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General metrics of large aspect ratio tokamaks is used in the paper. General expressions for the
neoclassical poloidal plasma rotation V �

i and radial ion heat 
ux �Ti are obtained. Their dependence
on the squared Mach number � = U2

�i=c
2

s is analyzed (here U�i is the ion toroidal velocity and cs is
the sound velocity, respectively). Some interesting peculiarities of this dependence are emphasized.

I Introduction

The theoretical and experimental study of the neoclas-

sical ion transport in edge tokamak plasmas are nowa-

days of renewed interest.1�4 In particular, these stud-

ies are important in the so-called H-regimes in large

toroidal facilities, characterized by sharp gradients in

the radial pro�les of macroscopic plasma quantities in

the region of the transport barriers.1;2 Plasmas of small

tokamaks, which play an important role in investigat-

ing di�erent physical phenomena in fusion research, are

mainly in L-regime. Nevertheless, some problems re-

garding the neoclassical ion transport in these machines

are not yet well understood and additional e�orts are

needed.3;4 One of these problems is addressed in this pa-

per, namely the neoclassical ion transport in the edge

of an axisymmetric plasma column of arbitrary cross-

section and with subsonic toroidal 
ows. These 
ows

can be induced by parallel neutral beam injection or by

radio frequency waves.

II Starting equations

The main neoclassical quantities observed experimen-

tally are the ion radial heat 
ux and the ion poloidal

velocity.1;2 Until now there is no satisfactory theoretical

explanation for the damping rate �� of toroidal rotation,

which is usually supposed to be approximately equal to

the energy con�nement time �E , �� � �E .
5

We follow Refs. 6 and 7, where the magnetic surface

averaged ion radial heat 
ux for collisional plasmas was

�rst obtained. We use the toroidal coordinates r; �; �,

where r is the magnetic surface label, and � and � are

poloidal and toroidal angles, respectively, assume ax-

ial symmetry, i.e., @=@� = 0, large aspect ratio, and

smooth pro�les of the macroscopic plasma quantities.

The magnetic surface average
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Here, Ti is the ion temperature, eTi = Ti � hTii is the
oscillatory part (perturbation) of the ion temperature,
pi = nTi, n = hni + en is the plasma density and en is
the oscillatory part of it, !ci = eiB=cMi is the ion cy-
clotron frequency, B and B� are the magnitude and the
�-contravariant component of the magnetic �eld B, re-
spectively, and g11 and g12 are the contravariant com-
ponents of the metric tensor bg, whose determinant is
denoted g.

In obtaining Eq. (3), we used also the expressions
for the contravariant components of the magnetic �led

B = f0; �0=2�
p
g; �0=2�

p
gg; (4)

where � and � are poloidal and toroidal magnetic �led

uxes, respectively, and

@ (g33=
p
g) =@� = 0: (5)

The last equation follows from the condition jr �
0, where jr is the r-contravariant component of the
plasma current j. The inequality eA = A � hAi � hAi
was also employed, where A stands for the plasma
macroscopic quantities.

We see from Eq. (3) that, in order to �nd �Ti, we

need to calculate en and eTi. The equation for eTi follows
from the ion heat transport equation8
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where V �
i is the �-contravariant component of the ion velocity Vi, and

qik = �3:91nTiB
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Perturbations of the electron temperature are neglected in Eq. (6) (see explanations after Eq. (18)). To �nd en one
can employ the oscillatory part of the parallel component of the plasma one-
uid momentum equation
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where p = pi + pe = n (Ti + Te) is the plasma pressure and �k is the parallel ion viscosity,9;10 and

diVi
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=

@Vi
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+ (Vi �r)Vi:

Here we used also the well-known approximate expression (see, e.g., Ref. 3)
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where � is the ion viscosity tensor. The velocity component V �
i can be found from the poloidal average of the

parallel component of the momentum equation (8)Z 2�
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The parallel ion viscosity �k, entering Eqs. (8) and (9), is de�ned by3;4;9;10
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Thus, we have Eq. (3) to determine the radial heat

ux �Ti, and Eq. (9) to �nd the �-contravariant com-
ponent of the plasma velocity V �

i . To calculate them
we should solve Eqs. (6), (8), and (9).

III Solution of the perturbed

equations

We �nd from Eq. (8)

B
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2
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where � =MiU
2
�i= (Ti + Te) is the squared Mach num-

ber, ep = en (Ti + Te)+n eTi. To obtain Eq. (14), we used
the covariant di�erentiation rules

riV
k =

@V k

@xi
+ �kimV

m (16)

and imposed that the metric tensor components g12 =
g21 are periodical functions of the angle �.

Using Eqs. (6) and (7), we obtain the second order
di�erential equation for the perturbed ion temperatureeTi,
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d

b = B2=�2iB
�2 is the collisionality parameter, and

�i =
p
2Ti=Mi=�i is the ion mean free path. The

order of the parameter B2=B�2 for large aspect ratio
tokamaks is approximately q2R2, where q is the safety
factor and R is the torus major radius. Thus we ap-
proximately have b = q2R2=�2i . For the collisional
plasma the parameter b > 1. We consider the range
1 < b .

p
Mi=Me in this paper. In this case one can

omit perturbations of the electron temperature in Eqs.
(6) and (17). For the range 1 < b .Mi=Me, these per-
turbations should be taken into account (see, e.g., Ref.
3).

As far as the function f (�) and, consequently, eTi
are periodical in � and moreover, proportional to sin �
for the circular cross-section tokamak3 and to sin � and
sin 2� for elliptical cross-section tokamak,4 the solution

of Eq. (17) has the form

eTi = 1X
s=1

eTis sin s�; (19)

where

eTis = �
Z 2�

0

f(�) sin s�d�

[�(s2 + 2:17b
p
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: (20)

Comparison of Eq. (15) with Eqs. (17)-(20) shows
that, to zero approximation, one can use
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This expression can be substituted into Eqs. (3), (11),
(12) and (18). The surface averaged parallel component
of the momentum equation (9), taking into account Eq.
(8), can be transformed into the form
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Using also the identity

B2 = g22B
�2 + g33B

�2; (23)

we get
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�
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Thus we can express every perturbed value via the os-

cillatory parts of the metric components g22 and g33.

IV Ion 
uxes

Let us simplify expressions for perturbed values using
Eqs. (21) and (24). The Fourier component eTis of the
perturbed ion temperature eTi has the form

c
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where ds (b) = s2 + 2:17b
p
Me=Mi. The parallel viscosity �k, Eqs. (10)-(12), can be expressed in the form
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Substituting Eqs. (25) and (26) into Eq. (27), one �nds the poloidal velocity V �
i (to be compared with Ref. 12),
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Equation (3) for the surface averaged ion heat 
ux can be rewritten as follows
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Substitution of Eqs. (19), (25), (21), and (24) into Eq. (36) results in
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d
V Estimates

Let us analyze the expressions for the ion poloidal ve-
locity Eq. (28) and the ion heat 
ux Eq. (37) in a
general case. When the squared Mach number � van-
ishes, � = 0, one obtains from Eq. (28)

V �
i = �1:83VTi; (39)

which agrees with results of Refs. 11, 3, and 2.
Equations (28) and (39) also con�rm the Hazel-
tine theorem,13 which says that the so-called residual
plasma poloidal rotation in tokamaks depends only on
the ion temperature gradient and not on gradients of
other macroscopic plasma parameters. Estimates show
that the parametersA23 andD23 are negative, (A23 < 0
and D23 < 0). Hence, the parameter f1 (�; b; A;D) is
positive, f1 (�; b; A;D) > 0, i.e., the denominator in
Eqs. (28) and (37) is positive and has no roots as a
function of �. A remarkable property of the poloidal
velocity V �

i is the change of sign at a value �0 of the
parameter �. This results from the fact of taking into
account inertial forces in the starting equations. As-
suming that the poloidal velocity changes sign at � < 1
(see in detail Ref. 11), we �nd from Eq. (30)

�0 � 2:1 (A33 +A22 � 2A23) = [b (D33 �D23)] : (40)

From the approximate equation,
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one �nds the critical quantity �k,
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corresponding to the maximum of the poloidal velocity
V �
i(max),
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p
b (D33 �D23)p

D33 (A33 +A22 � 2A23)
: (43)

For � > �k, the poloidal velocity V �
i decreases slowly

with the growth of �.
Analysis of Eq. (37) shows that the magnetic sur-

face averaged radial ion heat 
ux �Ti is an increasing
function of the parameter �: The factors that charac-
terize the non-circularity of the plasma cross-section,
such as ellipticity, triangularity, reduce the role of neo-
classical e�ects in �Ti for all values of the parameter �.
These results coincide with the previous studies of this
problem, ful�lled for elliptical and circular cross-section
tokamaks,3;4 and we demonstrate them here.

VI Elliptical tokamak

In the case of the elliptical tokamak we �nd from Eqs.
(28)

Ui� = Gu(�; b)UTi; (44)

where Ui� = �V �
i , UTi = (1=Mi!ci) @Ti=@�, � =

p
l1l2,

l1 and l2 are the semiminor and semimajor axes of a
tokamak cross-section, respectively,

c
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d(b) = 1 + 2:2b
p
Me=Mi. Obtaining Eq. (44), the pa-

rameter

A =
l1
Rq

�
l22
l21
� 1

�
(48)

was assumed to be small, A� 1.

Using Eq. (37), we derive the magnetic surface av-
erage of the radial ion heat 
ux in the Shafranov form,6
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d

Equations (44) and (49) coincides with the proper equa-
tions of Ref. 4. As far as the coeÆcient l21=

�
l21 + l22

�
in

Eq. (49) is less than 1, l21=
�
l21 + l22

�
< 1, the role of neo-

classical e�ects in the radial ion heat 
ux decreases in
noncircular cross-section tokamaks in comparison with
circular cross-section ones.

The quantities Gu(�; b) and GT (�; b) are plotted in
Figs. 1 and 2, respectively. One can see that func-
tion Gu(�; b) (Fig. 1) changes sign at �0 � 2d(b)=b.
For the collisional parameter b � pMi=Me, the quan-
tity � is equal to �0 � 0:1. The maximum of function
Gu(�; b) is achieved when bm � 50, �m � 1, and is
Gu(�m; bm) � 3. It follows from Fig. 2 that the neo-
classical contribution in the radial ion heat 
ux, as a
function of �, is dropping with increasing b.

Figure 1. The dependence of the function Gu(�; b) on �
for di�erent magnitudes of the parameter b: b1 = 10 (solid
curve) and b2 = 50 (dashed curve).

Figure 2. The dependence of the function GT (�; b) on �
for di�erent magnitudes of the parameter b: b1 = 10 (solid
curve) and b2 = 50 (dashed curve).

VII Conclusions

General expressions for neoclassical poloidal plasma ro-
tation V �

i and radial ion heat 
ux �Ti for an axially-
symmetric arbitrary cross-section tokamak edge with
plasma subsonic toroidal 
ows are obtained in the
present paper. Their dependence on the squared Mach
number � is analyzed. It is shown that there is a re-
markable property of the poloidal velocity V �

i to change
sign at a value � = �0, which results from taking into
account inertial forces in the starting equations. There
also exists a critical value of �, �k, which corresponds
to the maximum of the poloidal velocity V �

i(max). For

� > �k, the poloidal velocity V �
i is a decreasing func-

tion of �. Analysis of the magnetic surface averaged
radial ion heat 
ux �Ti shows that this 
ux is an in-
creasing function of the parameter �: The noncircular
cross-section of a tokamak decreases the role of neo-
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classical e�ects in �Ti for any value of the parameter
�. These results con�rm previous studies of this prob-
lem.
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