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Percolation of Monte Carlo Clusters
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Percolation theory is of interest in problems of phase transitions in condensed matter physics, and in biology and
chemistry. More recently, concepts of percolation theory have been invoked in studies of color deconfinement
at high temperatures in Quantum Chromodynamics. In the present paper we briefly review the basic concept
of percolation theory, exemplify its application to the Ising model, and present the arguments for a possible
relevance of percolation theory to the problem of color deconfinement.

1 Percolation

In order to explain the concept of percolation, let us con-
sider Fig. 1. The figure represents pictorially an electrical
circuit composed of a set of conducting spheres, represented
by (•) and a set of insulating spheres, represented by (◦).
An electrical current will flow from the top plate to the bot-
tom plate and the bulb (⊗) will light once enough conduct-
ing spheres are present in the circuit. That is, there will be
a “percolating” electrical current through the system when
a conducting sphere from the top is continuously connected
to a conducting sphere on the bottom. It is intuitively clear
that percolation will happen once a minimum of conduct-
ing spheres is present in the system, i.e. there is a critical
value for the concentration of conducting spheres for which
a “percolating cluster” will be formed.

Figure 1. Pictorial representation of percolation. When a continu-
ous chain from the top to the bottom is formed as in (b), there will
be a percolating current and the light bulb (⊗) will turn on.

The existence of a critical value for percolation and the
consequent formation of a percolation cluster can be illus-
trated as follows. Let us consider a square lattice of volume
L×L. For each lattice site, we attribute a probabilityp that

the site will be occupied, and a probability1 − p that it is
empty. A “cluster” is defined as groups of neighboring oc-
cupied sites. Suppose now that one fixes a value ofp and
at each site of the lattice we draw a random numberr. If
r ≤ p, then one considers that the site is occupied, ifr > p,
the site is considered empty. Groups of neighboring occu-
pied sites are collected to form a cluster. At the end, one
checks if there is at least one cluster that has percolated, that
is, if an occupied site from the top of the lattice belonging to
some cluster is continuously connected to an occupied site
at the bottom of the lattice. Then, the process is repeated
many times. Each complete visit to all sites of the lattice is
called a “sweep”. Next, we define a percolation probability
as

〈P 〉 =
1
N

N∑

j=1

Cj , (1)

whereCj ≡ 1(0) if a percolating cluster has (has not) oc-
curred during the sweepj, andN is the number of sweeps.

In Fig. 2 we plot〈P 〉 for different values ofp for L =
100, 250, 400, 600 and 1000, using free boundary condi-
tions. One sees that there exists a transition region around a
certain value ofp where the percolation probability changes
from a small value to a value that becomes close to one for
large lattices. It is clear that as the lattice becomes larger and
larger, the transition region becomes sharper and sharper,
with a well defined transition pointpc. In the limit of an in-
finite lattice, for the present case of a two-dimensional cubic
lattice the value ofpc is found to be [1]

pc = 0.592746 . (2)

Clearly the numerical simulations, for large lattices, givepc

very close to this value. To be more precise, using the prin-
ciple of finite-size-scaling, our simulations give [2]

pc = 0.5927± 0.0001 . (3)
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Figure 2.〈P 〉 for different lattices sizes.

2 Percolation theory in the Ising
Model

The magnetic phase transition that occurs in the Ising model
(for dimensions larger than 1) can be related to a percola-
tion phenomenon. The relation was established in two ma-
jor steps. The first step was given in 1972 by Fortuin and
Kasteleyn [3], who showed that it is possible to rewrite the
partition function of the Ising model as a sum over config-
urations of spin clusters, instead of the usual sum over spin
configurations, as follows

Z =
∑

{S=±1}

∑

{n}





nij=1∏

<i,j>

pijδSiSj









nij=0∏

<i,j>

(1− pij)



 ,

(4)
where

pij = 1− exp(−2Jβ), (5)

is the probability that a bond between spins at neighboring
sitesi andj occurs, andnij = 1(0) indicates that there is
(there is not) a bond between spins ati andj. Note that a
bond may be placed only between spins of the same value.
In Eq. (5)β = 1/kT , wherek is the Boltzmann constant and
J is the spin-spin strength, defined in the Ising Hamiltonian
as

H = −J
∑

〈ij〉
SiSj , (6)

where〈ij〉 means nearest neighbors andSi = ±1/2 are
spins at sitei. A spin cluster can therefore be naturally de-
fined as the collection of spins that are continuously bound.
Note that now the probability of a spin to belong to a clus-
ter depends on the temperature (and the strengthJ) as in
Eq. (5). The next step was given in 1980 by Coniglio and
Klein [4] when they showed, using renormalization group
techniques that the magnetic critical temperatureTc of the

Ising model determines the critical value for the occur-
rence of a percolating cluster, withpc given by the formula
pc = 1 − exp(−2J/kTc). The Fortuin-Kasteleyn clusters
were later used (in 1987) by Swendsen and Wang [5] as
a very efficient way of performing global spin updates in
Monte Carlo simulations of spin models.

In Fig. 3 we show results of our Monte Carlo simulation
for the percolation probability〈P 〉, defined in Eq. (1). In the
figure we show results for lattice sizesL = 100, 400, 600
and800. A detailed description of the Swendsen-Wang al-
gorithm used, the reasons for using it, comparisons with
other Monte Carlo algorithms, and the error analysis per-
formed can be found in Ref. [2]. The exact critical temper-
ature of the two-dimensional Ising model is (forJ = 1)
Tc = 2.269185. Clearly, our simulations show that the
percolation temperature, determined with the use of Eq. (5)
shows a good agreement with the exact value. Specifically,
we obtained

Tc = 2.2691± 0.0001. (7)
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Figure 3.〈P 〉 for L = 100, 400, 600, and800 using the Swensen-
Wang cluster algorithm.

3 Percolation Theory and Deconfine-
ment in QCD

As said above, percolation theory is of interest in several
areas of natural science. Our motivation in this theory is
driven basically by its possible relevance to the problem of
color deconfinement in Quantum Chromodynamics (QCD).
The connection between the two phenomena can be argued
as follows [6, 8].

Let us consider the formulation of a pureSU(N) gauge
theory on an Euclidean lattice withNσ points in each spatial
direction andNτ points in the time direction. The partition
function at finite temperature can be written as

Z(Nσ, Nτ ; g2) =
∫ ∏

links

[dU ] exp{−S[U ]} , (8)
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where the integration is over link variablesUµ,

Uµ = exp [−igaAµ(~x, t)] , (9)

with a the lattice spacing andµ the space-time direction, and
S[U ] is the Wilson action given by

S[U ] =
2N

g2

∑

P

[
1− 1

N
Re Tr(UP )

]
. (10)

Here
∑

P means that the sum is done over all plaquettesUP ,
where a plaquette is the basic circuit of fourU ’s [7].

At finite temperatures, the gauge field configurations are
periodic in the “time” interval[0, β]. This periodicity leads
to a global symmetry that is important for the phase struc-
ture of the theory at finite temperature. Because of such a
symmetry, gauge transformations in the time direction only
need to be periodic up to an elementz of the centerZ(N)
of SU(N). The action remains invariant if the gauge trans-
formationG in SU(N) satisfies the condition

G(~x, 0) = z G(~x, β), (11)

for all spatial pointsx. Now, since an element ofZ(N) is
given by

zn = e
2πin

N , n = 0, 1, · · ·N − 1, (12)

it is easy to show that the quantity, known as the Polyakov
loop,

Lx =
1
N

Tr
Nτ∏
t=1

U4(~x, t) , (13)

changes as

Lx → zLx, (14)

under a gauge transformation as in Eq. (11). An average
over the lattice and field configurations,L̄ = 〈Lx〉, which
indicates the state of the system, does not change this result.
One can show that the free energyF of a very heavy quark
immersed in the QCD vacuum is related toL̄ as

L̄ ∼ e−βF . (15)

In the confined phase, one expectsF = ∞, and therefore
L̄ = 0, and the transformation given in Eq. (14) leavesL̄ in-
variant. The transition from a confined to a deconfined pure
gaugeSU(N) field theory can therefore be characterized by
the breaking of the global centerZ(N) symmetry, since in
the deconfined phasēL 6= 0 breaks the invariance of the the-
ory. Studies of lattice gauge theories show that such a phase
transition indeed takes place.

Now, it is natural to speculate whether the deconfine-
ment phase transition ofSU(N) gauge theories can be stud-
ied in analogy to the phase transitions in the much simpler
Z(N) spin systems. In particular, it has been confirmed
by lattice gauge simulations that the critical exponents of
SU(2) gauge theory andZ(2) spin system fall in the same
universality class. From the discussion in Section II, it is

very natural to conjecture that color deconfinement could be
a percolation phenomenon.

Recently, Satz and Fortunato [6, 8] have undertaken per-
colation studies forSU(2) gauge theories. This was made
possible by the use of the Green-Karsch [9] effective theory
which allows to write the partition function of the theory, in
the strong coupling limit and neglecting spacelike plaque-
ttes, as

Z ∼
∫

ΠxdLx

√
1− L2

x exp(β′
∑

ij

LiLj) , (16)

whereLi is the value of the Polyakov loop at sitei, the sum
is over nearest neighbors, and

β′ = 4
(

β

4

)Nτ

. (17)

From this, one can define a bond probably (between sites
with Li, Lj of the same sign) as

pij = 1− exp{−2β′LiLj} . (18)

4 Conclusions and Future Perspec-
tives

Our aim in this communication was to present the argu-
ments in favor of a percolation description of the decon-
finement transition in QCD. We started with a brief review
the basic concept of percolation theory through a simple ex-
ample of site percolation. Then, we proceeded by show-
ing as the magnetic phase transition that occurs in the two-
dimensional Ising model can be understood as a percolation
phenomenon. In the last section, we presented the connec-
tion betweenSU(2) gauge theory and effective spin system,
as argued by Satz and Fortunato [6, 8].

Using percolation theory, we have measured the criti-
cal temperature and the critical exponent for the percola-
tion process and have compared with the corresponding crit-
ical magnetic observables, in conformity with Coniglio and
Klein previsions [4]. The conclusion is that the percolation
process and the magnetic phase transition of the 2d-Ising
model are in the same universality class. Some of the results
shown here are not new, but all numerical codes employed
in the simulations and error estimates are original.

We are currently extending our percolation studies to the
continuousO(4) spin model with magnetic field. Another
direction we are pursuing is the evaluation of dinamic criti-
cal exponents [10].
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