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The area of Physics indicated in the title is nowadays of quite relevant interest, not only from the purely sci-
entific point of view, but specially for its applied aspects associated to the present-time point-first-technologies.
A particular research trend in the theory of irreversible processes, which are evolving in time in systems ar-
bitrarily departed from equilibrium, is here briefly described. It consists in the construction of a Gibbs-style
nonequilibrium ensemble formalism. The derivation of a nonequilibrium statistical operator is described (the
variational approach of Predictive Statistical Mechanics is used). The main questions involved are presented
and applications are briefly mentioned.
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I. INTRODUCTION

It is generally considered that the aim of Statistical Me-
chanics of many-body systems away from equilibrium is to
determine their thermodynamic properties, and the evolution
in time of their macroscopic observables, in terms of the dy-
namical laws which govern the motion of their constitutive
elements. This implies, first, in the construction of an irre-
versible thermodynamics and a thermo-hydrodynamics (the
latter meaning the particle and energy motion in fluids, rhe-
ological properties, etc., with the transport coefficients de-
pending on the macroscopic thermodynamic state of the sys-
tem). Second, we need to face the all-important derivation
of a generalized nonlinear quantum kinetic theory and a re-
sponse function theory, which are of fundamental relevance
to connect theory with observation and experiment, basic for
the corroboration of any theory [1], that is, the synthesis leg
in the scientific method born in the seventeenth century.

Oliver Penrose [2] has noted that Statistical Mechanics is
notorious for conceptual problems to which is difficult to give
a convincing answer, mainly:

What is the physical significance of a Gibbs’ ensemble?;
How can we justify the standard ensembles used in equilib-

rium theory?;
What are the right ensembles for nonequilibrium prob-

lems?;
How can we reconcile the reversibility of microscopic me-

chanics with the irreversibility of macroscopic behavior?
Moreover, related to the case of many-body systems out

of equilibrium, the late Ryogo Kubo, in the opening address
in the Oji Seminar [3], told us that statistical mechanics of
nonlinear nonequilibrium phenomena is just in its infancy and
further progress can only be hoped by closed cooperation with
experiment. Some progress has been achieved since then, and
we try in this review to describe, in a simple manner, some
attempts in the direction to provide a path for one particular
initial programme to face the questions posited above.

Statistical Mechanics is a grandiose theoretical construc-
tion whose founding fathers include the great names of James
C. Maxwell, Ludwig Boltzmann and J. Willard Gibbs [4].

We may recall that it is fundamental for the study of con-
densed matter, which could be said to be statistical mechanics
by antonomasia. Therefore statistical mechanics can be con-
sidered the science mother of the present day advanced tech-
nology, which is the base of our sophisticated contemporary
civilization. Its application to the case of systems in equilib-
rium proceeded rapidly and with exceptional success: equi-
librium statistical mechanics gave - starting from the micro-
scopic level - foundations to Thermostatics, its original objec-
tive, and the possibility to build a Response Function Theory.
Applications to nonequilibrium systems began, mainly, with
the case of local equilibrium in the linear regime following
the pioneering work of Lars Onsager (see, for example, [5]).

For systems arbitrarily deviated from equilibrium and
governed by nonlinear kinetic laws, the derivation of an
ensemble-like formalism proceeded at a slower pace than in
the case of equilibrium, and somewhat cautiously. A long list
of distinguished scientists contributed to such development,
and among them we can mention Nicolai Bogoliubov, John
Kirkwood, Sergei Krylov, Melvin Green, Robert Zwanzig,
Hazimi Mori, Ilya Prigogine, Dimitri Zubarev. It must be
added the name of Edwin Jaynes, who systematized, or better
to say codified, the matter on the basis of a variational princi-
ple in the context of what is referred to as Predictive Statistical
Mechanics [6–13], which is based on a framework provided
by Information Theory.

It can be noticed that the subject involves a number of ques-
tions to which it is necessary to give an answer, namely

1. The question of the choice of the basic variables

2. The question of irreversibility

3. The question of the initial value condition

4. The question of historicity

5. The question of providing the statistical operator

6. The question of building a non-equilibrium grand-
canonical ensemble

7. The question of the truncation procedure
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8. The question of the equations of evolution (nonlinear
quantum kinetic theory)

9. The question of a response function theory

10. The question of validation (experiment and theory)

11. The question of the approach to equilibrium

12. The question of a non-equilibrium statistical thermody-
namics

13. The question of a thermo-statistical approach to com-
plex systems

14. The question of a nonlinear higher-order thermo-
hydrodynamics

15. The question of statistical mechanics for complex struc-
tured systems

which are addressed in [13, 14].
In the study of the macroscopic state of nonequilibrium sys-

tems we face greater difficulties than those present in the the-
ory of equilibrium systems. This is mainly due to the fact
that a more detailed analysis is necessary to determine the
temporal dependence of measurable properties, and to cal-
culate transport coefficients which are time-dependent (that
is, depending on the evolution in time of the nonequilibrium
macrostate of the system where dissipative processes are un-
folding), and which are also space dependent. That depen-
dence is nonlocal in space and non-instantaneous in time, as
it encompasses space and time correlations. Robert Zwanzig
[15] has summarized the basic goals of nonequilibrium statis-
tical mechanics as consisting of: (i) To derive transport equa-
tions and to grasp their structure; (ii) To understand how the
approach to equilibrium occurs in natural isolated systems;
(iii) To study the properties of steady states; and (iv) To calcu-
late the instantaneous values and the temporal evolution of the
physical quantities which specify the macroscopic state of the
system. Also according to Zwanzig, for the purpose to face
these items, there exist several approaches which can be clas-
sified as: (a) Intuitive techniques; (b) Techniques based on the
generalization of the theory of gases; (c) Techniques based
on the theory of stochastic processes; (d) Expansions from an
initial equilibrium ensemble; (e) Generalization of Gibbs’ en-
semble formalism.

The last item (e) is connected with Penrose’s questions no-
ticed above concerning if there are, and what are, right ensem-
bles for nonequilibrium problems. In the absence of a Gibbs-
style ensemble approach, for a long time different kinetic the-
ories were used, with variable success, to deal with the great
variety of nonequilibrium phenomena occurring in physical
systems in nature. We describe here a proposition for the con-
struction of a Nonequilibrium Statistical Ensemble Formal-
ism, or NESEF, for short, which appears to provide grounds
for a general prescription to choose appropriate ensembles for
nonequilibrium systems. The formalism has an accompanying
nonlinear quantum transport theory of a large scope (which
encompasses as particular limiting cases Boltzmann’s and

Mori’s approaches), a response function theory for arbitrarily-
away-from-equilibrium systems, a statistical thermodynamics
(the so-called Informational Statistical Thermodynamics), and
an accompanying Thermo-Hydrodynamics.

NESEF appears as a very powerful, concise, based on
sound principles, and elegant formalism of a broad scope to
deal with systems arbitrarily away from equilibrium. Zwanzig
stated that the formalism “has by far the most appealing struc-
ture, and may yet become the most effective method for deal-
ing with nonlinear transport processes” [15]. Later devel-
opments have confirmed Zwanzig’s prediction. The present
structure of the formalism consists in a vast extension and gen-
eralization of earlier pioneering approaches, among which we
can pinpoint the works of Kirkwood [16], Green [17], Mori-
Oppenheim-Ross [18], Mori [19], and Zwanzig [20]. NESEF
has been approached from different points of view: some are
based on heuristic arguments [18, 21–24], others on projection
operator techniques [25–27] (the former following Kirkwood
and Green and the latter following Zwanzig and Mori). The
formalism has been particularly systematized and largely im-
proved by the Russian School of statistical physics, which can
be considered to have been initiated by the renowned Nicolai
Nicolaievich Bogoliubov [28], and we may also name Nico-
lai Sergeivich Krylov [29], and more recently mainly through
the relevant contributions by Dimitrii Zubarev [24, 30], Sergei
Peletminskii [22, 23], and others.

These different approaches to NESEF can be brought to-
gether under a unique variational principle. This has been
originally done by Zubarev and Kalashnikov [31], and later
on reconsidered in Ref. [32] (see also Refs. [33] and [34]).
It consists on the maximization, in the context of Information
Theory, of Gibbs statistical entropy (to be called fine-grained
informational-statistical entropy), subjected to certain con-
straints, and including non-locality in space, retro-effects, and
irreversibility on the macroscopic level. This is the foundation
of the nonequilibrium statistical ensemble formalism that we
describe in general terms in following sections. The topic has
surfaced in the section “Questions and Answers” of the Am.
J. Phys. [6, 35]. The question by Baierlein [35], “A central
organizing principle for statistical and thermal physics?”, was
followed by Semura’s answer [6] that “the best central orga-
nizing principle for statistical and thermal physics is that of
maximum [informational] entropy [...]. The principle states
that the probability should be chosen to maximize the average
missing information of the system, subjected to the constraints
imposed by the [available] information. This assignment is
consistent with the least biased estimation of probabilities.”

The formalism may be considered as covered under the um-
brella provided by the scheme of Jaynes’ Predictive Statis-
tical Mechanics [7]. This is a powerful approach based on
the Bayesian method in probability theory, together with the
principle of maximization of informational entropy (MaxEnt),
and the resulting statistical ensemble formalism is referred-
to asMaxEnt-NESEF. Jaynes’ scheme implies in a predictive
statistics that is built only on the access to the relevant infor-
mation that there exists of the system [6–12]. As pointed out
by Jaynes [8]. “How shall we best think about Nature and
most efficiently predict her behavior, given only our incom-
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plete knowledge [of the microscopic details of the system]?
[...]. We need to see it, not as an example of the N-body equa-
tions of motion, but as an example of the logic of scientific
inference, which by-passes all details bygoing directly from
our macroscopic information to the best macroscopic predic-
tions that can be made from that information”(emphasis is
ours) [...]. “Predictive Statistical Mechanics is not a physical
theory, but a method of reasoning that accomplishes this by
finding, not the particular that the equations of motion say in
any particular case, but the general things that they say in ‘al-
most all’ cases consisting with our information; for those are
the reproducible things”.

Again following Jaynes’ reasoning, the construction of a
statistical approach is based on “a rather basic principle [...]:
If any macrophenomenon is found to be reproducible, then it
follows that all microscopic details that were not under the
experimenters’ control must be irrelevant for understanding
and predicting it”. Further, “the difficulty of prediction from
microstates lies [..] in our own lack of the information needed
to apply them. We never know the microstates; only a few
aspects of the macrostate. Nevertheless, the aforementioned
principle of [macroscopic] reproducibility convinces us that
this should be enough;the relevant information is there, if
only we can see how to recognize it and use it” [emphasis is
ours].

As noticed, Predictive Statistical Mechanics is founded on
the Bayesian approach in probability theory. According to
Jaynes, the question of what are theoretically valid, and prag-
matically useful, ways of applying probability theory in sci-
ence has been approached by Sir Harold Jeffreys [36, 37], in
the sense that he stated the general philosophy of what scien-
tific inference is and proceeded to carry both the mathematical
theory and its implementations. Together with Jaynes and oth-
ers, the Nobelist Philip W. Anderson [38] maintains that what
seems to be the most appropriate probability theory for the sci-
ences is the Bayesian approach. The Bayesian interpretation
is that probability is the degree of belief which is consistent
to hold in considering a proposition as being true, once other
conditioning propositions are taken as true [39]. Or, also ac-
cording to Anderson: “What Bayesian does is to focus one’s
attention on the question one wants to ask of the data. It says
in effect, how do these data affect my previous knowledge
of the situation? It is sometimes calledmaximum likelihood
thinking, but the essence of it is to clearly identify the possi-
ble answers, assign reasonable a priori probabilities to them
and then ask which answers have been done more likely by the
data” [emphasis is ours].

The question that arises is, as stated by Jaynes, “how shall
we use probability theory to help us do plausible reasoning in
situations where, because of incomplete information we can-
not use deductive reasoning?” In other words, the main ques-
tion is how to obtain the probability assignment compatible
with the available information, while avoiding unwarranted
assumptions. This is answered by Jaynes who formulated the
criterion that: the least biased probability assignment{p j},
for a set of mutually exclusive events{x j}, is the one that
maximizes the quantitySI , sometimes referred to as theinfor-

mational entropy, given by

SI =−∑
j

p j ln p j , (1)

conditioned by the constraints imposed by the available infor-
mation. This is based on Shannon’s ideas in the mathematical
theory of communications [40], who first demonstrated that,
for an exhaustive set of mutually exclusive propositions, there
exists a unique function measuring the uncertainty of the prob-
ability assignment. This is the already mentioned principle of
maximization of the informational-statistical entropy, MaxEnt
for short. It provides the variational principle which results
in a unifying theoretical framework for NESEF, thus intro-
ducing, as we have noticed, MaxEnt-NESEF as a nonequilib-
rium statistical ensemble formalism. It should be stressedthat
the maximization ofSI implies in making maximum the un-
certainty in the information available(in Shannon-Brillouin’s
sense [40, 41]), to have in fact the least biased probability as-
signment.

We proceed next to describe the construction of NESEF and
of an irreversible thermodynamics founded on its premises.
This is done, as indicated above, in the context of the vari-
ational principle MaxEnt, but an alternative derivation along
traditional (heuristic) ways is also possible and described in
Ref. [14].

II. A NONEQUILIBRIUM STATISTICAL ENSEMBLE
FORMALISM

In the construction of nonequilibrium statistical ensem-
bles, that is, a Nonequilibrium Statistical Ensemble Formal-
ism (NESEF), basically consisting into the derivation of a
nonequilibrium statistical operator (probability distribution in
the classical case), first it needs be noticed that for systems
away from equilibrium several important points need be care-
fully taken into account in each case under consideration [cf.
the list of questions above], particularly:

(1) The choice of the basic variables(a wholly different
choice than in equilibrium when it suffices to take a subset
of those which are constants of motion), which is to be based
on an analysis of what sort of macroscopic measurements and
processes are actually possible, and, moreover one is to focus
attention not only on what can be observed but also on the
character and expectative concerning the equations of evolu-
tion for these variables (e.g. Refs. [15, 42]). We also notice
that even though at the initial stage we would need to intro-
duce all the observables of the system, as time elapses more
and more contracted descriptions can be used as enters into
play Bogoliubov’s principle of correlation weakening and the
accompanying hierarchy of relaxation times [42].

It can be noticed that to consider all the observables of
the system is consisting with introducing the reduced one-
particle, n̂1, and two-particle,n̂2, dynamical operators [13,
14, 42, 43] in classical mechanics given by

n̂1 (r ,p) = ∑
j

δ(r − r j) δ(p−p j) , (2)
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n̂2 (r ,p; ŕ , ṕ)= ∑
j 6=k

δ(r − r j) δ(p−p j) δ(ŕ − r k) δ(ṕ−pk) ,

(3)
with r j andp j being the coordinate and linear momentum of
the j-th particle in phase space andr and p the continuous
values of position and momentum, which are called field vari-
ables (for the quantum case see [13]). For simplicity we are
considering a system ofN particles of massm; the case of
systems with several kinds of particles are straightforwardly
included in the treatment: it suffices to introduce a second
index to indicate them, i.ers j,ps j, etc. [see Subsection4.2
below].

But it is pertinent to look for what can be termed as a gen-
eralized grand-canonical ensemble, what can be done [13] by
introducing in place of̂n1, andn̂2 independent linear combi-
nation of them. For simplicity consider onlŷn1, and the new
variables are the densities of kinetic energy and of particles

ĥ(r)=
Z

d3p
p2

2m
n̂1 (r ,p) ; n̂(r)=

Z
d3p n̂1 (r ,p) ,

(4)
and their fluxes of all order, namely,

Î [r]
h (r) =

Z
d3p u[r] (p)

p2

2m
n̂1 (r ,p) , (5)

Î [r]
n (r) =

Z
d3p u[r] (p) n̂1 (r ,p) , (6)

wherer = 1 for the vectorial flux or current,r ≥ 2 for the other
higher-order fluxes;r also indicates the tensorial rank, and

u[r] (p) =
[ p

m
... (r− times) ...

p
m

]
(7)

stands for the tensorial product ofr-times the vectorp/m, ren-
dering a tensor of rankr. The contributions associated ton̂2
are of the form [13]

∧
C

[r+ŕ]

pṕ (r , ŕ) =
[
Î [r]
p (r) Î [ŕ]

ṕ (ŕ)
]

, (8)

where p and ṕ are indexesh or n; r, ŕ = 0 (the
densities),1,2, ..., and[...] as above stands for tensorial prod-
uct. The question oftruncation of description, that is to take
a reduced number of the above variables (associated to Bo-
goliubov´s principle of correlation weakening and hierarchy
of relaxation times) and the question of the approach to equi-
librium is discussed elsewhere [13, 14] (In equilibrium, be-
cause there survive only the variables of Eqs. (8) only for
r, ŕ = 0, there follows a nonextensive description, becoming
approximately extensive in the thermodynamic limit [14]).

(2) It needs be introduced historicity, that is, the idea that
it must be incorporated all the past dynamics of the system
(or historicity effects), all along the time interval going from
a starting description of the macrostate of the sample in the
given experiment, say atto, up to the time t when a measure-
ment is performed. This is a quite important point in the case
of dissipative systems as emphasized among others by John
Kirkwood and Hazime Mori. It implies in that the history of

the system is not merely the series of events in which the sys-
tem has been involved, but it is the series of transformations
along time by which the system progressively comes into be-
ing at time t (when a measurement is performed), through the
evolution governed by the laws of mechanics [16, 18].

(3) The question of irreversibility(or Eddington’s arrow of
time) on what Rudolf Peierls stated that: “In any theoretical
treatment of transport problems, it is important to realize at
what point the irreversibility has been incorporated. If it has
not been incorporated, the treatment is wrong. A description
of the situation that preserves the reversibility in time is bound
to give the answer zero or infinity for any conductivity. If we
do not see clearly where the irreversibility is introduced, we
do not clearly understand what we are doing” [44].

The question is then to find the proper nonequilibrium sta-
tistical operator that MaxEnt-NESEF should provide. The
way out of the difficulties pointed out above is contained in
the idea set forward by John Kirkwood in the decade of the
forties [16]. He pointed out that the state of the system at
time t is strongly dependent on all the previous evolution of
the nonequilibrium processes that have been developing in it.
Kirkwood introduces this fact, in the context of the transport
theory he proposes, in the form of a so-calledtime-smoothing
procedure,which is generalized in MaxEnt-NESEF as shown
below.

After the choice of the basic dynamical variables has been
performed, and let us call them generically as

{
P̂j (ξ)

}
, where

ξ indicates the set of all variables on which theP̂j may depend
[cf. Eqs. (2) and (3), and Eqs. (4) to (6) and (8)], introducing
in MaxEnt-NESEF [13, 14, 31–34] the idea that it must be
incorporated all the past history of the system (orhistoricity
effects), all along the time interval going from the initial con-
dition of preparation of the sample in the given experiment at,
say, timeto up to timet when a measurement is performed
(i.e., when we observe the macroscopic state of the system),
we proceed to maximize Gibbs’ entropy (sometimes called
fine-grained entropy)

SG (t) =−Tr{ρ(t) lnρ(t)} , (9)

with the normalization and constraints given at any timet ′ in
the intervalto ≤ t ′ ≤ t, namely

Tr
{

ρ
(
t ′
)}

= 1 , (10)

Q j
(
ξ, t ′

)
= Tr

{
P̂j (ξ)ρ

(
t ′
)}

, (11)

with Q j (ξ, t ′) being the nonequilibrium thermodynamic
(macroscopic) variables for the description of the accompa-
nying irreversible thermodynamics described in next section.

Resorting to Lagrange’s procedure we find that

ρ(t)= exp



−Ψ(t)−∑

j

Z
dξ

tZ

to

dt′ ϕ j
(
ξ; t, t ′

)
P̂j

(
ξ; t− t ′

)


 ,

(12)
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where

Ψ(t)= lnTr



exp


−∑

j

Z
dξ

tZ

to

dt′ ϕ j
(
ξ; t, t ′

)
P̂j

(
ξ; t− t ′

)





 ,

(13)
and theϕ j are the corresponding Lagrange multipliers deter-
mined in terms of the basic macrovariables by Eq. (11), and
operatorsP̂j are given in Heisenberg representation.

Further an additional basic step needs now be considered,
namely a generalization of Kirkwood’stime-smoothing pro-
cedure. This is done introducing an extra assumption on the
form of the Lagrange multipliersϕ j , in such a way, we stress,
that (i) irreversible behavior in the evolution of the macro-
scopic state of the system is satisfied; (ii) the instantaneous
state of the system is given by Eq. (11); (iii) it is introduced
the set of quantities

{
Fj (ξ, t)

}
as intensive variables thermo-

dynamically conjugated to basic macrovariables
{

Q j (ξ, t)
}

,
what allowsa posteriori to generate satisfactory Thermody-
namic and Thermo-Hydrodynamic theories. This is accom-
plished introducing the definition

ϕ j
(
ξ; t, t ′

)
= w

(
t, t ′

)
Fj (ξ, t) , (14)

wherew(t, t ′) is an auxiliary weight function, which, to satisfy
the four points just listed immediately above, must have well
defined properties which are discussed elsewhere [32], and it
is verified that

Ψ(t) =
tZ

−∞

dt′w
(
t, t ′

)
φ
(
t ′
)

. (15)

The functionw(t, t ′) introduces thetime-smoothing proce-
dure, and, because of the properties it must have to accomplish
its purposes, it is acceptable any kernel that the mathematical
theory of convergence of trigonometrical series and transform
integrals provides. Kirkwood, Green, Mori and others have
chosen what in mathematical parlance is Fejèr (or Ces̀aro-1)
kernel, while Zubarev introduced the one consisting in Abel’s
kernel forw in Eq. (15) - which apparently appears to be the
best choice, either mathematically but mainly physically - that
is, takingw(t, t ′) = εexp{ε(t ′− t)}, whereε is a positive in-
finitesimal that goes to zero after the calculation of averages
has been performed, and withto going to minus infinite. Once
this choice is introduced in Eq. (12), in Zubarev’s approach
the nonequilibrium statistical operator, designated byρε (t),
after integration by parts in time, can be written in the form

ρε (t) = exp



−Ŝ(t,0)+

tZ

−∞

dt′ eε(t ′−t) d
dt′

Ŝ
(
t ′, t ′− t

)


 ,

(16)
where

Ŝ(t,0) =− ln ρ̄(t,0) = Φ(t) 1̂+∑
j

Z
dξ Fj (ξ, t) P̂(ξ) , (17)

with 1̂ being the unit operator, and
it is introduced the auxiliary operator

ρ̄(t,0) = exp
{−Ŝ(t,0)

}
, referred-to as an instantaneous

quase equilibrium statistical operator, moreover

Ŝ
(
t ′, t ′− t

)
= exp

{
− 1

i}
(
t ′− t

)
Ĥ

}
Ŝ
(
t ′,0

)
exp

{
1
i}

(
t ′− t

)
Ĥ

}
.

(18)
The operatorŜ(t,0) is designated as theinformational-
entropy operator, whose relevance and properties are dis-
cussed in [45].

In the framework of the nonequilibrium grand-canonical
ensemble, namely, when the basic variables are those of Eqs.
(4) to (8), we do have that

ρ̄(t,0) = exp
{−Ŝ(t,0)

}
, (19)

where

Ŝ(t,0) = φ(t)

+ ∑
r,ŕ≥0

Z
d3r

[
F [r]

h (r , t)⊗ Î [r]
h (r)+F [r]

n (r , t)⊗ Î [r]
n (r)

]
+

+ ∑
r,ŕ≥0

∑
pṕ

Z
d3r

Z
d3ŕF [r+ŕ]

pṕ (r , ŕ , t)⊗ ∧
C

[r+ŕ]

pṕ (r , ŕ) ,

(20)
where⊗ stands for fully contracted product of tensors, we re-
call thatr andŕ equal to0 stands for the densities, and theF ’s
are the nonequilibrium thermodynamic variables associated to
the corresponding observable [13, 46].

Several important points can be stressed in connection with
the nonequilibrium statistical operator of Eq. (16). First,the
initial conditionat timeto →−∞, is

ρε (to) = ρ̄(to,0) , (21)

what implies in a kind of initialStosszahlanzatz, in the sense
that the initial state is defined by the instantaneous general-
ized canonical-like distribution̄ρ, thus ignoring correlations
among the basic variables prior to timeto. Second,ρε (t) can
be separated into two parts [13, 24, 30–33], see also [18],
namely,

ρε (t) = ρ̄(t,0)+ρ′ε (t) , (22)

where ρ̄(t,0) is the instantaneous distribution of Eq. (19).
The first one,ρ̄, defines an instantaneous, at timet, distri-
bution, which describes a “frozen” equilibrium providing at
such given time the macroscopic state of the system, and for
that reason is sometimes dubbed as thequasi-equilibrium sta-
tistical operator.This distribution describes the macrostate of
the system in a time interval, aroundt, much smaller than the
relaxation times of the basic variables (implying in a “frozen”
equilibrium or quasi-equilibrium in such interval). But, of
course, for larger time intervals the effect of the dissipational
processes comes into action. The dynamics that has led the
system to that state at timet from the initial condition of
preparation at timeto [cf. Eq. (21)], as well as its continuing
dissipative evolution from that state at timet to eventually a



102 Roberto Luzzi,́Aurea R. Vasconcellos, and J. Galvão Ramos

final full equilibrium, is contained in the fundamental contri-
butionρ′ε (t) . Furthermore, there exists a time-dependent pro-
jection operatorP (t) with the property that [32, 33]

P (t) lnρε (t) = ln ρ̄(t,0) . (23)

This projection procedure, a generalization of those of
Zwanzig (apparently the first to introduce projection tech-
niques in statistical physics [20]), Mori [19], Zubarev and
Kalashnikov [27], and Robertson [25], has interesting char-
acteristics. We recall that the formalism involves the macro-
scopic description of the system in terms of the set of
macrovariables

{
Q j (ξ, t)

}
, which are the average over the

nonequilibrium ensemble of the set of dynamical quantities{
P̂j (ξ)

}
. The latter are called the “relevant” variables, and

we denote the subspace they define as theinformational sub-
spaceof the space of states of the system. The remaining
quantities in the dynamical description of the system, namely,
those absent from the informational space associated to the
constraints in MaxEnt, are called “irrelevant” variables. The
role of the projection operation is to introduce what can be re-
ferred to as acoarse-graining procedure,in the sense that it
projects the logarithm of the “fine-grained” statistical operator
ρε (t) onto the subspace of the “relevant” (informational) vari-
ables, this projected part being the logarithm of the auxiliary
(or quasi-equilibrium, or “instantaneous frozen”, or “coarse-
grained”) distributionρ̄(t,0), and, consequently, the proce-
dure eliminates the “irrelevant” variables, quite in the spirit of
the Bayesian-based approach and MaxEnt. The “irrelevant”
variables are “hidden” in the contributionρ′ε (t) to the full dis-
tributionρε (t) of Eq. (22), since it depends on the last term in
the exponential of Eq. (16), where the differentiation in time
drivesln ρ̄ outside the subspace of “relevant” (informational)
variables. We stress that the projection operation is time de-
pendent, such dependence corresponding to the fact that the
projectionP (t) is determined by the macroscopic state of the
system at the time the projection is performed. Further consid-
erations of this projection procedure will appear in the kinetic
and thermodynamics theories based on this informational ap-
proach. Moreover, geometrical-topological implications are
derived and discussed in detail by Balian et al. [47].

Two further comments are of relevance. First, for a given
dynamical quantityÂ, its average value in MaxEnt-NESOM,
that is, the expected value to be compared with the experimen-
tal measure, is given by

〈Â | t〉= lim
ε→+0

Tr
{

Âρε (t)
}

= Tr
{

Âρ̄(t,0)
}

+ lim
ε→+0

Tr
{

Âρ′ε (t)
}

, (24)

the last equality following after the separation given by Eq.
(22) is introduced. This is the said generalization of Kirkwood
time-smoothing averaging [16], and we can see that the aver-
age value is composed of two contributions: one is the average
with the quasi-equilibrium distribution (meaning the contri-
bution of the state at the timet), plus the contribution arising

out of the dynamical behavior of the system (the one that ac-
counts for the past history and future dissipational evolution).
Moreover, this operation introduces in the formalism the so-
calledBogoliubov’s method of quasi-averages[42, 48]. Bo-
goliubov’s procedure involves a symmetry-breaking process,
which is introduced in order to remove degeneracies con-
nected with one or several groups of transformations in the
description of the system. According to Eq. (24) the regu-
lar average withρε (t) is followed by the limit of cancelling
thead hocsymmetry-breaking introduced by the presence of
the weight functionw in Eq. (14) (which is Abel’s kernel in
Zubarev approach, cf. Eq. (16), and follows forε going to
+0), which imposes abreaking of the time-reversal symme-
try in the dynamical description of the system. This is mir-
rored in the Liouville equation forρε (t): Zubarev’s nonequi-
librium statistical operatordoessatisfy Liouville equation, but
it must be reckoned the fact that the group of its solutions is
composed of two subsets, the one corresponding to the re-
tarded solutions and the one corresponding to the advanced
solutions. The presence of the weight functionw (Abel’s ker-
nel in Zubarev’s approach) in thetime-smoothing or quasi-
average procedurethat has been introducedselects the subset
of retarded solutionsfrom the total group of solutions of Li-
ouville equation. We call the attention (as Zubarev had; see
Appendix in the book of reference [24]) that this has a cer-
tain analogy with Gell-Mann and Goldberger [49] procedure
in scattering theory, where these authors promote a symmetry-
breaking in Bogoliubov’s sense in Schroedinger equation, in
order to represent the way in which the quantum mechanical
state has been prepared during times−∞≤ t ′ ≤ t, adopting for
the wave function a weighted time-smoothing as the one used
in Zubarev’s approach to NESEF. More precisely,ρε (t) satis-
fies a Liouville equation of a form that automatically, via Bo-
goliubov’s procedure, selects the retarded solutions, namely

∂
∂t

lnρε (t)+ iΛ̂ε (t) lnρε (t) = 0 , (25)

whereΛ̂ε is the modified Liouville operator

iΛ̂ε (t) = i
∧
L +ε [1−P (t)] , (26)

with
∧
L being the regular Liouville operator andP (t) the pro-

jection operator of Eq. (23). Equation (25) is of the form
proposed by Ilya Prigogine [50], witĥΛε being composed of
even and odd parts under time-reversal. Therefore, the time-
smoothing procedure introduces a kind ofPrigogine’s dynam-
ical condition for dissipativity[50, 51].

Using Eq. (23) we can rewrite Eq. (25) in the form

∂
∂t

lnρε (t)+
1
i}

[
lnρε (t) , Ĥ

]
=−ε [lnρε (t)− ln ρ̄(t,0)] ,

(27)
viz., a regular Liouville equation but with an infinitesimal
source, which introduces Bogoliubov’s symmetry breaking of
time reversal, and is responsible for disregarding the advanced
solutions. Equation (27) is then said to have Boltzmann-
Bogoliubov-Prigogine symmetry. Following Zubarev [24],
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Eq. (27) is interpreted as the logarithm of the statistical opera-

tor evolving freely under Liouville operator
∧
L , from an initial

condition at timeto, and with the system undergoing random
transitions, under the influence of the interaction with the sur-
roundings. This is described by a Poisson distribution (w in
the form of Abel’s kernel), and the result at timet is obtained
by averaging over allt ′ in the interval (to, t) [cf. Eq. (12)].
This is the time-smoothing procedure in Kirkwood’s sense [cf.
Eq. (24)], and therefore, it is introduced information related
to the past history in the thermo-hydrodynamic macrostate of
the system along its evolution from the initialto.

Two points need be considered here. One is that the initial
to is usually taken in the remote past (to→−∞), and the other
that the integration in time in the interval (to, t) is weighted
by the kernelw(t, t ′) (Abel’s kernel in Zubarev’s approach,
Fej́er’s kernel in Kirkwood, Green , Mori approaches; and
others are possible). As a consequence the procedure intro-
duces a kind ofevanescent historyas the system macrostate
evolves toward the future from the initial condition at timeto
(→−∞). Therefore, the contributionρ′ε (t) to the full statis-
tical operator, that is, the one describing the dissipative evo-
lution of the state of the system, to be clearly evidenced in
the resulting kinetic theory, clearly indicates that it has been
introduced afading memoryprocess. This may be consid-
ered as the statistical-mechanical equivalent of the one pro-
posed in phenomenological continuum-mechanical-based Ra-
tional Thermodynamics [52, 53]. In Zubarev’s approach this
fading process occurs in an adiabatic-like form towards the re-
mote past: as time evolves memory decays exponentially with
lifetime ε−1.

We may interpret this considering that as time evolves cor-
relations established in the past fad away, and only the most
recent ones strongly influence the evolution of the nonequi-
librium system; here again is in action Bogoliubov’s principle
of correlations weakening. This establishesirreversible be-
havior in the system introducing in a peculiar way a kind of
Eddington’stime-arrow: Colloquially speaking, we may say
that because of its fading memory, the system can only evolve
irreversibly towards the future and cannot “remember” how
to retrieve the mechanical trajectories that would return it to
the past situations (what is attained when neglecting the ad-
vance solutions of Liouville equation). In a sense we may
say that Boltzmann original ideas are here at work in quite
general conditions [54, 55], and in its evolution towards the
future, once any external perturbating source is switched off,
the system tends to a final state of equilibrium irrespective of
the nonequilibrium initial condition of preparation.

Alvarez-Romero and Garcia-Colin [34] has presented an in-
teresting alternative approach to the derivation of Zubarev’s
form of MaxEnt-NESEF, which however differs from ours
in the interpretation of the time-smoothing procedure, which
they take as implying the connection of an adiabatic pertur-
bation fort ′ > to (we think that these authors mean adiabatic
switch on of the interactions inH ′ responsible for the dissipa-
tive processes), instead of implying in a fading-memory inter-
pretation. We need notice that both are interpretations which
we feel are equally satisfactory and may be equivalent, but
we side with the point of view of irreversible behavior follow-

ing from - in Boltzmann-Bogoliubov-Prigogine’s sense - adia-
batic decorrelation of processes in the past. This is the fading-
memory phenomenon, introduced in Zubarev’s approach as
a result of the postulated Poissonian random processes (on
the basis that no real system can be wholly isolated), as al-
ready discussed. This interpretation aside, we agree with the
authors in Ref. [34], in that the method provides adequate
convergence properties (ensured by Abel’s kernel in Zubarev’
approach) for the equations of evolution of the system. These
properly describe the irreversible processes unfolding in the
media, with an evolution from a specific initial condition of
preparation of the system and, after remotion of all external
constraints - except thermal and particle reservoirs - tending
to the final grand-canonical equilibrium distribution.

Moreover, the convergence imposed by Abel’s kernel in
Zubarev’s approach appears as the most appropriate, not only
for the practical mathematical advantages in the calculation
it provides, but mostly important, by the attached physical
meaning associated to the proposed adiabatic decoupling of
correlations which surface in the transport equations in the ac-
companying MaxEnt-NESEF kinetic theory [56]. In fact, on
the one hand this kinetic theory produces, when restrictions
are applied on the general theory, the expected collision oper-
ators (as those derived in other kinetic theories) introducing,
after the time integration in the interval (to, t) has been done,
the expected terms of energy renormalization and energy con-
servation in the collision events. Furthermore, as pointed out
by Zubarev [24], Abel’s kernel ensures the convergence of the
integrals in the calculation of the transport coefficients, which
in some cases show divergences when, instead, Fejèr kernel
is used (as in Green, Mori, etc. approaches). The procedure
also appears as having certain analogies with the so-called re-
peated randomness assumptions [57, 58] as discussed by del
Rio and Garcia-Colin [59].

We need now to consider the construction of aMaxEnt-
NESEF-based Nonlinear Kinetic Theory,that is, the transport
(evolution) equations for the basic set of macrovariables that
describe the irreversible evolution of the macrostate of the sys-
tem. They are, in principle, straightforwardly derived, consist-
ing in Heisenberg equations of motion for the corresponding
basic dynamical variables (mechanical observables) or Hamil-
ton equations in the classical case, averaged over the nonequi-
librium ensemble, namely

∂
∂t

Q j (ξ, t) = Tr

{
1
i}

[
P̂j (ξ) , Ĥ

]
ρε (t)

}
. (28)

Using the separation of the Hamiltonian as given byĤ =
Ĥo+Ĥ ′, whereĤo is the kinetic energy and̂H ′ contains the in-
teraction and the separation of the statistical operator as given
by Eq. (22), it follows that Eq. (28) can be written in the form
[56, 60]

∂
∂t

Q j (ξ, t) = J(0)
j (ξ, t)+J(1)

j (ξ, t)+ J j (ξ, t) , (29)

where on the right-hand side are present the contributions

J(0)
j (ξ, t) = Tr

{
1
i}

[
P̂(ξ) , Ĥo

]
ρ̄(t,0)

}
, (30)
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J(1)
j (ξ, t) = Tr

{
1
i}

[
P̂(ξ) , Ĥ ′] ρ̄(t,0)

}
, (31)

J j (ξ, t) = Tr

{
1
i}

[
P̂(ξ) , Ĥ ′] ρ′ε (t)

}
. (32)

As shown elsewhere [32, 56, 60] this Eq. (29) can be con-
sidered as a far-reaching generalization of Mori’s equations
[19, 61]. It also contains a large generalization of Boltzmann’s
transport theory, with the original Boltzmann equation for the
one-particle distribution retrieved under stringent asymptotic
limiting conditions; details and discussions are given in Refs.
[33] and [62].

In this Eq. (29), in most cases of interest the contribution
J(1) is null because of symmetry properties of the interactions
in Ĥ ′, and the termJ(0) provides a conserving part consisting
in the divergence of the flux of quantityQ j (ξ, t) [63, 64]. The
last term, i.e. the one of Eq. (32), is the collision integral
responsible for relaxation processes, which, evidently, can-
cels if Ĥ ′ or ρ′ε is null, what clearly indicates that dissipative
phenomena are described by these contributions to the Hamil-
tonian, and to the statistical operator in Eq. (22), respectively.
Hence, as already anticipated, dissipation is not present in the
instantaneous quasi-equilibrium operatorρ̄(t,0) of Eq. (19),
but in the nonequilibrium operator containing the history and
time-smoothing characteristic ofρ′ε (t) of Eqs. (16) and (22).
We notice that ifĤ ′ is null, so isρ′ε (t), when Ĥo coincides
with the whole Hamiltonian corresponding to a full equilib-
rium condition.

The collision integral of Eq. (32) requires an, in general,
quite difficult, and practically unmanageable, mathematical
handling. But for practical use, it can be reformulated in the
form of an infinite series of partial collision integrals in the
form

J j (ξ, t) =
∞

∑
n=2

Ω(n)
j (ξ, t) , (33)

where quantitiesΩ(n) for n = 2,3, .... can be interpreted
as describing two-particle, three-particle, etc., collisional
processes. These partial collision integrals, and then the trans-
port equation (29), are highly nonlinear, with complete details
given in Refs. [56, 60].

An interesting limiting case is the Markovian approxima-
tion to Eq. (29), consisting into retaining in the collision inte-
gral of Eq. (33) the interaction̂H ′ strictly up to second order

(limit of weak interactions) [13, 60, 65] to obtain for a density
Q j (ξ, t) the equation [13, 22, 63, 64]

∂
∂t

Q j (ξ, t) = J(0)
j (ξ, t)+J(2)

j (ξ, t) , (34)

where

J(2)
j (ξ, t)=

tZ

−∞

dt′eε(t ′−t)Tr
{[

Ĥ ′ (t ′− t
)

0 ,
[
Ĥ ′, P̂j (ξ)

]]
ρ̄(t,0)

}
,

(35)
once J(1)

j is taken as null, and subindex nought indicates

mechanical evolution under̂Ho alone (interaction representa-
tion).

Finally, an additional step is the construction of the all im-
portant MaxEnt-NESEF response function theory for systems
arbitrarily away from equilibrium, to connect theory with ob-
servation and measurement in the experimental procedure: see
for example [66–81] and Chapter6 in the book of Ref. [13].
We simply notice that as in the traditional response function
theory around equilibrium [82, 83], the response of the sys-
tem away from equilibrium to an external probe is expressed
in terms of correlation functions but defined over the nonequi-
librium ensemble. Moreover, also in analogy with the case
of systems in equilibrium it is possible to construct a double
time nonequilibrium thermodynamic Green function formal-
ism [84–87].

In this way, through the realization of the basic steps we
have described, a nonequilibrium statistical ensemble formal-
ism - the MaxEnt-NESEF - can be built. Finally, it can be
noticed that it is a formalism in the Theory of Irreversible
Processes developed along a traditional line (Gibbs’ ensemble
algorithm for nonequilibrium systems), which is an alternative
to the extensively used Nonequilibrium Molecular Dyanmics.
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