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Numerical Symmetrization of State of Identical Particles
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The method of numerical symmetrization of state of identical particles proposed by us before is clarified and
discussed.
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I. INTRODUCTION

It is well known experimental fact that identical pions,
which are produced in heavy ion collisions, being bosons
show Bose-Einstein correlations. These correlations result
from the quantum mechanical interference in the correspond-
ing symmetrized n-particle wave function (where n denotes
the number of produced identical pions). They contain large
amount of information about the statistical properties of the
momentum and configuration space distribution of the system,
and thus provide a potentially very useful method to probe the
geometry of the hadronizing source (see, for example, [1] and
references therein).

According to common understanding we are not able to
determine which pion is emitted from which position in the
source, so we are required by Bose statistics to add amplitudes
for all possible alternate histories. In general, symmetrized
wave function for nπ-pion state can be written in the follow-
ing way [2]:

Ψ{p}({x}) =
1√
nπ! ∑

σ
exp

[
−i

nπ

∑
j=1

p j rσ( j)

]
, (1)

where σ( j) denotes the jth element of a permutation of the
sequence {1,2, ...,nπ} and the sum over σ denotes therefore
the sum over all nπ! permutations in this sequence (depen-
dence on positions of points of detection, which will vanish
when calculating probabilities, was neglected). Here r’s de-
note the points of production of secondaries. Because in the
experiment one observes only momenta of produced secon-
daries these r’s must be somehow get rid of. This is so far
always done by integrating over {r j} with some assumed dis-
tribution ρ({r j}), which is assumed to be factorizable and ex-
pressed by product of independent single particle distributions
ρ({r j}) = ∏ j ρ(r j) [1, 2]. As result one gets the following
probability of the nπ-pion state,

P1,..,nπ =
1

nπ! ∑
σ

∏
j

Φ j,σ( j) ≡
1

nπ!

Φ1,1 · · · Φ1,nπ
... Φ j, j

...
Φnπ,1 · · · Φnπ,nπ

(2)

expressed by permanent of the matrix ||Φi j||, where

Φi j =
∫

ei(pi−p j)rρ({r})d4{r}. (3)

For usually considered nπ = 2 case one recovers well known
classical expression for the probability of detecting two pions
in the final state [1]:

P1,2 =
1
2

Φ1,1 Φ1,2
Φ2,1 Φ2,2

=
1
2

(Φ1,1Φ2,2 +Φ1,2Φ2,1) . (4)

Unfortunately the execution time of direct computation of the
permanent, eq.(1), grows exponentially with nπ one has to de-
vise some special methods like Metropolis procedure inves-
tigated in [2, 3] or von Neumann accepting-rejection method
proposed in [4].

The Metropolis procedure proposed in [2] uses the stan-
dard Monte Carlo technique due to Metropolis. This is general
method which allows to generate ensemble of n-body configu-
rations according to some prescribed probability density. That
is, the probability of a given configuration in the ensemble is
precisely that given by the probability density used to gener-
ate ”successive” configurations. In [2] this technique was used
to modify directions of momentum vectors of number of se-
lected particles from a system of n identical particles in order
to impose the n-particle distributions derived from BE corre-
lation functions. This procedure is then repeated many times,
changing selected particles, until a kind of ”equilibrium” is
achieved. As shown in [2] one was able in this way to gener-
ate typical multipion events which explicitly exhibit all corre-
lations induced by Bose statistics. As a result of application
of this algorithm a number of objects (called speckles) being
clusters of large number of identical pions in the phase-space
is being formed. The drawback of this method is that sym-
metrization of clusters with sizes (represented by the num-
ber of particles inside cluster, ncluster) larger than ncluster ≈ 10
takes prohibitively long time. In [3] this method was there-
fore modified by limiting symmetrization only to particles
in clusters. This was possible by using wave packets to de-
scribe produced particles instead of plane waves used in [2]
allowing therefore for localization of particles within certain
phase-space volume and for providing the suitable criterium
for defining a cluster.

The accepting-rejection method investigated in [4] is based
on the well known ”hit-or-miss” technique of generating a
set of random numbers according to a prescribed distribution.
The method was designed to model collapse of a multiparticle
wave function into a properly symmetrized state, as required
by Bose quantum statistics. In contrast to the previous one it
is sequential because n multiparticle event is constructed by
first choosing single particle in phase space, then adding to
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it the second one according to the assumed 2-particle corre-
lation function C2 ∝ P2, then adding 3th particle according to
C3 ∝ P3 and so on. It is easy to realize that in this way one
gets in the allowed phase space a ”cell-like” structure because
regions with some particles inside them already present will
have bigger chance to attract new particle. In a sense it looks
like follows: first particle forms a seed for a first cell. When
second particle is added to event it can, depending on its dis-
tance from the first one, either remain in that cell or later on
attract new particles and in this way start to form a new cell.
This will then continue until all particles are used. Unfortu-
nately, this sequential procedure is even more time consuming
than the previous one.

II. OUR PROPOSITION

The above discussion shows that complexity of numerical
symmetrization of wave function for all identical pions pro-
duced in a given event (cf., eq.(1)) can be substantially re-
duced if only one can justify the idea that such symmetrization
should be applied to groups of limited number of particles,
as proposed in [3]. As argued there this can be achieved by
dividing, according to some prescribed procedure, the initial
set of secondaries into clusters consisting of identical parti-
cles with similar momenta. Such groups of particles, but this
time of (almost) equal energies, were introduced in [5] under
the name Elementary Emitting Cells (EEC’s). The physical
justification was that bosonic particles, because of their sta-
tistical properties, tend to occur, as much as possible, in the
same state. One should realize now that such decomposition
corresponds to factorization of permanent given by eq.(2) into
matrix with a block structure:

Φ1,1 · · · Φ1,nπ
... Φi,i

...
Φnπ,1 · · · Φnπ,nπ

V
EEC1 · · · 0

...
. . .

...
0 · · · EECNcell

. (5)

This idea of EEC was exploited by us further in [6] where
instead of symmetrization of multiparticle wave function (de-
pending on space-time positions, x, and energy-momenta, p)
we worked in the number of particles basis. The bosonic char-
acter of the produced secondaries means in this case the spe-
cific bunching of identical particles in the phase space. In fact
it is nothing else but modelling the correlations of fluctuations
due to quantum statistics present in the system, which for 2-
particle case are represented by:

〈n1n2〉= 〈n1〉〈n2〉+ρσ(n1)σ(n2) (6)

σ(n) is dispersion of the multiplicity distribution P(n) and ρ
is the correlation coefficient depending on the type of parti-
cles produced: ρ = +1,−1,0 for bosons, fermions and Boltz-
mann statistics, respectively). The important feature of the
EEC method is that number of particles in each cell follows
by definition the geometrical (or Bose-Einstein) distribution
characterized for identical bosonic particles.

It should be mentioned at this point that the importance of
bunching of particles in modelling quantum statistical effects
has been demonstrated already in [7]. In this paper, following
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FIG. 1: Representation of algorithm for the sequential model, eq.
(9).

ideas of information theory, authors constructed Monte-Carlo
(MC) event generator for multiparticle production processes
(and applied it to e+e− reactions). The main point was the as-
sumption that particles of the same charge are located in cells
(in their case they were constructed in rapidity space and were
of equal size). It turned out that such division of phase space
into cells was crucial for obtaining the characteristic form of
the 2-body BEC correlation function C2(Q = |pi− p j|) (i.e.,
the one peaked and greater than unity at Q = 0 and then
decreasing in a characteristic way towards C2 = 1 for large
values of Q, out of which one usually deduces the spatio-
temporal characteristics of the hadronization source [1]).

In our case we argue that the method of production of EEC
proposed in [5] can be used to define the structure of clusters
obtained in [3] (with, as it turns out, about ncl = 2 particles per
cluster on average, depending on circumstances [8]). There-
fore, instead of symmetrizing all particles in a given event, one
symmetrizes separately particles in a number of EEC’s with
ncl ¿ nπ. In the plane wave approximation used in [2], one
has therefore for some typical EEC the following ncl-particle
probability function:

P [n]
1,...,ncl

= 1+
2

ncl!

ncl !

∑
σ′>σ=1

cos

{
ncl

∑
j=1

pi
[
rσ( j)− rσ′( j)

]
}

. (7)

Notice that eq. (7) still contains (unmeasurable) positions of
production of particles, {rσ( j)}. Therefore they will be later
eliminated by selecting them from some assumed distribution
in a kind of numerical integration process. It corresponds to
analytical integrations encountered before but in our approach
we do not limit in any way the form of density function used
(it had to be factorizable before). It should be stressed that
when all particles in the cluster are exactly in the same state
then one gets, as expected,

P [n]
1,...,ncl

(max)
∣∣∣p1=···=pncl

= ncl!. (8)

However, in practice, even now from time to time one en-
counters EEC with ncl À 1, in which case eq.(7) is still very
time consuming. For such cases we have to use some approx-
imate schemes. The first one is sequential (cf. Fig. 1): one
starts with some single particle in EEC and adds new particles
one by one to all others already present and correlate them by
using standard 2-particle probability: 1 + cos(δr ·δp). The
resulting probability to get ncl-particle state is given by:

P [2]
1,...,ncl

= P1,...,ncl−1 ·
ncl−1

∏
j=1

[
1+ cos

(
δr jncl ·δp jncl

)]
. (9)

Although appealing (in fact it resembles procedure used in
[4]) it has drawback that when all particles are in the same
state then

P [2]
1,...,ncl

(max)
∣∣∣p1=···=pncl

= 2
1
2 ncl(ncl−1) (10)
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FIG. 2: Example of C2 modelled for single EEC with N = 4 by using
2-particles (sequential) correlations as given by eq. (9) (circles) and
full N-particles correlations as given by eq. (7) (stars). For compari-
son, the analytical result, C2(δP) = 1+ sin2(RδP)/(RδP)2, obtained
for uniform one dimensional source in space with R = 1 fm is also
shown (dotted-dashed line).
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FIG. 3: Comparison of C2 modelled by using MC event generators
with EECs (circles) and without EECs but with particles selected
directly from the corresponding Bose-Einstein distribution [9]. In
both cases as reference event the Boltzmann distribution was used.

i.e., for ncl > 2 the correlations are stronger and the maximal
value of probability function gets bigger than allowed limit
defined by eq.(8). Both, exact (7) and sequential (9) methods
are compared in Fig. 2. Approximation (9) keeps the width
of C2 the same, however it differs substantially in C2(δP = 0)
(from which one tends to estimate the so called chaoticity of
the hadronizing source [1]). The other possible approxima-
tion, which was used in our hitherto applications [8], is that
all particles in a given EEC are correlated only with the first

particle defining this cell, not between themselves. It is inter-
esting to notice that the results for C2 obtained this way are
almost the same as those obtained by using the full method,
eq. (7), but differ from that of eq. (9).

We close this section by noticing recent attempt to imitate
the bosonic nature of particles produced by MC event gener-
ator, in which they were chosen directly according to Bose-
Einstein distribution [9]. This method seems to be very nat-
ural and occurred to be also very fast. However, as one can
see from Fig. 3, where it is compared with our approach, it
leads to completely different C2 substantially underestimating
the correlation function C2. We claim therefore that such pro-
cedure inevitably loses some piece of important information,
namely the fact that EEC’s are formed and that Bose-Einstein
distributions are only for particles in such EEC’s, not in the
whole event. In fact, signal of possible Bose-Einstein correla-
tions without cells is seen in Fig. 3 are the trivial correlations,
which can be eliminated by the proper choice of the reference
event.

III. SUMMARY

We would like to summarize by stressing that there is no
way to add to any of the existing MC event generators effects
of quantum statistics, in particular Bose-Einstein one (BE).
This is because they are all build on basis of classical physics
with both the space-time and energy-momentum characteris-
tics of produced secondaries used simultaneously. The only
way out advocated here (albeit, most probably, not very prac-
tical one and therefore hardly to be followed) is to build the
multiparticle MC event generator ab initio, with BE properties
(like bunching in phase space) being one of its basic principles
and consisting its first step. All other features of such genera-
tor would have to be added only after this. So far there is only
one working example of this type [7], our efforts [8] aim for
its further generalization and will be continued.
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