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General metrics of large aspect ratio tokamaks is used in the paper. General expressions for the

neoclassical poloidal plasma rotation VY and radial ion heat flux I'r; are obtained. Their dependence
on the squared Mach number o = Ugi/cg is analyzed (here Ug; is the ion toroidal velocity and cs is
the sound velocity, respectively). Some interesting peculiarities of this dependence are emphasized.

I Introduction

The theoretical and experimental study of the neoclas-
sical ion transport in edge tokamak plasmas are nowa-
days of renewed interest.'~* In particular, these stud-
ies are important in the so-called H-regimes in large
toroidal facilities, characterized by sharp gradients in
the radial profiles of macroscopic plasma quantities in
the region of the transport barriers."? Plasmas of small
tokamaks, which play an important role in investigat-
ing different physical phenomena in fusion research, are
mainly in L-regime. Nevertheless, some problems re-
garding the neoclassical ion transport in these machines
are not yet well understood and additional efforts are
needed.®* One of these problems is addressed in this pa-
per, namely the neoclassical ion transport in the edge
of an axisymmetric plasma column of arbitrary cross-
These flows

can be induced by parallel neutral beam injection or by

section and with subsonic toroidal flows.

radio frequency waves.
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II Starting equations

The main neoclassical quantities observed experimen-
tally are the ion radial heat flux and the ion poloidal
velocity.!? Until now there is no satisfactory theoretical
explanation for the damping rate 7¢ of toroidal rotation,
which is usually supposed to be approximately equal to
the energy confinement time 7, 7c ~ 75.5

We follow Refs. 6 and 7, where the magnetic surface
averaged ion radial heat flux for collisional plasmas was
first obtained. We use the toroidal coordinates r,8,(,
where r is the magnetic surface label, and 6 and ( are
poloidal and toroidal angles, respectively, assume ax-
ial symmetry, i.e., 9/0¢ = 0, large aspect ratio, and
smooth profiles of the macroscopic plasma quantities.
The magnetic surface average
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of the radial contravariant component g} of the ion heat
flux (see Ref. [8]),
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Here, Tj; is the ion temperature, T, =T — (T;) is the
oscillatory part (perturbation) of the ion temperature,
pi = nT;, n = (n) + n is the plasma density and 7 is
the oscillatory part of it, w.; = e;B/cM; is the ion cy-
clotron frequency, B and B¢ are the magnitude and the
(-contravariant component of the magnetic field B, re-
spectively, and ¢g'' and ¢'? are the contravariant com-
ponents of the metric tensor g, whose determinant is
denoted g.

In obtaining Eq. (3), we used also the expressions
for the contravariant components of the magnetic filed
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where x and ¢ are poloidal and toroidal magnetic filed
fluxes, respectively, and

9 (933//9) /08 = 0. (5)

The last equation follows from the condition j" =
0, where j" is the r-contravariant component of the
plasma current j. The inequality A = A — (4) K (4)
was also employed, where A stands for the plasma
macroscopic quantities.

We see from Eq. (3) that, in order to find I'r;, we
need to calculate n and T The equatlon for T follows

B = {0; X'/27\/9; @' /2m\/q}, 4) from the ion heat transport equation®
]
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where Vf is the f-contravariant component of the ion velocity V;, and

nT;B? OT; 5 enT;

g = —3.91 — i B x VT;].

il 3.9 Mo Boe YT aop (B x VT}] (7)

Perturbations of the electron temperature are neglected in Eq. (6) (see explanations after Eq. (18)). To find n one
can employ the oscillatory part of the parallel component of the plasma one-fluid momentum equation
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where p = p; + pe = n (T; + T¢) is the plasma pressure and m is the parallel ion viscosity,
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Here we used also the well-known approximate expression (see, e.g., Ref. 3)
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where 7 is the ion viscosity tensor. The velocity component V! can be found from the poloidal average of the

parallel component of the momentum equation (8)
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The parallel ion viscosity 7, entering Eqs. (8) and (9), is defined by?*4%:10
2pi
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Thus, we have Eq. (3) to determine the radial heat
flux I'r;, and Eq. (9) to find the §-contravariant com-
ponent of the plasma velocity Via. To calculate them
we should solve Egs. (6), (8), and (9).

111 Solution of the perturbed
equations

We find from Eq. (8)

B lel _ 1 2 6111933
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and, consequently,
o+ 1
(P 7T\|) _ @6 Hg33, (15)
00 2 00
]
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b = B2?/)?B% is the collisionality parameter, and

Ai = \/2T;/M;/v; is the ion mean free path. The
order of the parameter B2/B? for large aspect ratio
tokamaks is approximately ¢> R2, where ¢ is the safety
factor and R is the torus major radius. Thus we ap-
proximately have b = ¢?R?/\?. TFor the collisional
plasma the parameter b > 1. We consider the range
1 <b < \/M;/M, in this paper. In this case one can
omit perturbations of the electron temperature in Eqgs.
(6) and (17). For the range 1 < b < M; /M., these per-
turbations should be taken into account (see, e.g., Ref.

As far as the function f (f) and, consequently, T;
are periodical in # and moreover, proportional to sin 6
for the circular cross-section tokamak?® and to sin 6 and
sin 28 for elliptical cross-section tokamak,* the solution

v
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where a = MiUgi / (T; + T,) is the squared Mach num-
ber, p=n (T; + T:) +nT;. To obtain Eq. (14), we used
the covariant differentiation rules

_ oVt
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and imposed that the metric tensor components g;o =
go1 are periodical functions of the angle 6.

Using Eqgs. (6) and (7), we obtain the second order
differential equation for the perturbed ion temperature

T;
0°T; M, ~
B —2.17b,/ETi =1 (), (17)

where

Olnn Oln B
> 8 5VTiW ; (18)
|
of Eq. (17) has the form
T, = > T;s sin 6, (19)
s=1
where
2m :
F. = _/ f(0)sin sbdf . (20)
o [m(s?+2.17b\/M./M;)]

Comparison of Eq. (15) with Egs. (17)-(20) shows
that, to zero approximation, one can use

8lnnNg81ng33
o0 2 08

(21)

This expression can be substituted into Eqs. (3), (11),
(12) and (18). The surface averaged parallel component
of the momentum equation (9), taking into account Eq.
(8), can be transformed into the form

2 _ (30InB adlngss ~ a dln g33




16

Using also the identity
B? = g2 B" + g33 B¢, (23)

we get

olnB 1 1 0Ogs2 Olngss (24)
06 "~ 2\ ¢>R® 99 o8 )

Thus we can express every perturbed value via the os-
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cillatory parts of the metric components g»» and gss.

IV  Ton fluxes

Let us simplify expressions for perturbed values using
Egs. (21) and (24). The Fourier component T;s of the
perturbed ion temperature 7; has the form

]
~  13bT; o a1 [*7 . 01n g33 Ve [P g2
Tis = Vids(b){[VTl (1+2)+5Vi]/0 sin s6 50 de q2RQ/0 sin s6 50 de ¢, (25)
where d, (b) = s* + 2.17b\/M,./M;. The parallel viscosity |, Egs. (10)-(12), can be expressed in the form
_ 096p;i [ Olngss 1 Ogoo
==, {Vi [(1 + 0.460) 90 R 0 (26)
Oln gs3 1 8922
1. i (1 . — .
+1.83Vrp [( +0.83a) 50 2R 00
Equation (22) can be transformed into
2m o 2m
3 01n g33 3 Ogx» ~ . ,0lngsy
| dom) [(5 + a) 30 2R 06 + a(n) ;Tis ; df sin s6 =0. (27)

Substituting Eqs. (25) and (26) into Eq. (27), one finds the poloidal velocity V; (to be compared with Ref. 12),

‘/;'0 = _183VT7,f2 (Oé,b,A,D) /fl (Oé,b,A,D), (28)
where 5
f1 (O[, b, A, D) = <]_ + 50[) (]. + 0460[) A33 + A22 — (2 + 1130() A23 + 0.36(12bD33, (29)
2
f2 (a,b, A, D) = (1 + §a> (1+0.83a) Asz + Azn— (30)

— (24 150) Az — 0.480b [ (1+ %) Djs — Dag|,

Agy = /02” d (%)2, (31)
Agy = q4—1R4 /02w 9 <ag;2>2, (32)
ST o9
D3 = i dsl(b) ( :W d9 sin308129g33>2, (34)
s=1
Dyy = f% i:; dsl(b) /0 " dsin 59613533 /0 " dsin 3063;2. (35)

Equation (3) for the surface averaged ion heat flux can be rewritten as follows

Tri = (q]) = _% <(Z> _ geg (25) {ss B°) " daﬁ% In (%)/ 0277 Jads.  (36)
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Substitution of Egs. (19), (25), (21), and (24) into Eq. (36) results in
o 2piwvi 0Ty, 4y 2/,2 a2
Pri = (@) = 30 5, (g"') <1+ 0.8¢° (g35) (1 + 5) D33 — (2+ @) Dog + Doy — (37)
2m
@
—-0.37a ((1 + 5) D33 — D23) f2 (Oé, b, A,D) /fl (O[, b,A, D)]/ <<gll> (\/g)/ \/§d0> } ,
0
where )
1 > 1 m 8g22
Dyy = dfsinsf—— | . 38
22 q4R4;ds(b)<0 sin s 69) (38)
|
A\Y Estimates one finds the critical quantity oy,
Let us analyze the expressions for the ion poloidal ve- ag & 1.67\/A33 + Aoy — 2453 (42)
locity Eq. (28) and the ion heat flux Eq. (37) in a bD33 ’
general case. When the squared Mach number a van- dine to th . f th loidal velocit
ishes, & = 0, one obtains from Eq. (28) g){}rrespon ing to the maximum of the poloidal velocity
i(max)’

VP = —1.83Vp,, (39)

which agrees with results of Refs. 11, 3, and 2.
Equations (28) and (39) also confirm the Hazel-
tine theorem,'® which says that the so-called residual
plasma poloidal rotation in tokamaks depends only on
the ion temperature gradient and not on gradients of
other macroscopic plasma parameters. Estimates show
that the parameters A»3 and D3 are negative, (A2 < 0
and D»3 < 0). Hence, the parameter f; (a,b, A, D) is
positive, f1 (a,b, A,D) > 0, i.e., the denominator in
Eqgs. (28) and (37) is positive and has no roots as a
function of a. A remarkable property of the poloidal
velocity V) is the change of sign at a value ag of the
parameter o. This results from the fact of taking into
account inertial forces in the starting equations. As-
suming that the poloidal velocity changes sign at a < 1
(see in detail Ref. 11), we find from Eq. (30)

ap ~ 2.1 (A33 + Asy — 2A23) / [b (D33 — D23)] . (40)

From the approximate equation,

Oéb (D33 — D23)

Vb (D33 — Do)
/D33 (A3 + Agy — 2A453)

(43)

Vi?max) ~ 0. 73VTi

For a > «y, the poloidal velocity Vie decreases slowly
with the growth of a.

Analysis of Eq. (37) shows that the magnetic sur-
face averaged radial ion heat flux I'r; is an increasing
function of the parameter a. The factors that charac-
terize the non-circularity of the plasma cross-section,
such as ellipticity, triangularity, reduce the role of neo-
classical effects in I'p; for all values of the parameter c.
These results coincide with the previous studies of this
problem, fulfilled for elliptical and circular cross-section
tokamaks,** and we demonstrate them here.

V1 Elliptical tokamak

In the case of the elliptical tokamak we find from Egs.
(28)
Uig = Gu(a, b)UTi, (44)

where Uig = pv;ﬂ, UTi = (I/Miwci) 8Ti/ap, p = \/l1l2,
Iy and Iy are the semiminor and semimajor axes of a

0 , o .
V.7 =~ 0.88Vr; (A3 T+ Aos — 2493 + 0.36a%bD53)’ (41) tokamak cross-section, respectively,
]
_ f2 (Oé, b)
Gu(a7 b) - fl (O{, b) ) (45)
2
fi(a,b) = d(b) <1 + §a> (1+0.19a) + 0.18a2b, (46)

Faa,b) = d(b) (1 + §a> (1.83 + 1.52a) — 0.88ab (1 + %) , (47)



18

d(b) = 1+ 2.2by/M,/M;. Obtaining Eq. (44), the pa-

rameter
A= l—l é -1 (48)
~ Rq \13
J
T MW, 9p 2l
where

Griob) = (1+5

fale) = (1+ %) (1+0.19a) +

Equations (44) and (49) coincides with the proper equa-
tions of Ref. 4. As far as the coefficient 17/ (I + [3) in
Eq. (49) is less than 1, 17/ (I + 13) < 1, the role of neo-
classical effects in the radial ion heat flux decreases in
noncircular cross-section tokamaks in comparison with
circular cross-section ones.

The quantities G, (a, b) and Gr(a,b) are plotted in
Figs. 1 and 2, respectively. One can see that func-
tion Gy (a,b) (Fig. 1) changes sign at ap = 2d(b)/b.
For the collisional parameter b ~ /M;/M,, the quan-
tity « is equal to ap =~ 0.1. The maximum of function
Gu(a,b) is achieved when b, & 50, o, =~ 1, and is
Gu(Qmy b)) & 3. Tt follows from Fig. 2 that the neo-
classical contribution in the radial ion heat flux, as a
function of «, is dropping with increasing b.

o

Figure 1. The dependence of the function Gy (c,b) on «a
for different magnitudes of the parameter b: by = 10 (solid
curve) and by = 50 (dashed curve).
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was assumed to be small, A <« 1.

Using Eq. (37), we derive the magnetic surface av-
erage of the radial ion heat flux in the Shafranov form,%

, I
{1 +3.2q mGT(a,b)] , (49)
2\ _fslo)
L do) Fagy o
% (1.83 + 1.52a) . (51)
|
Z |
Grlab) 11 —

Figure 2. The dependence of the function Gr(a,b) on «
for different magnitudes of the parameter b: by = 10 (solid
curve) and by = 50 (dashed curve).

VII Conclusions

General expressions for neoclassical poloidal plasma ro-
tation VY and radial ion heat flux I'z; for an axially-
symmetric arbitrary cross-section tokamak edge with
plasma subsonic toroidal flows are obtained in the
present paper. Their dependence on the squared Mach
number « is analyzed. It is shown that there is a re-
markable property of the poloidal velocity V;? to change
sign at a value a = ag, which results from taking into
account inertial forces in the starting equations. There
also exists a critical value of a;, ay, which corresponds
to the maximum of the poloidal velocity Vi(zmax). For
a > ag, the poloidal velocity Vie is a decreasing func-
tion of a. Analysis of the magnetic surface averaged
radial ion heat flux I'r; shows that this flux is an in-
creasing function of the parameter a. The noncircular
cross-section of a tokamak decreases the role of neo-
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classical effects in I'r; for any value of the parameter
a. These results confirm previous studies of this prob-
lem.
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