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Chiral Perturbation Theory is considered as a very precise method when applied to pion-nucleon scattering near
threshold and in the unphysical region since in these cases the pion momenta are small. In this framework, third
order calculation yields a non-relativistic scattering amplitude with nine free parameters. From the fact that the
resulting partial-wave amplitudes do not respect elastic unitarity relation, one has that the phase-shift definition
is ambiguous. In this article, we present the comparison of the model with experimental data for two different
phase-shift formulas and we conclude that the results are very sensitive to phase-shift definition.

1 Introduction baryons are to be introduced in the formalism. This comes
about because the nucleon mass is not small even in the

Although QCD is widely accepted as the fundamental gaugechiral limit and thus the characteristic parametey/4n f
theory underlying the strong interactions, we still lack the does not control the low energy expansion any more. A
analytical tools forab initio descriptions of low-energy ~Method called Heavy Baryon Chiral Perturbation Theory
properties and processes. However, new techniques havéH1BChPT) was invented to allow one to introduce static
been developed to extend the results of the current-algebrdaryons in ChPT formalism [3] and to describe the dynam-
days andsystematicallyexplore corrections to the soft-pion  ics of baryons at low energies: static properties such as

predictions based on symmetry properties of QCD Greenmasses or r_nagnetic moments, form fac;ors, or, eventually,
functions. more complicated processes, such as pion-nucleon scatter-

The starting point is a theorem by Weinberg stating that I"9: Compton scattering, pion photoproduction etc.
a perturbative description in terms of the most general ef- N this paper we analyse low energy plon-nucleongphase-
fective Lagrangian containing all possible terms compatible Shifts derived from HBChPT. Working at orded(p”),
with assumed symmetry principles yields the most generalthe resulting amplitude[4] depends ome free parameters
S matrix consistent with the fundamental principles of quan- Which can be adjusted to fit th&— and P— partial-wave
tum field theory and the assumed symmetry principles [1]. Phase-shifts to the experimental data[S]. It is known that
The method to go beyond the soft-pion predictions is elastic unitarity is violated at that order of the calculation,

called chiral perturbation theory (ChPT) [2] and describes S0 that_ phase-shift definition is "?"b'”ary- From our present
the dynamics of Goldstone bosons in the framework of an analysis we conclude that the fits are very sensitive to the

e . . . hase-shift definition. In section Il we present the method
effective field theory, which provides a systematic method P . : ;
for discussing the consequences of the global flavor symme-Of HBChPT _applled to plon-nucleon scattering a_nq the re-
tries of QCD at low energies. sulting amplitudes. In section Il we present the fitting pro-

. . cedure and the conclusions.
This method has been sucessfully applied to meson de-

cay and meson-meson scattering, with the help of Wein-
berg’s power counting scheme. This scheme establishes th :

any given diagram behaves &", whereD > 2 is de- a? HBChPT and plon'nUC|eon scatter-
termined by the structure of the vertices and the topology ing

of the diagram in question. For a given valuelof Wein-

berg’s formula unambiguously determines to which order in we are interested in the baryon-to-baryon transition ampli-
the momentum and quark mass expansion the Lagrangianude in the presence of external fields

needs to be known.

Chiral Perturbation Theory faces problems when  F(3”,p,v,a,s,p) = (p';out|p;in); , ;. P#D,
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determined by the Lagrangian $Bi(u,t,s). The total isospin amplitudes até,,, =
o 0 o o AT +2A7 andAz ), = AT — A~ and similarly forB.

L = Lacpt+Lext = Loep+a7u (v +7504)q—q(s—ivsp)g- For elastic scattering one must have

The functionalF consists of connected diagrams only. For Im f]iz(S) = |l \fﬁ(s)|2, (1)

example, the matrix elements of the axial-vector currents
A (or similarly for vector currentd”) between one-baryon

S where ff, are the partial wave amplitudes constructed from
states is given by fie p p

the Dirac amplitudes.

5 Let us turn to the tree-level calculation to thé&V scat-

(p'| A" (x)|p) = 5o F(p',piv,a,s,p) ,tering amplitude. Using the approximation

¢ Clu(l') v=0,a=0,s=M,p=0
whereM = diag(m,, mg4, ms) denotes the quark-massma- w~1+ z’ﬂ,u# ~ a“qs,l“” ~ %F- ¢ x QL(E,
trix and 2Fy Ko 4Ky

@ A® we get the Lagrangian
VI() = g Sae), AR @) = (et e e

_ 1 9a 3, " b b 1 = “w cd e

The fields entering the Lagrangian are assumed to transform™ = _§FO\I’7 V5T 0ud" Y — AF? Uy ecacT 9" 0,0

under irreducible representations of the subgrélghich
leaves the vacuum invariant whereas the symmetry géoup From the nucleon pole contribution we obtain the resulting
of the Hamiltonian or Lagrangian is nonlinearly realized. ~ amplitudes

The physical observables are invariant under field trans-

formations, so that we choodeto denote the nucleon field A+ gi _ n gim v
andU the SU(2) matrix containing the pion fields. We de- 2™ A" =0, B" =~ F2 2 _ .2
noteu?(z) = U(x), and define the nonlinear realization: 0 0 B
uw? = Ru’L* and¥’ = «/~!RV. whereR and L are ma- 1 2 2,

trices of SU(2)1, ® SU(2) g group. and B~ = . — Ja9aT0 ¥V

. . . 2 2 2 2"
The local character of the transformation implies that we 2Fy 2k Fy vl —vp
need to introduce a covariant derivative by adding the con-\\e are going to show that this corresponds to the leading

nection order heavy-baryon result.
1, . o The heavy-baryon formulation of ChPT consists of an
Ly = 5 [u? (O — irp)u +u(@ — ilu)u'] expansion in terms of small external momentum. Clearly it

cannot simply be the four-momentum of the initial and final
to the ordinary derivative. AD(p) there exists another Her-  nucleons, because their energy components are not small.

mitian building block, the so-called vielbein Instead, one separates an external nucleon four-momentum
into a large piece of the order of the nucleon mass and a
=i [ul (9, — iry)u — w(d, —il,)u' i
uy =1 |u (0, —iry)u —u(0, —ily)u'|, small residual component.

) ] ] Let us introduce the so-called velocity-dependent fields.
which under parity transforms as an axial vector. The mOStUsingv“ with the properties? = 1, v* > 1 and the projec-

general Lagrangian with the smallest number of derivativestorszpi — 1+ v, we define
is given by
Nv = gMmvT 2 \117 andHU = emn,v-atpv_\p)
Egrl]z, =T (zD— m+ %7“75%) . *
so that¥(z) = e~ [N, (z) + H,(z)]. The fieldsN,
At this point we introduce the basic formalism. The tran- and, are often called the light and heavy components of
sition amplitude forr®(q) + N(p) — n°(¢’) + N(p') scat-  the fieldW.
tering is given by The lowest-order Lagrangian is

Tab _ ’l](p/) (Aab(s,t,u) + %(q/ + q//> Bab(s,t,u)) u(p) EErljif =N, [iv-D+g,S, -u}/\fv,

where the spin matri$* = Lv;0/*v, satisfiesv - S = 0.
When comparing to the relativistic Lagrangian, one sees that
the nucleon mass has disappeared from the leading-order
Lagrangian. It only shows up in higher orders as powers
of 1/m. In the power counting schent®" counts ag)(q),
because the covariant derivatiig, and the chiral vielbein
The decompositiond®® = §*°AT + 3[r*,7°]A7, and 4, both count a®)(q). The four-momenta of the initial and
similarly for B, obeys the following crossing proper- final nucleons are written as= muv + k andp’ = mv + &/,
ties: A* (s,t,u) = +A4* (u,t,s) and Bi(s,t,u) = respectively, withy - k = 0 = v - k¥’ to leading order irl /m.

The nonrelativistic reduction is

—

9 _»/._, _,._./
A+(Eﬂ+q +4d q>B+z’U 7 295\
2m

T~y" 5
m
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Using the expansions of the connection and the vielbein,3  Fit Procedure and Conclusions
the lowest order relevant part of the interaction Lagrangian
is The full one-loop amplitude to order® is obtained after
mass and coupling constant renormalization, and the per-
_ 9A Fou~ 7 I o= 7 z tinent formulas can be found in refs.[6, 7]. The final result
Lint = _ENS/ 7 OuN = w2 NT -6 x 0uoN. can be separated into the tree, loop and counterterm contri-
butions. The last one introducese parameters that can be

The corresponding Feynman rules for the vertices, for a sin-used to fit the amplitudes to the experimental data[5].

gle incoming pion with momentunp and isospin: and for Now we arrive to the main point of this exercise. As we
an incoming pion withy, « and an outgoing pion with’, b, mentionned before, for a given isospinthe phase shifts
are, respectively: 6{i(s) can be extracted from the partial waves via
1
/ 1 _ - o]
. s) = ——= |exp(2id;L) — 1. 2
94g raand” (qtq)eawc iz (s) 517 [Xp( 1+) ] @)
Fy 4F]

For vanishing inelasticity, the phase shifts are real. More-
over, from the heavy baryon approach, the imaginary parts
stemming from the loop contributions at ordérfulfill per-
turbative unitarity. In terms of the partial wave amplitudes
this reads

the last gives rise to a contact term. The results for direct
channel nucleon pole term effectively reduces to that of a
two-component theory as in the Foldy-Wouthuysen trans-
formation.

By performing a nonrelativistic reduction, one verifies 1(3) R (1) 2
that, at leading order im, the relativistic Lagrangian and Im £, (s) = |x | (Re fi (s)) ’ ©)
the heavy-baryon Lagrangian indeed generate the gadwhe
scattering amplitude. This equivalence follows from an ex-
pansion of the functionsl(+) and B(t) because both con-
tain terms of ordern. 5&((;) = arctan(m Re flI;t(s))- (4)

So far we have concentrated on the leading-order,
independent, heavy-baryon Lagrangian. However, it is clear
that the Lagrangian also generates terms of higher order in

Usually, in effective field theory aplications[8], one defines
the phase-shifts by

Alternatively, we will adopt the definition
Im £ (s)

1/m and additional new chiral structures of higher orders in 6l1i(5) = arctan m- 5)
momentum. Thd /m correction resulting from the leading I+
Lagrangian is Our proposal is to study the sensivity of the fit procedure

to the phase-shift definition. The main motivation is that
1 - some low energy constants play important role in the the-
£® = —N|(v-D)?=D?—igs{S-D,v-u}— oretical evaluation of many physical constants. If the fit-
2m ting procedure was unambiguous, one could have, by phase-
> 1 shift fit, a powerful method to access several LECs values.
ZA(U cu)? + 56““’”%50 (tupuy) [N Our strategy was to fixine free parameters in order to fit
the HBChPT amplitudes teix S- and P-wave experimental
phase-shifts. In order to do that we use the definition (4) for
At O(¢?) the heavy-baryon Lagrangian contains another low values (below200 MeV) of the pion three—-momentum
contribution which may be obtained as the projection of the in the lab system, calleg, with normg,
relativistic Lagrangian onto the light components, 1
dr = \/

Once fixed the LECs values, we plot the resulting partial-
wherev. — utvul + uviu andy = 2Bm wave phase-shifts from the definition (2) as well.
Xk X X X € The resulting values of theineparameters fixed by a si-

. 3\ .
The_ Lagranglan at orded(¢”) is computed in the ree  ultaneous fit osixlow-energy phase-shifts are; € -1.57,
approximation. Its various constants get renormalized in or- Cy =3.00, G = -6.05, G = 3.55,d; + dy = 4.57.dy = -4.67

der to absorb the divergences of one loop calculation. ds =0.197.dys — dys = -8.49 andd,s = 2.89.

N [eitr(x4) + ca(v - u)? 4 csu-u+ ca[SH, S uu, | N,

We observe, by inspection of the figures, that the results
\I;{ dy +da ([“m Dy, ut]| DY + [uy, [D", uy]]D”)) are sensitive to phase-shift definition. We repeated the com-
4m parison with all model parameters kept equal to zero and we

+ ds [, [D WHD#DVDA 4 ﬁ[x u,| D" show the results in the same figures. We conclude that the
12m3t Y 2m M results remain very sensitive with phase-shift definition.
+@a’“’<[DA,uH]uy>DA + %O—HV@L#[DMUA])D)\ ~We intend to perform a similar analysis using the am-
3771 d 4m plitudes obtained by the unitarization program of current al-
+£7”75<X+>uu + D,,, X_]}\p, gebra [9]. We recall that those amplitudes have imaginary
2 2 parts satisfying eq. (3).
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Figure 1. S-wave phase-shifts (in degrees) as functions of pion
lab momentum (in GeV); with phase-shift definitons (4)with
adjusted parameters and with vanishing ones) and (2) (respec-
tively, b andbc, as for the previous definition).

Figure 3.J = 3/2 P-wave phase-shifts (in degrees) as functions of
pion lab momentum (in GeV); with phase-shift definitons (4) and
(2); curve labels as in Fig. 1.
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