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Causality, Memory Effect and Relativistic Dissipative Hydrodynamics
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We discuss the minimal structure of relativistic dissipative hydrodynamics which satisfies the covariance and
causality by introducing the memory effect in irreversible currents.
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I. INTRODUCTION

The ideal hydrodynamical description for the dynamics of
hot and dense matter achieved in RHIC experiments works
amazingly well, particularly for the behavior of collective flow
parameters. However, we know that there still exist several
open problems in the interpretation of data in terms of the
hydrodynamical model [1]. These questions require careful
examination to extract quantitative and precise information on
the properties of QGP. In particular, we should study the effect
of dissipative processes on the collective flow variables. Sev-
eral works have been done in this direction. However, strictly
speaking, a quantitative and consistent analysis of the viscos-
ity within the framework of relativistic hydrodynamics has not
yet been done completely. This is because the introduction
of dissipative phenomena in relativistic hydrodynamics casts
difficult problems, both conceptual and technical. Initially
Eckart, and later, Landau-Lifshitz introduced the dissipative
effects in relativistic hydrodynamics in a covariant manner. It
is, however, known that their formalism leads to the problem
of acausality, that is, a pulse signal propagates with infinite
speed. Thus, relativistic covariance is not a sufficient condi-
tion for a consistent relativistic dissipative dynamics.

II. CAUSALITY IN DIFFUSION PROCESS

The fundamental problem of the first order theory like the
Navier-Stokes theory is attributed to the fact that the diffusion
equation is parabolic. The diffusion process is a typical relax-
ation process of conserved quantities. Thus, it should satisfy
the equation of continuity,

∂n
∂t

+∇ ·~j = 0, (1)

where n is a density of a conserved quantity. The irreversible
current ~j is, phenomenologically assumed to be proportional
to a thermodynamic force F , which is given by the gradient of
n,

~j =−ζ~F =−ζ∇n, (2)

where ζ is the Onsager coefficient. Substituting Eq.(2) into
Eq.(1), we get the diffusion equation,

∂
∂t

n = ζ∇2n. (3)

Fick’s law tells us that the above diffusion process is in-
duced by an inhomogeneous distribution. In Eq.(2), the spatial
inhomogeneity immediately gives rise to irreversible currents.
However, this is a very idealized case. In general, the gener-
ation of irreversible currents has a time delay. Thus, we may
think of memory effects by introducing the following memory
function [2–4],

G
(
t, t ′

)
= 1

τR
e−(t−t ′)/τR , t ≥ t ′

= 0, t < t ′ (4)

where τR characterizes the memory time and is called the re-
laxation time. Then, we rewrite Eq.(2) as

~j =−
∫ t

−∞
G

(
t, t ′

)
ζ~F

(
t ′
)

dt ′. (5)

In the limit of τR → 0, we have G(t, t ′)→ δ(t− t ′) so that the
original equation (2) is recovered [5]. Substituting into the
equation of continuity (1), we arrive at

τR
∂2n
∂t2 = −∂n

∂t
+ζ∇2n. (6)

This equation is hyperbolic. This telegraph equation is some-
times called the causal diffusion equation.

The the maximum velocity of the signal propagation of the
causal diffusion equation is [6],

vmax =

√
ζ
τR

. (7)

For a suitable choice of the parameters τR and ζ, we can
recover the causal propagation of diffusion process. On the
other hand, the diffusion equation corresponds to τR = 0 and
hence vmax →∞. This is the reason why the diffusion equation
breaks causality.

III. RELATIVISTIC DISSIPATIVE HYDRODYNAMICS

Eckart and Landau-Lifshitz derived the relativistic dissi-
pative hydrodynamics following non-equilibrium thermody-
namics. Their theories are just the covariant versions of the
Navier-Stokes equation and the corresponding equations still
continue to be parabolic.
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As a matter of fact, the irreversible currents of the Landau-
Lifshitz theory (LL) are constructed as follows. First of all,
the energy-momentum tensor is expressed as

T µν = εuµuν−Pµν (p+Π)+πµν, (8)

where, ε, uµ, Π and πµν are respectively the energy density,
the four velocity of the fluid and the bulk and shear viscous
stresses. The velocity field satisfies uµuµ = 1. The tensor Pµν

is the projection operator to the space orthogonal to uµ and
given by Pµν = gµν−uµuν. On the other hand, the current for
the conserved quantity (e.g., baryon number) takes the form

Nµ = nuµ +νµ, (9)

where νµ is the heat conduction part of the current. It should
be noted that for the irreversible currents, we require the con-
straints, uµπµν = 0,uµνµ = 0.

Then, the divergence of the entropy four flux is

∂µ (suµ−ανµ) =
1
T

(−PµνΠ+πµν)∂µuν−νµ∂µα, (10)

where α = µ/T and µ is the chemical potential. From
the second law of thermodynamics, the r.h.s. of the equa-
tion should be positive. Then, the irreversible currents
are given by Π = −ζ∂αuα,πµν = ηPµναβ∂αuβ and νµ =
−κPµν∂να, where ζ, η and κ are bulk viscosity, shear viscos-
ity and thermal conductivity coefficients, respectively. Here,
Pµανβ is the double symmetric traceless projection, Pµναβ =
1
2

(
PµαPνβ +PµβPνα)− 1

Pλ
λ

PµνPαβ.

One can see that the irreversible currents are induced by in-
homogeneous distributions, and the space inhomogeneity im-
mediately gives rise to the irreversible current. This is the
same structure as the diffusion equation. In this sense, the LL
is parabolic and does not obey causality. To solve this prob-
lem, we will introduce the memory effect in the same way as
for the diffusion equation. Then, we use the same memory
function as Eq. (4). Thus, the modified irreversible currents
are [7]

Π(τ) =−
∫ τ

τ0

dτ′G
(
τ,τ′

)
ζ∂αuα (

τ′
)
+ e−(τ−τ0)/τRΠ0, (11)

πµν (τ) = Pµναβ
∫ τ

τ0

dτ′G
(
τ,τ′

)
η∂αuβ

(
τ′

)

+ e−(τ−τ0)/τRπµν
0, (12)

νµ (τ) =−Pµν
∫ τ

τ0

dτ′G
(
τ,τ′

)
κ∂να

(
τ′

)

+ e−(τ−τ0)/τRνµ
0, (13)

where τ = τ(~r, t) is the local proper time. The initial value of
currents Π0, πµν

0 and νµ
0 are given at an arbitrary initial time.

IV. BJORKEN’S SCALING SOLUTION

To see how the above scheme works, let us apply it to the
one dimensional scaling solution of the Bjorken model.
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FIG. 1: The time evolution of the energy density. The dashed curves
correspond to the calculations with the constant viscosity and relax-
ation time. The first two lines from the top represents the results of
the LL. Next two lines shows the results of our theory. The last line
is the result of ideal hydrodynamics.

The time component of the divergence of T µν gives

d
dτ

ε(τ)+
ε+P+Π

τ
+

2
3

Ω
τ

= 0, (14)

where Ω(τ) = −∫ τ
τ0

dτ′
[
G(τ,τ′) η

τ′ + τR(τ0)G(τ,τ0)Ω(τ0)
]
.

The equation for the space component is automatically sat-
isfied by the scaling ansatz showing its consistency. For sim-
plicity, we consider only the effect of the shear viscosity. (The
contribution of the bulk viscosity is same as that of the shear
viscosity in this simple model.)

A typical estimate from the kinetic theory shows that the
shear viscosity η is proportional to the entropy density s, η =
bs, where b is a constant [8]. Following Ref. [8], we choose
b = 1.1. Furthermore, the relaxation time is given by τR =
3ηIS
4p = 3η

8p [8]. We further assume the equation of state of the
ideal gas.

In Fig. 1, we show the energy density ε obtained by solving
Eq. (14) as function of proper time τ. As the initial condi-
tion, we set ε(τ0) = 1 GeV/fm3, Π(τ0) = Ω(τ0) = 0 at the
initial proper time τ0 = 0.1 fm/c. The first two lines from
the top represents the results of the LL. The next two lines
shows the results of our theory. The last line is the result of
ideal hydrodynamics. For the solid lines, we calculated with
the viscosity and relaxation time which depend on tempera-
ture. Initially, the effect of viscosity is small because of the
memory effect, the behavior of our theory is similar to that of
ideal hydrodynamics. After the time becomes larger than the
relaxation time, the memory effect is not effective anymore
and the behavior is similar to the result of the LL. As we have
mentioned, the behavior of our theory is the same as the re-
sult obtained in Ref. [8] in this case. For the dashed lines,
we calculated with the constant viscosity and relaxation time,
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FIG. 2: The time evolution of energy density with the different initial
conditions from Fig. 1. The dashed and short dashed lines represent
the result of the LL and our theory, respectively . For comparison,
our result of Fig. 1 is shown, again (ideal T µν(τ0)). The last line
from the top is the result of ideal hydrodynamics. In this case, the
energy heat-up is observed even in our theory.

η = η(ε0) and τR = τR(ε0). In this case, the viscosity is con-
stant so that the heat production stays longer and has a smaller
slope as function of time asymptotically.

Sometimes the emergence of the initial heat-up in the LL
(the dashed curve in Fig.1) is interpreted as an intrinsic prob-
lem of the first order theory. However, such behavior can also
appear even in the second order theory. In Fig. 2, we set
Π(τ0) = ζ(τ0)/τ0 and Ω(τ0) = η(τ0)/τ0 as the initial con-
ditions. In particular, the initial heat-up also appear in the
second order depending on the initial condition for the irre-
versible currents (see Fig. 2). Therefore, this heat-up is not

the problem of the first order theory but rather the specific
property of the scaling ansatz. This was already pointed out
by Muronga. The physical reason for this heat-up is due to the
use of the Bjorken solution for the velocity field. In this case,
the system acts as if an external force is applied to keep the
velocity field as a given function of τ. Thus, depending on the
relative intensity of the viscous terms compared to the pres-
sure, the external work converted to the local heat production
can overcome the temperature decrease due to the expansion.

V. SUMMARY AND CONCLUDING REMARKS

In this proceeding, we discuss relativistic dissipative hydro-
dynamics consistent with causality by introducing the mem-
ory effects to the Landau-Lifshitz theory. In this way, a simple
physical structure of the LL is preserved. The resulting equa-
tion of motion then becomes hyperbolic and causality can be
restored.

We have applied our theory to the case of the one-
dimensional scaling solution of Bjorken and obtained the
analogous behavior of previous analysis. We showed the time
evolution of the temperature. As expected, our theory gives
the same result of Ref. [8], because the no-acceleration con-
dition used in Ref. [8] is automatically satisfied in this model.
Note that our theory is applicable to more general case where
the acceleration is important.

Our theory is particularly adequate to be applied to the
hydro-code such as SPheRIO which is based on the La-
grangian coordinate system [9]. Implementation of the
present theory to the full three-dimensional hydrodynamics is
now in progress.
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