the distribution fol-
lows an exponential. The exponential dependence can eas-
ily be confirmed by representing the data in a semi-log graph
(not shown). For 5x5 systems the exponential occupies almost
all the histogram interval (Fig. 8a) while for systems of size
50x50 it is almost inexistent (Fig. 8c). We have not found the
initial power law dependence in the literature but in our sim-
ulations and in the work by Seki and Ito [16]. This is a quite
remarkable fact given that the Ising model has been analyti-
cally and computationally (very extensively) explored during
many years. In Fig. 9 it is shown the size dependence of the
power-law exponent for a fixed temperature T = 2.26 (very
near Tc). Data is satisfactorily fitted by an exponential func-
tion. The results for the slope value range from -2.0 (for 5x5
systems) to -1.55 (for 50x50 systems). As can be seen, the
larger the system the closer to the most accepted value (-1.5)
for the slope on actual reversals distribution [4].

We show in Fig. 10 the distribution of magnetization values
(T=2.26) for 5x5 and 50x50 systems. For the smallest system
that we have simulated, maximum occurs at the extreme
values M =±1. For larger systems they occur at intermediate
values. While for small systems, fluctuations can drive
the system to absolute values of magnetization near 1, and
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FIG. 8: Distribution of periods between consecutive reversals for our
model. The system sizes are 5x5, 10x10 and 50x50 for a), b) and c),
respectively. In all cases the bold straight line is a guide for the eye.
Slopes values are a) -2.0, b) -1.87 and c) -1.55. Runs were done at a
fixed T =2.26.
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FIG. 9: Size dependence for the slope of the distribution of periods
between consecutive reversals in our model. The bold curve is an
exponential fit to data. It has the form y = y0 + A.exp(−x/t), where
y0 =−1.559±0.014, A =−0.457±0.023 and t = 326±49.
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FIG. 10: Distributions of magnetization values. For 5x5 systems
(squares) the maxima appear at the extremes. For larger systems, and
in particular for 50x50 systems (circles), maxima appear at values of
magnetization |M| 6= 1. The valley value is around 10 percent of
the peaks values, closer to actual measurements than Ito and Seki
simulations.
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FIG. 11: Temperature dependence of the mean time interval between
consecutive reversals. For temperatures below 2.18 there were no
reversals (for simulations up to 106 MCS/s).
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FIG. 12: Temperature dependence of the power-law exponent. A
system size 50x50 was used in all cases.
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FIG. 13: Size dependence of the mean time interval between con-
secutive reversals. The same temperature T = 2.26 was used in all
cases. The straight bold line is an exponential fit ∼ exp(const.L) (for
systems LxL).

FIG. 14: Schematic representation of the a) mechanical; and b) mag-
netic; interaction between idealized neighbor eddies. In a) we present
a view from above (perpendicular to the plane containing eddies). In
b) we present a side view; the central dipole interacs favorably with
the left one.

there are not counterparts, for larger systems, a fluctuation
to an absolute value near 1 in a part of the system will be
accompanied almost always by a value far from those values
in other pieces of the system. Like in [16] the distributions
follow very roughly a bi-normal function. However, in a
previous work [26] on block distribution functions for the
Ising model in 2D, 3D and 4D the test was done formally
and it was clear that they do not obey gaussians distributions.
In this particular our simulations are superior to those by
Seki and Ito [16]. We have reproduced their simulations
and obtained that, while in our simulations (and in actual
reversals) the distribution highs for zero magnetization is
around 0.1 of the maximum, for Q2R simulations it is around
50 percent. This difference is probably associated to the
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FIG. 15: Frequency distribution of magnetization values (Ising, an-
tiferromagnetic, Metropolis). The magnetization is not a good order
parameter, its distribution around zero is a gaussian. The inset shows
the distribution of periods between reversals. Note that it is presented
in a semi-log plot, so the line is not a power-law but an exponential.
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FIG. 16: Frequency distribution of inter-reversal periods (Ising, an-
tiferrimagnetic, Metropolis). The solid line has a slope value around
-0.5.
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FIG. 17: Frequency distribution of magnetization values (Ising, an-
tiferrimagnetic, Metropolis). Once more, the valley high is closer to
actual measurements than for the Ito and Seki model.
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non-ergodic character of Q2R simulations.

Figure 11 shows the dependence of the average duration of
time intervals between consecutive reversals on temperature
(always for temperatures near the critical point). These results
can help us to understand the way in which external factors
affect the reversal regime. For more intense perturbations
(high temperatures) the reversals are more frequent. For
less intense perturbations (low temperatures) there is a lower
number of reversals for time unit.

In our simulations the temperature plays the role of a
tuning parameter. For temperatures well above Tc we observe
only small fluctuations around M = 0, for temperatures well
below Tc we observe a state of constant magnetization values
1 or -1 with seldom flips to -1 or 1 values, respectively.
We have studied the dependence of the power-law slope on
temperature for temperatures T around Tc (Fig. 12). Note
that for temperatures near Tc or above the slope remains
almost constant and in a narrow interval (from -1.75 to
-1.55). Another point to be highlighted in Figure 12 is
that for temperatures above and below Tc the physics under
magnetization reversals are very different. For temperatures
below Tc it is essentially a tunnelling through an energy
barrier while for temperatures above Tc it is well represented
by random walks returns to the origin. However, the slope
of the inter-reversal interval distribution change in a very
gradually manner (at least up to the temperatures that we have
simulated).

Figure 13 presents the mean interval between consecutive
reversals as a function of the system size. This dependence
gives some qualitative insight on which is the volume of
Earth’s interior that effectively carries the currents that
produce the magnetic field (but equally, it could be associated
to the number of eddie currents effectively producing the
magnetic field). For larger systems reversals are less fre-
quent than for small systems. As expected [27] the data in
Fig. 13 can be satisfactorily fitted by an exponential function
exp(const.L) for LxL system sizes.

Despite of the dynamical character of reversals mentioned
at the introductory section, there are some pieces of our
simulations very similar to the actual sequence of reversals.
That is the case in Fig. 7, for example, between Montecarlo
steps of numbers around 1000. Probably, some historical
ingredient, (i.e., a non-equilibrium approach) could be taken
in future attempts to describe the phenomenon. Such an
ingredient lacks in our work. Simulations with varying
temperature or system size are two of the possibilities opened
by the present approach.

C. Anti-ferromagnetic Metropolis simulations

Following Ito and Seki we have initially used a ferromag-
netic version of the Ising model to simulate the geodynamo.

However, an anti-ferromagnetic type of interaction seems
to better represent actual eddies interactions. The mag-
netic moment of neighbor eddies is more favorable to an
anti-ferromagnetic-like arrange both mechanically and mag-
netically as illustrated in Fig. 14. We have simulated 50x50
2D Ising anti-ferromagnetic systems. (the same Hamiltonian
than in Equation (2) except for the minus sign). Unfortu-
nately, the magnetization is not a good order parameter for
antiferromagnetic systems and the result for the distribution
of magnetization values around zero give a Gaussian as can
be seen in Fig. 15. The distribution for periods between
reversals is of exponential type (see the inset of Fig. 15).

D. Metropolis Anti-ferrimagnetic simulations

An improvement in the model is the introduction of
different sizes for spins. We have done this by simulating
an anti-ferrimagnetic system (the same Hamiltonian than in
Equation (2) except for the minus sign and for the fact that
neighbor spins have no more the same value) where it was
supposed that the spin size in a sublattice is twice the size of
the spin in the other sublattice (raising the critical temperature
to the double of lattices where all the spins have the same
absolute value).

We present in Fig. 16 the distribution of periods between
reversals for 50x50 anti-ferrimagnetic systems. The value
near -0.5 for the slope remains (as in Ito and Seki and ferro-
magnetic models). Our field reversal exponent is closely
related to the global persistent exponent [28]. The last one
is calculated from simultaneously evolving many systems
until the magnetization first change sign and keeping track of
the fraction p(t) of surviving systems (systems that have not
suffered a reversal up to time t). Our exponent is calculated
from following a single system and recording time intervals
between consecutive reversals. It is our believe that they
describe essentially the same phenomena.

In Figure 17 the distribution of magnetization values for
the same system is shown. Once more two peaks are present
as well as a valley with less than 10 percent of peaks’ highs.
Comparison of results in figures like Fig. 17 and results in
Fig. 3 must be done carefully. Note that the results in Fig. 3 are
unbounded (the only possible bound could be the dipole value
for the case in which the whole core rotates as a single unit).
The usual values seem to be far from this bound. Our results,
on the other hand, have a bound ±1 imposed by the model.
This factor give one possible direction for future works.

IV. CONCLUSIONS

We have simulated 2D square Ising systems to mimic the
time dependence of geomagnetic reversals. It is quite inter-
esting that despite off the different physics involved in tem-
peratures above (random walks returns to the origin) and bel-
low (tunnelling through an energy barrier) the critical tem-
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perature, the slope of the distribution of times between rever-
sals has a smooth dependence on temperature. This fact will
eventually need a deeper study. There is a dependence of the
mean interval between reversals in both temperature and sys-
tem size. However, as shown, all the studied properties reach
stationary values for relatively small systems, which permits
to use the temperature as the unique free parameter. There are
two points to be highlighted: first, that as in our simulations
the actual distribution of intensities has a deep valley (ampli-
tude approximately 0.1 of the maximum) for magnetization
values near zero; and second, that our simulations reproduce
the power law dependence of actual reversals (with a slope
value very near the actual one). In this sense our simulations
(Metropolis) are superior when compared to Q2R simulations.

The necessity of more detailed models including, for example,
the fact that there is a continuous scale of eddies is apparent.
Some works are currently running along these lines and will
be published elsewhere.

Acknowledgments

The authors sincerely acknowledge partial financial sup-
ports from FAPERJ (Rio de Janeiro Founding Agency) and
CNPq (Brazilian Founding Agency). We are indebted to an
anonymous reviewer whose criticisms and comments have
greatly helped in the final presentation of the work.

[1] D. Sornette, Critical Phenomena in Natural Sciences,
(Springer, Berlin, 2004).

[2] A. R. R. Papa, L. M. Barreto, and N. A. B. Seixas, J. Atm. Sol.
Terr. Phys., 68, 930 (2006).

[3] Magnetic storms are periods that last from one to three days
during which the field suffers rapid variations. (2004), however,
they seriously affect many human activities. They are mainly
caused by phenomena in the Sun that affect the Earth’s at-
mosphere.

[4] R. T. Merrill, M. W. McElhinny, and P. L. McFadden, The mag-
netic field of the Earth; Paleomagnetism, the Core, and the
Deep Mantle, (Academic Press, 3rd Ed., San Diego, 1998).

[5] A. R. T. Jonkers, Phys. Earth Planet. Int., 135, 253 (2003).
[6] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381

(1987).
[7] M. Gell-mann and C. Tsallis, Nonextensive entropy: interdisci-

plinary applications, (Oxford University Press, Oxford, 2004).
[8] S. C. Cande and D. V. Kent, J. Geophys. Res. 97, 13917 (1992).
[9] S. C. Cande and D. V. Kent, J. Geophys. Res. 100, 6093 (1995).

[10] M. Kono and H. Tanaka, In: The Earth’s Central Part: Its struc-
ture and Dynamics, (T. Yukutabe, Ed. Terrapub, Tokyo, 1995).

[11] S. Gaffin, Phys. Earth Planet. Int. 57, 284 (1989).
[12] C. Constable and C. Johnson, Phys. Earth Planet. Int. 153, 61

(2005).
[13] M. Cortini and C. Barton, J. Geophys. Res. 99, 18021 (1994).

[14] P. D. Mininni, A. G. Pouquet, and D. C. Montgomery, Phys.
Rev. Lett. 97, 244503 (2006).

[15] P. D. Mininni and D. C. Montgomery, Phys. Fluids 18, 116602
(2006).

[16] M. Seki and K. Ito, J. Geomag. Geoelectr. 45, 79 (1993).
[17] R. Zhu, K. A. Hoffman, Y. Pan, R. Shi, and D. Li, Phys. Earth

Planet. Int. 136, 187 (2003).
[18] B. M. Clement, Nature 428, 637 (2004).
[19] J.-P. Valet, L. Meynadier, and Y. Guyodo, Nature, 435, 802

(2005).
[20] M. Shimizu and Y. Honkura, J. Geomag. Geoelectr. 37, 455

(1985).
[21] D. Stauffer, Int. J. Mod. Phys. C 5, 513 (1993).
[22] L. R. da Silva and D. Stauffer, Physica A, 294, 235 (2001).
[23] A. Jimenez, K. F. Tiampo, and A. M. Posadas, Nonlin.

Processes Geophys. 14, 5 (2007).
[24] D. Stauffer, Physica A 244, 344 (1997).
[25] A. R. R. Papa, Int. J. Mod. Phys. C 9, 881 (1998).
[26] K. Binder , Z. Phys. B - Cond. Mat. 43, 119 (1981).
[27] H. Meyer-Ortmanns and T. Trappenberg, J. Stat. Phys. 58, 185

(1990).
[28] S. N. Majumdar, A. J. Bray, S. J. Cornell, and C. Sire, Phys.

Rev. Lett. 77, 3704 (1996).


