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The area of Physics indicated in the title is nowadays of quite relevant interest, not only from the purely sci-
entific point of view, but specially for its applied aspects associated to the present-time point-first-technologies.
A particular research trend in the theory of irreversible processes, which are evolving in time in systems ar-
bitrarily departed from equilibrium, is here briefly described. It consists in the construction of a Gibbs-style
nonequilibrium ensemble formalism. The derivation of a nonequilibrium statistical operator is described (the
variational approach of Predictive Statistical Mechanics is used). The main questions involved are presented
and applications are briefly mentioned.
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I. INTRODUCTION We may recall that it is fundamental for the study of con-
densed matter, which could be said to be statistical mechanics
It is generally considered that the aim of Statistical Me-b_y antonomas_ia. Therefore statistical mechanics can be con-
chanics of many-body systems away from equilibrium is toSidered the_ science mother of the present day advanced tech-
determine their thermodynamic properties, and the evolutio©/09y, which is the base of our sophisticated contemporary
in time of their macroscopic observables, in terms of the dy_c_|V|I|zat|on. Its application to the case of systems in equilib-
namical laws which govern the motion of their constitutive lum proceeded rapidly and with exceptional success: equi-
elements. This implies, first, in the construction of an irre-librium statistical mechanics gave - starting from the micro-
versible thermodynamics and a thermo-hydrodynamics (th€COPIC level - found:_:t‘qons to Thermostatlcs, its orlglnal objec-
latter meaning the particle and energy motion in fluids, rhefive, and the possibility to build a Response Function Theory.
ological properties, etc., with the transport coefficients de/Pplications to nonequilibrium systems began, mainly, with
pending on the macroscopic thermodynamic state of the sydh€ case of local equilibrium in the linear regime following
tem). Second, we need to face the all-important derivatiod€ pioneering work of Lars Onsager (see, for example, [S]).
of a generalized nonlinear quantum kinetic theory and a re- For systems arbitrarily deviated from equilibrium and
sponse function theory, which are of fundamental relevancgoverned by nonlinear kinetic laws, the derivation of an
to connect theory with observation and experiment, basic fofnsemble-like formalism proceeded at a slower pace than in
the corroboration of any theory [1], that is, the synthesis legh€ case of equilibrium, and somewhat cautiously. A long list
in the scientific method born in the seventeenth century. of distinguished scientists contributed to such development,
Oliver Penrose [2] has noted that Statistical Mechanics i&nd among them we can mention Nicolai Bogoliubov, John

notorious for conceptual problems to which is difficult to give Kirkwood, Sergei Krylov, Melvin Green, Robert Zwanzig,
a convincing answer, mainly: Hazimi Mori, llya Prigogine, Dimitri Zubarev. It must be

What is the physical significance of a Gibbs’ ensemble?: added the name of Edwin Jaynes, who systematized, or better

How can we justify the standard ensembles used in equilibt-O say codified, the matter on the basis of a variational princi-
fium theory?; ple in the context of what is referred to as Predictive Statistical

What are the right ensembles for nonequilibrium prob_Mechanics _[6—13], which is based on a framework provided
lems?: by Information Theory.

How can we reconcile the reversibility of microscopic me- tiolr:;:?gvtleﬁizﬁtiltc gdntgség;zrsutt())jeci\t/énggl\;iss\;avgruT]\:rirecle ques-
chanics with the irreversibility of macroscopic behavior? ytog ' y
Moreover, related to the case of many-body systems out 1. The question of the choice of the basic variables
of equilibrium, the late Ryogo Kubo, in the opening address
in the Oji Seminar [3], told us that statistical mechanics of 2. The question of irreversibility
nonlinear nonequilibrium phenomena is just in its infancy and
further progress can only be hoped by closed cooperation with
experiment. Some progress has been achieved since then, and4. The question of historicity
we try in this review to describe, in a simple manner, some ) . o
attempts in the direction to provide a path for one particular - The question of providing the statistical operator
initial programme to face the questions posited above.
Statistical Mechanics is a grandiose theoretical construc-
tion whose founding fathers include the great names of James
C. Maxwell, Ludwig Boltzmann and J. Willard Gibbs [4]. 7. The question of the truncation procedure

3. The question of the initial value condition

6. The question of building a non-equilibrium grand-
canonical ensemble
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8. The question of the equations of evolution (nonlinearMori’s approaches), a response function theory for arbitrarily-

quantum kinetic theory) away-from-equilibrium systems, a statistical thermodynamics
) ) (the so-called Informational Statistical Thermodynamics), and
9. The question ofa response function theory an accompanying Thermo_HydrodynamiCS'

NESEF appears as a very powerful, concise, based on
sound principles, and elegant formalism of a broad scope to
11. The question of the approach to equilibrium deal with systems arbitrarily away from equilibrium. Zwanzig

stated that the formalism “has by far the most appealing struc-
12. The question of a non-equilibrium statistical thermody-ture, and may yet become the most effective method for deal-
namics ing with nonlinear transport processes” [15]. Later devel-
) o opments have confirmed Zwanzig's prediction. The present
13. The question of a thermo-statistical approach to com-strycture of the formalism consists in a vast extension and gen-
plex systems eralization of earlier pioneering approaches, among which we
. . . can pinpoint the works of Kirkwood [16], Green [17], Mori-
14. :]'hg (éuesno_n of a nonlinear higher-order thermo- Oppenheim-Ross [18], Mori [19], and Zwanzig [20]. NESEF
ydrodynamics has been approached from different points of view: some are
based on heuristic arguments [18, 21-24], others on projection
operator techniques [25-27] (the former following Kirkwood
and Green and the latter following Zwanzig and Mori). The
which are addressed in [13, 14]. formalism has been particularly systematized and largely im-

In the study of the macroscopic state of nonequilibrium Sysproved by the Russian School of statistical physics, which can

tems we face greater difficulties than those present in the thd2® considered to have been initiated by the renowned Nicolai
ory of equilibrium systems. This is mainly due to the fact Nicolaievich Bogoliubov [28], and we may also name Nico-

that a more detailed analysis is necessary to determine tH@! S€rgeivich Krylov [29], and more recently mainly through
temporal dependence of measurable properties, and to c4l® rele_van'g_contrlbutlons by Dimitrii Zubarev [24, 30], Sergei
culate transport coefficients which are time-dependent (that €/€tminskii [22, 23], and others.
is, depending on the evolution in time of the nonequilibrium These different approaches to NESEF can be brought to-
macrostate of the system where dissipative processes are w3ether under a unique variational principle. This has been
folding), and which are also space dependent. That deperriginally done by Zubarev and Kalashnikov [31], and later
dence is nonlocal in space and non-instantaneous in time, & reconsidered in Ref. [32] (see also Refs. [33] and [34]).
it encompasses space and time correlations. Robert ZwanzigCOHSiStS on the maximization, in the context of Information
[15] has summarized the basic goals of nonequilibrium statisTheory, of Gibbs statistical entropy (to be called fine-grained
tical mechanics as consisting of: (i) To derive transport equainformational-statistical entropy), subjected to certain con-
tions and to grasp their structure; (i) To understand how thétraints, and including non-locality in space, retro-effects, and
approach to equ”ibrium occurs in natural isolated Systemsi;freverSib”ity onthe macroscopic level. This is the foundation
(iii) To study the properties of steady states; and (iv) To calcuOf the nonequilibrium statistical ensemble formalism that we
late the instantaneous values and the temporal evolution of tHéescribe in general terms in following sections. The topic has
physical quantities which specify the macroscopic state of theurfaced in the section “Questions and Answers” of the Am.
system. Also according to Zwanzig, for the purpose to face). Phys. [6, 35]. The question by Baierlein [35], “A central
these items, there exist several approaches which can be cl&@¥ganizing principle for statistical and thermal physics?”, was
sified as: (a) Intuitive techniques; (b) Techniques based on th@llowed by Semura’s answer [6] that “the best central orga-
generalization of the theory of gases; (c) Techniques base@izing principle for statistical and thermal physics is that of
on the theory of stochastic processes; (d) Expansions from @iaximum [informational] entropy [...]. The principle states
initial equilibrium ensemble; (e) Generalization of Gibbs’ en- that the probability should be chosen to maximize the average
semble formalism. missing information of the system, subjected to the constraints
The last item (e) is connected with Penrose’s questions ndmposed by the [available] information. This assignment is
ticed above Concerning if there are, and what are, nght ensenﬁ;.onSiStent with the least biased estimation of prObab”itieS."
bles for nonequilibrium problems. In the absence of a Gibbs- The formalism may be considered as covered under the um-
style ensemble approach, for a long time different kinetic thebrella provided by the scheme of Jaynes’ Predictive Statis-
ories were used, with variable success, to deal with the greaical Mechanics [7]. This is a powerful approach based on
variety of nonequilibrium phenomena occurring in physicalthe Bayesian method in probability theory, together with the
systems in nature. We describe here a proposition for the comrinciple of maximization of informational entropy (MaxEnt),
struction of a Nonequilibrium Statistical Ensemble Formal-and the resulting statistical ensemble formalism is referred-
ism, or NESEF, for short, which appears to provide groundso asMaxEnt-NESEFJaynes’ scheme implies in a predictive
for a general prescription to choose appropriate ensembles fstatistics that is built only on the access to the relevant infor-
nonequilibrium systems. The formalism has an accompanyingiation that there exists of the system [6—12]. As pointed out
nonlinear quantum transport theory of a large scope (whiclby Jaynes [8]. “How shall we best think about Nature and
encompasses as particular limiting cases Boltzmann’s anchost efficiently predict her behavior, given only our incom-

10. The question of validation (experiment and theory)

15. The question of statistical mechanics for complex struc
tured systems
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plete knowledge [of the microscopic details of the system]mational entropygiven by

[...]- We need to see it, not as an example of the N-body equa-

tions of motion, but as an example of the logic of scientific S=-> pjinp; ; 1)
inference, which by-passes all details dgpying directly from J

our macroscopic information to the best macroscopic predic- . N . .
tions that can be made from that informatio(@mphasis is conqmoneq b_y the constraints |mp9s_ed by.the available qur-
ours) [...]. “Predictive Statistical Mechanics is not a physicalmat'on' Thisis ba;ed on Shannon’s |qeas in the mathematical
theory, but a method of reasoning that accomplishes this b§ii€0"y of communications [40], who first demonstrated that,
finding, not the particular that the equations of motion say in or an exhaustive set of mutually exclusive propositions, there

any particular case, but the general things that they say in ‘af?Xi.S.ts a unjque function 'T‘easu””g the unce_rtainty Of.th? prob-
ability assignment. This is the already mentioned principle of

most all’ cases consisting with our information; for those are®~""7 “=>% . ; L
the reproducible things”. maximization of the |nformatm_mgl-statls'qca_l entropy, MaxEnt
for short. It provides the variational principle which results
Again following Jaynes’ reasoning, the construction of ain a unifying theoretical framework for NESEF, thus intro-
statistical approach is based on “a rather basic principle [...Jducing, as we have noticed, MaxEnt-NESEF as a nonequilib-
If any macrophenomenon is found to be reproducible, then itium statistical ensemble formalism. It should be stressati
follows that all microscopic details that were not under thethe maximization of§ implies in making maximum the un-
experimenters’ control must be irrelevant for understandingertainty in the information availablén Shannon-Brillouin’s
and predicting it”. Further, “the difficulty of prediction from sense [40, 41]), to have in fact the least biased probability as-
microstates lies [..] in our own lack of the information neededsignment.
to apply them. We never know the microstates; only a few We proceed next to describe the construction of NESEF and
aspects of the macrostate. Nevertheless, the aforementiongflan irreversible thermodynamics founded on its premises.
principle of [macroscopic] reproducibility convinces us that This is done, as indicated above, in the context of the vari-
this should be enougtthe relevant information is there, if ational principle MaxEnt, but an alternative derivation along
only we can see how to recognize it and uS¢emphasis is  traditional (heuristic) ways is also possible and described in
ours]. Ref. [14].

As noticed, Predictive Statistical Mechanics is founded on
the Bayesian approach in probability theory. According to
Jaynes, the question of what are theoretically valid, and prag-
matically useful, ways of applying probability theory in sci-
ence has been approached by Sir Harold Jeffreys [36, 37], in
the sense that he stated the genera| ph||osophy of what Scien-ln the construction of nonequilibrium statistical ensem-
tific inference is and proceeded to carry both the mathematicdlles, that is, a Nonequilibrium Statistical Ensemble Formal-
theory and its implementations. Together with Jaynes and otism (NESEF), basically consisting into the derivation of a
ers, the Nobelist Philip W. Anderson [38] maintains that whathonequilibrium statistical operator (probability distribution in
seems to be the most appropriate probability theory for the scthe classical case), first it needs be noticed that for systems
ences is the Bayesian approach. The Bayesian interpretati@vay from equilibrium several important points need be care-
is that probability is the degree of belief which is consistentfully taken into account in each case under consideration [cf.
to hold in considering a proposition as being true, once othethe list of questions above], particularly:
conditioning propositions are taken as true [39]. Or, also ac- (1) The choice of the basic variablga wholly different
cording to Anderson: “What Bayesian does is to focus One’§h0ice than in equilibrium when it suffices to take a subset
attention on the question one wants to ask of the data. It say@ those which are constants of motion), which is to be based
in effect, how do these data affect my previous knowledgeon an analysis of what sort of macroscopic measurements and
of the situation? It is sometimes callesaximum likelihood —Processes are actually possible, and, moreover one is to focus
thinking, but the essence of it is to clearly identify the possiattention not only on what can be observed but also on the
ble answers, assign reasonable a priori probabilities to themcharacter and expectative concerning the equations of evolu-

and then ask which answers have been done more likely by tti@n for these variables (e.g. Refs. [15, 42]). We also notice
data” [emphasis is ours]. that even though at the initial stage we would need to intro-

_ . . duce all the observables of the system, as time elapses more

The question that arises is, as stated by Jaynes, *how shalhq more contracted descriptions can be used as enters into
we use probability theory to help us do plausible reasoning imyay Bogoliubov’s principle of correlation weakening and the
situations where, because of incomplete information we canaccompanying hierarchy of relaxation times [42].
not use deductive reasoning?” In other words, the main ques- |+ can pe noticed that to consider all the observables of
tion is how to obtain the probability assignment compatibley,o system is consisting with introducing the reduced one-
with the available information, while avoiding unwarranted particle, iy, and two-particlefi,, dynamical operators [13,
assumptions. This is answered by Jaynes who formulated tk@’ 42, 43] in classical mechanics given by
criterion that: the least biased probability assignmgmt},
for a set of mutually exclusive even{x;}, is the one that fu(r,p) =y 8(r—rj) 3(p—p)) ’ @)

]

II.  ANONEQUILIBRIUM STATISTICAL ENSEMBLE
FORMALISM

maximizes the quantit§, sometimes referred to as timdor-
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fip (r,p;f,p) = ;{60 —rj)d(p—pj) 6(F—rk) d(P—px) , the systemis not merely the series of events in which the sys-
] tem has been involved, but it is the series of transformations
() along time by which the system progressively comes into be-
with rj andpj being the coordinate and linear momentum ofing at time t (when a measurement is performed), through the
the j-th particle in phase space andandp the continuous evolution governed by the laws of mechanics [16, 18].
values of position and momentum, which are (_:alle_d _field vari- (3) The question of irreversibilityor Eddington’s arrow of
ables (for the quantum case see [13]). For simplicity we argime) on what Rudolf Peierls stated that: “In any theoretical
considering a system off particles of massn; the case of yeatment of transport problems, it is important to realize at
systems with several kinds of particles are straightforwardlyyhat point the irreversibility has been incorporated. If it has
included in the treatment: it suffices to introduce a secongyot peen incorporated, the treatment is wrong. A description
index to indicate them, i.€sj,psj, €tC. [see Subsectioh2  of the situation that preserves the reversibility in time is bound
below].. i . to give the answer zero or infinity for any conductivity. If we
But it is pertinent to look for what can be termed as a gen+j, not see clearly where the irreversibility is introduced, we
eralized grand-canonical ensemble, what can be done [13] by, ot clearly understand what we are doing” [44].
mtr_oducmg in place O.ﬁl’ ‘f”?d”Z md_ependent linear combi- The question is then to find the proper nonequilibrium sta-
nation of them. For S|r.n.pI|C|ty qon§|der onfy, and the NeW fistical operator that MaxEnt-NESEF should provide. The
variables are the densities of kinetic energy and of particles way out of the difficulties pointed out above is contained in
z 5 z the idea set forward by John Kirkwood in the decade of the
h(r)= dspzp— Ay (r,p) ; A(r)= d3pAe(r,p) Jforties [16]. He pointed out that the state of the system at
m (4) timet is strongly dependent on all the previous evolution of
the nonequilibrium processes that have been developing in it.

and their fluxes of all order, namely, . ) . X
Y Kirkwood introduces this fact, in the context of the transport

1] z . P theory he proposes, in the form of a so-calliede-smoothing
(= dpul(p) om Ay (r,p) ; (5)  procedurewhich is generalized in MaxEnt-NESEF as shown
below.
Z After the choice of the basic dynamical variables has been
il (= d®pu’(p) Ay (r,p) 7 (6)  Pperformed, and let us call them generically{d (£) }, where

¢ indicates the set of all variables on which fﬁemay depend

wherer = 1 for the vectorial flux or current,> 2 for the other  [cf. EQs. (2) and (3), and Egs. (4) to (6) and (8)], introducing
higher-order fluxes; also indicates the tensorial rank, and  In MaxEnt-NESEF [13, 14, 31-34] the idea that it must be
incorporated all the past history of the system lf@toricity
p p

[r] _ ; effects, all along the time interval going from the initial con-
u(p)=1|= ... (r—timeg ... = (") " : : . .

dition of preparation of the sample in the given experiment at,
say, timet, up to timet when a measurement is performed
(i.e., when we observe the macroscopic state of the system),
we proceed to maximize Gibbs’ entropy (sometimes called
fine-grained entropy)

stands for the tensorial productmefimes the vectop/m, ren-
dering a tensor of rank. The contributions associated fig
are of the form [13]

Alr+]

Cos (O =00 ®) S)=—Tr{pMMp®} (©)

where p and p are indexesh or n; r, r =0 (the withthe normalization and constraints given at any tifrie

densities)1,2, ..., and[...] as above stands for tensorial prod- the intervalt, <t’ <t, namely

uct. The question dfruncation of descriptionthat is to take

a reduced number of the above variables (associated to Bo- Tr{p(t)} =1 ’ (10)

goliubov’s principle of correlation weakening and hierarchy

of relaxation times) and the question of the approach to equi-

librium is discussed elsewhere [13, 14] (In equilibrium, be- , A ,

cause there survive only the variables of Eqgs. (8) only for Qj (E’t ) - Tr{Pj (E)p(t )} ) (11)

r, r =0, there follows a nonextensive description, becoming . , ) o )

approximately extensive in the thermodynamic limit [14]).  With Qj(&.t") being the nonequilibrium thermodynamic
(2) It needs be introduced historicityhat is, the idea that (m_acrpscoplc_) variables for the_ descrlpt!on O_f the accompa-

it must be incorporated all the past dynamics of the systerf?YIN9 irreversible thermodynamics described in next section.

(or historicity effects), all along the time interval going from  Resorting to Lagrange’s procedure we find that

a starting description of the macrostate of the sample in the

given experiment, say &, up to the time t when a measure- z R

ment is performed. This is a quite important point in the case (t) =expq —W(t) — z dg  dt' ¢; (Et,t) Py (&t—t') o,

of dissipative systems as emphasized among others by John ] to

Kirkwood and Hazime Mori. It implies in that the history of (12)
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where p(t,0) = exp{-S(t,0)}, referred-to as an instantaneous

o guase equilibrium statistical operator, moreover

WYt)=InTr{ exp|— dé  dt’ &; (Et.t)P (&t —t A A - .
® P Z Et ZICELEIC S(t’,t’—t):exp{—i;(t’—t)H}S(t’,O)exp{i;(t’—t)H}.

. 3 ) (18)

and the; are the corresponding Lagrange multipliers deter-The operatorS(t,0) is designated as thénformational-

mined in terms of the basic macrovariables by Eq. (11), an@ntropy operator whose relevance and properties are dis-
operatord; are given in Heisenberg representation. cussed in [45].

Further an additional basic step needs now be considered, |n the framework of the nonequilibrium grand-canonical
namely a generalization of Kirkwoodtime-smoothing pro- ensemble, namely, when the basic variables are those of Egs.
cedure This is done introducing an extra assumption on thg4) to (8), we do have that
form of the Lagrange multiplierg;, in such a way, we stress, R
that (i) irreversible behavior in the evolution of the macro- p(t,0)= exp{fS(t,O)} , (29)
scopic state of the system is satisfied; (ii) the instantaneous
state of the system is given by Eq. (11); (i) it is introduced Where
the set of quantitie§F; (£,t)} as intensive variables thermo-

dynamically conjugated to basic macrovariab{e3; (,t)}, S(t.0) = o)
what allowsa posteriorito generate satisfactory Thermody- 7
namic and Thermo-Hydrodynamic theories. This is accom- 3, [ Ar] ] Ar]
plished introducing the definition +”>0 dr {Fh (rY@ly (N+Fry@ln’(n)]+
o) (&Gtt) =w(tt)FEL) . (14) .
[r+1]
wherew(t,t') is an auxiliary weight function, which, to satisfy — + 5 % d3r d3r'Fl[[)erm (r,r,t)® épp r,fy
the four points just listed immediately above, must have well r,r=0pp
defined properties which are discussed elsewhere [32], and it (20)
is verified that where® stands for fully contracted product of tensors, we re-
. call thatr andr’ equal to0 stands for the densities, and this
Z , , , are the nonequilibrium thermodynamic variables associated to
YU = diw(tt)e) . (15)  the corresponding observable [13, 46].
—oo0 Several important points can be stressed in connection with

. . . . the nonequilibrium statistical operator of Eq. (16). Fiteg
!/
The functionw(t,t’) introduces thetime-smoothing proce- ;i1 condition at timety — —oo, is

dure and, because of the properties it must have to accomplish
its purposes, it is acceptable any kernel that the mathematical Pe (to) = P (to, 0)
theory of convergence of trigonometrical series and transform

integrals provides. Kirkwood, Green, Mori and others havewhat implies in a kind of initialStosszahlanzatin the sense
chosen what in mathematical parlance iseFépr Cearo-1)  that the initial state is defined by the instantaneous general-
kernel, while Zubarev introduced the one consisting in Abel'sized canonical-like distributiop, thus ignoring correlations
kernel forw in Eq. (15) - which apparently appears to be theamong the basic variables prior to tirge Secondpg (t) can
best choice, either mathematically but mainly physically - thatbe separated into two parts [13, 24, 30-33], see also [18],
is, takingw(t,t") = eexp{e(t' —t)}, whereg is a positive in-  namely,

finitesimal that goes to zero after the calculation of averages _

has been performed, and withgoing to minus infinite. Once Pe(t) =p(L,0)+pc(t) (22)

this choice is introduced in Eq. (12), in Zubarev’s approach — . _ e
the nonequilibrium statistical operator, designatedobit), wherep(t,0) is the instantaneous distribution of Eq. (19).

after integration by parts in time, can be written in the form 1h€ first one,p, defines an instantaneous, at timedistri-
bution, which describes a “frozen” equilibrium providing at

7t such given time the macroscopic state of the system, and for
pe(t) = expd —8(t,00+ dt’ &' Y) ié(t/’t/ —t) that reason is sometimes dubbed asyhasi-equilibrium sta-
. dt tistical operator.This distribution describes the macrostate of
(16)  the system in atime interval, arounidnuch smaller than the
where relaxation times of the basic variables (implying in a “frozen”
Z equilibrium or quasi-equilibrium in such interval). But, of
S(t,0)=—1Inp(t,0)=d(t)1+ Z dEFj (§,t)P(E), (17)  course, for larger time intervals the effect of the dissipational
] processes comes into action. The dynamics that has led the
R system to that state at timefrom the initial condition of
with 1 being the unit operator, and preparation at timé&, [cf. Eq. (21)], as well as its continuing
it is introduced the auxiliary operator dissipative evolution from that state at tihéo eventually a

; (21)
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final full equilibrium, is contained in the fundamental contri- out of the dynamical behavior of the system (the one that ac-
butionpg (t) . Furthermore, there exists a time-dependent procounts for the past history and future dissipational evolution).

jection operatorP (t) with the property that [32, 33] Moreover, this operation introduces in the formalism the so-
B calledBogoliubov's method of quasi-averagé®, 48]. Bo-
P(t)Inpe(t) =Inp(t,0) . (23)  goliubov's procedure involves a symmetry-breaking process,

which is introduced in order to remove degeneracies con-

This projection procedure, a generalization of those ohected with one or several groups of transformations in the
Zwanzig (apparently the first to introduce projection tech-description of the system. According to Eq. (24) the regu-
niques in statistical physics [20]), Mori [19], Zubarev and |ar average withpe (t) is followed by the limit of cancelling
Kalashnikov [27], and Robertson [25], has interesting charthe ad hocsymmetry-breaking introduced by the presence of
acteristics. We recall that the formalism involves the macrothe weight functiorw in Eq. (14) (which is Abel’s kernel in
scopic description of the system in terms of the set ofzubarev approach, cf. Eq. (16), and follows fogoing to
macrovariables{Q; (§,t)}, which are the average over the 10), which imposes dreaking of the time-reversal symme-
nonequmbnum ensemble of the set of dynamical quantitiegry in the dynamical description of the system. This is mir-
{PJ } The latter are called the “relevant” variables, androred in the Liouville equation fope (t): Zubarev’s nonequi-
we denote the subspace they define asrtf@mational sub-  |ibrium statistical operataoessatisfy Liouville equation, but
spaceof the space of states of the system. The remainingt must be reckoned the fact that the group of its solutions is
quantities in the dynamical description of the system, namelygomposed of two subsets, the one corresponding to the re-
those absent from the informational space associated to tharded solutions and the one corresponding to the advanced
constraints in MaxEnt, are called “irrelevant” variables. Thesolutions. The presence of the weight functiofAbel’s ker-
role of the projection operation is to introduce what can be renel in Zubarev’s approach) in théme-smoothing or quasi-
ferred to as a@oarse-graining procedurdn the sense that it average procedurthat has been introduceelects the subset
projects the logarithm of the “fine-grained” statistical operatorof retarded solutiongrom the total group of solutions of Li-
Pe (t) onto the subspace of the “relevant” (informational) vari- ouville equation. We call the attention (as Zubarev had; see
ables, this projected part being the logarithm of the auxiliaryappendix in the book of reference [24]) that this has a cer-
(or quasi-equilibrium, or “instantaneous frozen”, or “coarse-tain analogy with Gell-Mann and Goldberger [49] procedure
grained”) distributionp (t,0), and, consequently, the proce- in scattering theory, where these authors promote a symmetry-
dure eliminates the “irrelevant” variables, quite in the spirit Ofbreaking in Bogoliubov's sense in Schroedinger equation, in
the Bayesian-based approach and MaxEnt. The “irrelevantrder to represent the way in which the quantum mechanical
variables are “hidden” in the contributiqe (t) to the full dis-  state has been prepared during times < t’ <t, adopting for
tribution pe (t) of Eq. (22), since it depends on the last term inthe wave function a weighted time-smoothing as the one used
the exponential of Eq. (16), where the differentiation in timein Zubarev's approach to NESEF. More precisely(t) satis-
drivesInp outside the subspace of “relevant” (informational) fies a Liouville equation of a form that automatically, via Bo-
variables. We stress that the projection operation is time degoliubov’s procedure, selects the retarded solutions, namely
pendent, such dependence corresponding to the fact that the
projection? (t) is determined by the macroscopic state of the A
system at the time the projection is performed. Further consid- 5 NPe () +iAe (M) Inpe(t) =0, (29)
erations of this projection procedure will appear in the kinetic
and thermodynamics theories based on this informational agwhere/\; is the modified Liouville operator
proach. Moreover, geometrical-topological implications are
derived and discussed in detail by Balian et al. [47]. A A

Two further comments are of relevance. First, for a given e (t) =1L +e[1—P(1) ’ (26)
dynamical quant|t3A its average value in MaxEnt-NESOM,

that is, the expected value to be compared with the expenmer\f\lIth z being the regular Liouville operator ari(t) the pro-
tal measure, is given by jection operator of Eq. (23). Equation (25) is of the form

proposed by llya Prigogine [50], withs being composed of
even and odd parts under time-reversal. Therefore, the time-

(Alt)y= lim Tr{Ape(t)} smoothing procedure introduces a kindRwfgogine’s dynam-
e-+0 ical condition for dissipativityf50, 51].
Using Eq. (23) we can rewrite Eq. (25) in the form
:Tr{Aﬁ(t,O)}+slirEO Tr{Ap, (1)}, (24) B

aInpg(t)Jr% [Inpe (t),H] = —€[Inpg (t) —Inp(t,0)] ,
the last equality following after the separation given by Eq. 27)
(22) isintroduced. This is the said generalization of Kirkwoodviz., a regular Liouville equation but with an infinitesimal
time-smoothing averaging [16], and we can see that the avesource, which introduces Bogoliubov’s symmetry breaking of
age value is composed of two contributions: one is the averagiime reversal, and is responsible for disregarding the advanced
with the quasi-equilibrium distribution (meaning the contri- solutions. Equation (27) is then said to have Boltzmann-
bution of the state at the tintg, plus the contribution arising Bogoliubov-Prigogine symmetry. Following Zubarev [24],



Brazilian Journal of Physics, vol. 36, no. 1A, March, 2006 103

Eq. (27) is interpreted as the logarithm of the statistical operaing from - in Boltzmann-Bogoliubov-Prigogine’s sense - adia-
batic decorrelation of processes in the past. This is the fading-
memory phenomenon, introduced in Zubarev’s approach as
a result of the postulated Poissonian random processes (on
the basis that no real system can be wholly isolated), as al-
ready discussed. This interpretation aside, we agree with the
authors in Ref. [34], in that the method provides adequate
§ convergence properties (ensured by Abel’s kernel in Zubarev’

Eq. (24)], and therefore, it is introduced information relatedapproaCh) for the equations of evolution of the system. These

to the past history in the thermo-hydrodynamic macrostate Orf)ropgrly (_jescribe the_irreversible processes unfolding in the
the system along its evolution from the inittal media, with an evolution from a specific initial condition of

Two points need be considered here. One is that the initiarl)mp""r"’ltlon of the system and, after remotion of all external

y S usualtaken i th remoe pa - =), and e other A SXCEPL berl an peries oeeniors - tencing
that the integration in time in the intervah(t) is weighted 9 d

0 the kemelu() (Abels kemeln zubarevs approach,  MOTEOLEE, e convergence Tnposed by bes e
Fejr's kernel in Kirkwood, Green , Mori approaches; and PP PP pprop ' y

others are possible). As a consequence the procedure intrf(EO-r the dpractt;cal mathlemancal advzéntarg];es n ﬂ;]e ga'f]“'a!“o{‘
duces a kind okvanescent historgs the system macrostate It provides, Ut. mostly important, by t e a“?C ed physica

evolves toward the future from the initial condition at titge meaning assoc_lated to thg proposed adlabatlc.decqupllng of
(— —m). Therefore, the contributiop, (t) to the full statis- correlations which surface in the transport equations in the ac-

tical operator, that is, the one describing the dissipative evoompanying MaxEnt-NESEF kinetic theory [56]. In fact, on

lution of the state of the system, to be clearly evidenced inthe one .hand this kinetic theory produces, when rgstrictions
the resulting kinetic theory, clearly indicates that it has beef'® applle(:l on tr:je genc(jaral thﬁor){;_the_eerctgd CQII'S'%n oper-
introduced afading memoryprocess. This may be consid- a]tc;)rs %as? ose derived in other_ Inetic t er?”ez) mtrg ucing,
ered as the statistical-mechanical equivalent of the one pr h er the tltmdetmtegra:lon In the mtervalj_,,(t)t_ as Zen one, i
posed in phenomenological continuum-mechanical-based R 1€ expected lerms of energy renormalization and energy con

Servation in the collision events. Furthermore, as pointed out

tional Thermodynamics [52, 53]. In Zubarev’s approach thi )
fading process occurs in an adiabatic-like form towards the r:.k-)y Zubarev [24], Abel's kernel ensures the convergence of the

mote past: as time evolves memory decays exponentially WitH\tegrals in the calculati_on of the transport_coefficients:, which
lifetime 8_'1 In some cases show divergences when, insteaéy kejnel

. . - . is used (as in Green, Mori, etc. approaches). The procedure
We may interpret this considering that as time evolves cor- | havi . loa h th led
relations established in the past fad away, and only the modt >0 appears as having certain analogies with the so-called re-

. o peated randomness assumptions [57, 58] as discussed by del
recent ones strongly influence the evolution of the nonequit

librium system; here again is in action Bogoliubov’s principle Rio and Garcia-Colin [59].

. ; : - | We need now to consider the construction oflaxEnt-
of correlations weakening. This establishesversible be- . N .
o ; L7 . ) NESEF-based Nonlinear Kinetic Theotlyat is, the transport
havior in the system introducing in a peculiar way a kind of

Eddington’stime-arrow: Colloquially speaking, we may say (evolution) equations for the basic set of macrovariables that

. . describe the irreversible evolution of the macrostate of the sys-
that because of its fading memory, the system can only evolv; o ; X ;
. : i " em. They are, in principle, straightforwardly derived, consist-
irreversibly towards the future and cannot “remember” how.

; - : . ..~ "ing in Heisenberg equations of motion for the corresponding
to retrieve the mechanical trajectories that would return it ta)asic dynamical variables (mechanical observables) or Hamil-

tor evolving freely under Liouville operattﬁ, from an initial
condition at timety, and with the system undergoing random
transitions, under the influence of the interaction with the sur
roundings. This is described by a Poisson distributi@nn
the form of Abel’s kernel), and the result at timhis obtained
by averaging over alf’ in the interval §,,t) [cf. Eqg. (12)].
This is the time-smoothing procedure in Kirkwood'’s sense [c

the past situations (what is attained when neglecting the a on equations in the classical case, averaged over the nonequi-

vance solutions of Liouville equation). In a sense we may;., .
librium ensemble, namely

say that Boltzmann original ideas are here at work in quite

general conditions [54, 55], and in its evolution towards the 0 1.4 A

future, once any external perturbating source is switched off, 3 Qi (&:1) = Tr{m [P (8).H] pe (t)} - (28)
the system tends to a final state of equilibrium irrespective of

the nonequilibrium initial condition of preparation. Using the separation of the Hamiltonian as given |-ﬁ,y:

Alvarez-Romero and Garcia-Colin [34] has presented an inH, +H’, whereH, is the kinetic energy and’ contains the in-
teresting alternative approach to the derivation of Zubarev'seraction and the separation of the statistical operator as given
form of MaxEnt-NESEF, which however differs from ours by Eq. (22), it follows that Eq. (28) can be written in the form
in the interpretation of the time-smoothing procedure, which[56, 60]
they take as implying the connection of an adiabatic pertur-
bation fort’ > t, (we think that these authors mean adiabatic 20iEN =3¢ +I3YE D)+ 7 (5t 29
switch on of the interactions iH’ responsible for the dissipa- atQJ( ! : (&1) : GO+ EL (29)
tive processes), instead of implying in a fading-memory interyhere on the right-hand side are present the contributions
pretation. We need notice that both are interpretations which
we feel are equally satisfactory and may be equivalent, but (0) _ 1.5 11 =
we side with the point of view of irreversible behavior follow- T EY=Tr ih [P(€).Ho] p(t,0) ’ (30)
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1) . 15 = (limit of weak interactions) [13, 60, 65] to obtain for a density
ITEY=Tr { in [P@E),H] p(t,O)} ’ (31) Qj (&,t) the equation [13, 22, 63, 64]
0 (0) (2)
R - =Q;(&,t)=J;" (§,1)+J7 (&t , 34
) (a,t>=Tr{i;[P<z>7H’] p;<t>} . @) @ =R e
where
As shown elsewhere [32, 56, 60] this Eq. (29) can be con-
sidered as a far-reaching generalization of Mori’s equations<2) zt vt . o B
[19, 61]. It also contains a large generalization of Boltzmann's);” (&,t) = dt'e( )Tr{ R (' —1),, AP (8)]] P(t,0)},
transport theory, with the original Boltzmann equation for the —
one-particle distribution retrieved under stringent asymptotic ! (35)
limiting conditions; details and discussions are given in Refsponce Jj( ) is taken as null, and subindex nought indicates
[33] and [62]. mechanical evolution undét, alone (interaction representa-

In this Eq. (29), in most cases of interest the contributiontjon).
J is null because of symmetry properties of the interactions  Finally, an additional step is the construction of the all im-
in H’, and the ternd®) provides a conserving part consisting portant MaxEnt-NESEF response function theory for systems
in the divergence of the flux of quanti; (¢,t) [63, 64]. The  arpijtrarily away from equilibrium, to connect theory with ob-
last term, i.e. the one of Eq. (32), is the collision integralservation and measurement in the experimental procedure: see
responsible for relaxation processes, which, evidently, cangr example [66—81] and Chaptérin the book of Ref. [13].
cels if H' or pg is null, what clearly indicates that dissipative we simply notice that as in the traditional response function
phenomena are described by these contributions to the Hamﬂheory around equilibrium [82, 83], the response of the sys-
tonian, and to the statistical operator in Eq. (22), respectiveltem away from equilibrium to an external probe is expressed
Hence, as already anticipated, dissipation is not present in thg terms of correlation functions but defined over the nonequi-
instantaneous quasi-equilibrium operapgt,0) of Eq. (19),  |ibrium ensemble. Moreover, also in analogy with the case
but in the nonequilibrium operator containing the history andgf systems in equilibrium it is possible to construct a double
time-smoothing characteristic pf (t) of Egs. (16) and (22). time nonequilibrium thermodynamic Green function formal-
We notice that ifH” is null, so isp; (t), when H, coincides  jsm [84-87].
with the whole Hamiltonian corresponding to a full equilib- | this way, through the realization of the basic steps we
rium condition. _ _ have described, a nonequilibrium statistical ensemble formal-

The collision integral of Eq. (32) requires an, in general,jsm - the MaxEnt-NESEF - can be built. Finally, it can be
quite difficult, and practically unmanageable, mathematicahoticed that it is a formalism in the Theory of Irreversible
handling. But for practical use, it can be reformulated in theprgcesses developed along a traditional line (Gibbs' ensemble
form of an infinite series of partial collision integrals in the gigorithm for nonequilibrium systems), which is an alternative
form to the extensively used Nonequilibrium Molecular Dyanmics.

9 (&t) = Zf?m (RN (33)
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