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The motion of a particle with charge q and mass m in a magnetic �eld given by B = kB0 +
B1[icos(!t) + jsin(!t)] and an electric �eld which obeys r� E = �@B=@t is analyzed classically
and quantum-mechanically. The use of a rotating coordinate system allows the analytical derivation
of the particle classical trajectory and its laboratory wavefunction. The motion exhibits two reso-
nances, one at ! = !c = �qB0=m, the cyclotron frequency, and the other at ! = !L = �qB0=2m,
the Larmor frequency. For ! at the �rst resonance frequency, the particle acquires a simple closed
trajectory, and the e�ective hamiltonian can be interpreted as that of a particle in a staticmagnetic
�eld. In the second case a term corresponding to an e�ective static electric �eld remains, and the
particle orbit is an open line. The particle wave function and eigenenergies are calculated.
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I Introduction

The dynamics of charged particles in electric and mag-

netic �elds is of both academic and practical interest.

The areas where this problem �nds applications include

the development of cyclotron accelerators [1], free elec-

tron lasers [2], plasma physics [4] and so on.

In this paper one considers the classical and quan-

tum dynamics of a particle with charge q and mass m

acted by a magnetic �eld given by

B = kB0 +B1[icos(!t) + jsin(!t)] (1)

and an electric �eld which relates to B through the

Faraday law:

r� E = �@B
@t

(2)

Both �elds can be derived from the vector potential:

A = �1

2
R�B (3)

When B1 is given by two pairs of crossed Helmholtz

coils, the approximation of homogeneity implicit in

equation (1) is valid in a region of about 20% of the

volume enclosed by the coils. Similar assumption have

been taken by other authors [2, 3].

The classical equations of motion can be obtained

from the lagrangian:

c

L =
m

2
( _X2 + _Y 2 + _Z2) +

q

2
_X [ZB1sin(!t) � Y Bo]+

+
q

2
_Y [XBo � ZB1cos(!t)] +

q

2
_Z[Y B1cos(!t) �XB1sin(!t)] (4)

whereas to study the quantum dynamics we need the hamiltonian:

H =
1

2m
(P 2

x + P 2
y + P 2

z )�
q

2m
[B1cos(!t)Lx + B1sin(!t)Ly +B0Lz ]+

+
q2

8m
fB2

0(X
2 + Y 2) + B2

1Z
2 � 2B0B1Z[Xcos(!t) + Y sin(!t)]+

+ B2
1 [Y cos(!t) �Xsin(!t)]2g (5)
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II The classical motion

The classical equations of motion can be easily obtained from (4). In order to eliminate the time dependence of the

lagrangian, we perform the following transformation of coordinates:

i = i0cos(!t) � j0sin(!t)

j = i0sin(!t) + j0cos(!t) (6)

k = k0

d
In the nuclear magnetic resonance (NMR) literature

[5] these transformations are interpreted as leading to

a system of reference which rotates with angular fre-

quency ! in respect to the laboratory coordinate sys-

tem.

From (6), using lower case to indicate the vari-

ables in the rotating system, the e�ective lagrangian

becomes:

c

Leff =
m

2
( _x2 + _y2 + _z2) � q

2
_xy(Bo +

2!



) +

q

2
_y[x(Bo +

2!



)� zB1]+

+
q _zyB1

2
+
q!

2
(Bo +

!



)(x2 + y2)� q!B1xz

2
(7)

d

This lagrangian can be written in the usual compact

form:

Leff = T + q _r �Aeff � q�eff (8)

where T is the particle kinetic energy, Aeff the e�ec-

tive vector potential given by:

Aeff (r) = �1

2
r�Beff ; (9)

with Beff being the e�ective magnetic �eld (de�ned

below), and the e�ective scalar potential:

�eff (r) =
1

2
!B1xz � !

2
(Bo +

!



)(x2 + y2) (10)

where 
 = q=m is the particle charge-to-mass ratio.

Thus, one has for the particle in the rotating frame the

following equations of motion:

�x = 


�
_y(Bo +

2!



) + x!(Bo +

!



)� z!B1

2

�

�y = 


�
_zB1 � _x(Bo +

2!



) + y!(Bo +

!



)

�
(11)

�z = �

�
_yB1 +

x!B1

2

�
It is useful to de�ne an e�ective electric �eld Eeff .

The expressions for the e�ective �elds are:

Eeff =

�
x!(Bo +

!



) � z!

2
B1

�
i0+

+

�
y!(Bo +

!



)

�
j0 � x!B1

2
k0 (12)

Beff = B1i
0 + (Bo +

2!



)k0 (13)

Therefore, for a �xed value of !, each particle with

a given charge-to-mass ratio, 
, will feel di�erent ef-

fective �elds. Note that Beff di�ers from that in the

NMR case by a factor `2' in the \apparent �eld" !=
 [5].

With these de�nitions, the form of the Lorentz force is

preserved in the rotating system:

Feff = qEeff + qv �Beff (14)

One can clearly see from (11) that there are two

resonance frequencies in the motion: one at ! = !c =

�qB0=m, the cyclotron frequency, and another at !L =

�qB0=2m, the Larmor frequency. For a frequency equal
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to the �rst one (!c) the particle feels the following ef-

fective �elds:

Eeff = �1

2
!B1[zi

0 + xk0] (15)

Beff = B1i
0 � Bok

0 (16)

and for the second frequency(! = !L),

Eeff =
1

2
[x!Bo � z!B1] i

0+
1

2
y!Boj

0�1

2
x!B1k

0 (17)

Beff = B1i
0 (18)

Now we consider a particle incident in region of

�elds B0 and B1, at the origin of the coordinate sys-

tem, with initial velocity parallel to B0. That is,

x(0) = y(0) = z(0) = 0, vx(0) = vy(0) = 0, and

vz(0) = v0. As in usual NMR, one makes the approx-

imation B0 � B1. In this limit, it is easy to verify by

direct substitution the following solutions of (11), for

! = !c:

x(t) �
p
3vo
3!c

sin(

p
3!1t

2
)� !1vo

2!2c
sin(!ct)

y(t) � � 2vo
3!1

"
cos(

p
3!1t

2
) � 1

#
� !1vo

2!2c
cos(!ct) (19)

z(t) � 2
p
3vo

3!1
sin(

p
3!1t

2
)

where !1 � 
B1. For ! = !L:

x(t) � !1vo
!2L

sin(!Lt)� vo
!L

sinh(
!1t

2
)

y(t) � !1vo
2!2c

cos(!Lt) +
vo!1
!2L

cosh(
!1t

2
) (20)

z(t) � 2vo
!1

sinh(
!1t

2
)

The detailed calculation for the obtention of these so-

lutions is given in ref. [8].

Then, we see that whereas for ! = !c the solutions

are purely trigonometric functions, for ! = !L there

is a mixture of trigonometric and hyperbolic functions.

This means that the trajectory of the particle will be

a closed path in the �rst case, and an open line in the

second. For a general value of !, which can be very

close to !c, there will also be an exponential drift. As

an example, Figure 1 shows the trajectories of parti-

cles in a beam containing triply ionized isotopes of ura-

nium. The respective charge-to-mass ratios in MHz/T

are as follow: 
(233U) = 1:242; 
(234U) = 1:237;


(235U) = 1:231; 
(236U) = 1:226 and 
(238U) = 1:216.

For this simulation we set v0 = 104 m/s, B0 = 1 T,

B1 = 0:01 T. The oscillating �eld frequency is tuned

to the cyclotron frequency of the isotope 235U, that is,

! = �1:231 MHz. The drawing is in the rotating sys-

tem. One can have a picture of the trajectories in the

laboratory system by rotating the �gure about the z-

axis. Note that each isotope, according to Eqs. (12)

and (13), feels di�erent e�ective �elds. This causes the

lighter isotopes to deviate in opposite directions in re-

spect to the heavier ones.

Figure 1. Trajectories of triply ionized Uranium isotopes
in oscillating �elds \tuned" to the 235U isotope resonance
(-1.231 MHz) in the rotating coordinate system. The static
�eld is along the +z-axis, and the oscillating magnetic �eld
is on the xy-plane. The initial velocity of the particles is
v0 = 104 m/s, along the direction of the static �eld. The
orbit of the resonant particle is closed, whereas the non-
resonant ones drift away. The trajectories in the laboratory
system are obtained rotating the picture about the z-axis.
These curves were produced for di�erent lengths of time in
order to make them all visible in the same scale.

III Quantum description

In this section we approach the problem from the

quantum-mechanical point of view. The transforma-

tion to the rotating frame in this case, made directly

on the Schr�odinger equation, allows the derivation of

the laboratory wave function and the particle eigenen-

ergies.

Using the following straightforward relations:
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(i) Xcos(!t) + Y sin(!t) = e�i!tLz=~Xei!tLz=~

(ii) [Y cos(!t) �Xsin(!t)]2 = e�i!tLz=~Y 2ei!tLz=~

(iii) X2 + Y 2 = e�i!tLz=~(X2 + Y 2)ei!tLz=~

(iv) Z2 = e�i!tLz=~Z2ei!tLz=~

(v) Lxcos(!t) + Lysin(!t) = e�i!tLz=~Lxe
i!tLz=~

Lz = e�i!tLz=~Lze
i!tLz=~

where, Lx, Ly and Lz are the components of the canonical angular momentum of the particle, the hamiltonian H
in Eq. (5) becomes1:

ei!tLz=~H(t)e�i!tLz=~ � H0 =
P 2

2m
+
m
2B2

0

8
(X2 + Y 2) +

m
2B2
1

8
(Y 2 + Z2)

� m
2B0B1

4
XZ � 
B0

2
Lz � 
B1

2
Lx (21)

This hamiltonian represents a charged particle moving in a staticmagnetic �eldB = B1i+B0k. The above operation

can be interpreted as the quantum-mechanical transformation of the hamiltonian to the rotating coordinate system.

De�ning the wavefunction  0 through the relation:

 = e�i!tLz=~ 0

and replacing into the Schr�odinger equation one obtains:

(H0 � !Lz) 
0 = i~

@ 0

@t
� H0

eff 
0 (22)

Since H0

eff is time-independent, the solution of (22) will be:

 0(t) = e�i(H
0
�!Lz)t=~ (0) (23)

and consequently the wavefunction in the laboratory system will be

 (t) = e�i!tLz=~e�i(H
0
�!Lz)t=~ (0) (24)

Note that since [Lz;H0] 6= 0, the two exponential operators in Eq. (24) cannot be gathered into one.

Now we shall analyze the properties of H0

eff :

H0

eff =
P 2

2m
+
m
2B2

0

8
(X2 + Y 2) +

m
2B2
1

8
(Y 2 + Z2)

� m
2B0B1

4
XZ � 
�B

2
Lz � 
B1

2
Lx (25)

where �B � B0 + 2!=
. By adding and subtracting the quantity

m
2

8

�
4!2


2
+

4!B0




�
(X2 + Y 2) � m
B1

4
2!XZ

1For the quantum treatment we keep capitals throughout the section.
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the e�ective hamiltonian can be re-written as:

H0

eff =
P 2

2m
+
m
2�B2

8
(X2 + Y 2) +

m
2B2
1

8
(Y 2 + Z2)

� m
2�BB1

4
XZ � 
�B

2
Lz � 
B1

2
Lx + q

!

2

�
B1XZ �

�
!



+B0

�
(X2 + Y 2)

�
(26)

which, in turn, has the general form:

H0

eff =
1

2m
(P� qAeff )

2 + q�eff (27)

where the e�ective scalar potential is again given by

�eff =
!

2

�
B1XZ �

�
!



+B0

�
(X2 + Y 2)

�
(28)

Aeff being the e�ective vector potential. The components of Aeff can be obtained by commuting X, Y and Z

with H0

eff , and comparing the result with the de�nition of the canonical momentum P = m _R+ qA. For instance:

i~ _X = [X;H0

eff ] =
1

2m
2i~Px +


�B

2
i~Y

Px = m _X � q
�B

2
Y

Consequently,

Aeff;x = ��B

2
Y

Repeating the procedure for the other components, one obtains:

Aeff;y = �B1

2
Z +

�B

2
X

Aeff;z =
B1

2
Y

These results are the same as those obtained in ref. [6], the only di�erence being a factor `2' in the de�nition of

�B.

Written in the form of Eq. (26), the hamiltonian exhibits the e�ects of the electric �eld. Contrary to what

happens when this is neglected [6], it shows two resonance frequencies. At the Larmor frequency, �B = 0, and the

hamiltonian becomes:

H0

eff =
P 2

2m
+
m
2B2

1

8
(Y 2 + Z2) +


B1

2
Lx � m
2B0B1

4
XZ +

m
2B2
0

4
(X2 + Y 2) (29)

which represents a particle in a static magnetic �eld along the x direction, plus an electric �eld potential. The

eigenstates of the particle in this case cannot be easily found. On the other hand, at the cyclotron frequency, the

second term of �eff in Eq. (28) vanishes, and the hamiltonian becomes:

H0

eff =
P 2

2m
+
m
2B2

0

8
(X2 + Y 2) +

m
2B2
1

8
(Y 2 + Z2)

� m
2B0B1

4
XZ � 
B0

2
Lz +


B1

2
Lx (30)

which represents a particle moving in a static magnetic �eld Beff = B0k�B1i. This hamiltonian can easily written

in a diagonal form by de�ning the angle

� = tg�1

�
B1

B0

�
between the z-axis and Beff , and writing the operators of H0

eff in (30) in terms of the new coordinates, X0, Y 0

and Z0, where the e�ective �eld is axial.
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The particle's eigenenergies are given in this case

by:

En =
P 0z
2m

+

�
n+

1

2

�
~!0c (31)

where !0c = 
Beff = 

p
B2
0 + B2

1 is the cyclotron fre-

quency about the e�ective �eld in the rotating system.

From this one sees that the quantization axis can be

rotated continuously by changing the angle � through

the change in the ratio B1=B0.

IV Conclusions

In this paper we have studied the classical and the quan-

tum dynamics of a charged particle in oscillating mag-

netic and electric �elds which are related through the

Faraday law. The equations of motion show two res-

onance frequencies, one at the Larmor frequency (!L)

and another at the cyclotron frequency (!c). When the

�eld frequency equals !c, the particle is con�ned to a

simple closed trajectory, but when ! = !L, it drifts

away, the same happening to o� resonance particles

whose frequencies are very close to !c. The use of a

\rotating coordinate system" such as used in conven-

tional nuclear magnetic resonance allows the derivation

of analytical solutions for the equations of motion.

By using the corresponding quantum-mechanical

transformation, one �nds the exact wavefunction of the

particle in the laboratory system. When ! = !c, the

e�ective hamiltonian corresponds to that of a charged

particle in an static magnetic �eld. In this case the

particle eigenenergies are derived in the rotating coor-

dinate system, and it is shown that the direction of

the axis of quantization can be continuously rotated by

changing the ratio between the intensities of the �elds.

On the other hand, when ! = !L, the hamiltonian is

a mixture of e�ective magnetic and electric �elds, and

the eigenenergies cannot be easily derived.

The Hamiltonian (30) predicts the existence of \cur-

rent echoes", and therefore is in accordance with the

results of references [6] and [7]. There is, however, one

important di�erence which appears in the present case

where the electric �eld is considered. Contrary to what

happens in [6], the static �eld term does not vanish at

resonance. Thus, in order to describe properly the for-

mation of a current echo in the present situation, one

must consider B1 � B0 when the pulse is \on", and

obviously B1 = 0 when it is o�. Having this in mind,

the calculation for the current echo amplitude can be

carried out in the same way as described in [6].
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