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On Superstatistical Multiplicative-Noise Processes
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In this article we analyse the long-term probability density function of non-stationary dynamical processes
with time varying multiplicative noise exponents which are enclosed inwards the Feller class of processes.
The update in the value of the exponent occurs in the same conditions as presented by BECK and COHEN for
superstatistics. Moreover, we are able to provide a dynamical scenario for the emergence of a generalisation of
the Weibull distribution previously introduced.
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I. INTRODUCTION

The description within a physical context of driven non-
equilibrium complex systems has frequently been made by
considering that their dynamical behaviour is characterised by
spatial-temporal fluctuations of some parameter, β̃. Usually,
this parameter has been considered to be the (inverse) temper-
ature, the dissipation of energy in turbulent flows, the ampli-
tude of Gaussian white noise, the local mean-reverting value
or the local variance. As an example, we mention the stan-
dard case of a Brownian particle diffusing along an inhomo-
geneous medium in which temperature (hence diffusion “con-
stant”) fluctuates in both space and time. In this approach,
as it can be understood, there are two important time scales:
the scale in which the dynamics is able to reach a stationary
state (assuming a fixed value for parameter β̃), and the scale at
which the fluctuating parameter evolves. A particular case to
consider is when these two time scales are clearly separated,
specifically, when the time needed for the system to reach sta-
tionarity (considering a predetermined β̃) is much smaller than
the scale at which that parameter changes. In the long-term,
the non-equilibrium system is described by the superposition
of different local dynamics at different time intervals that was
coined by BECK and COHEN as superstatistics or “statistics of
statistics” [1, 2]. Frequently, systems that are characterised as
“superstatistical” exhibit non-Gaussian distributions with kur-
tosis excess, or distributions with non-exponential decay. In
addition, superstatistical systems present a parameter, β̃, that
fluctuates on a large scale, T , and follows a time-independent
distribution, p(β̃). The superstatistical framework has suc-
cessfully been applied on a widespread of problems like: in-
teractions between hadrons from cosmic rays [4], fluid tur-
bulence [3, 5, 6], granular material [7], electronics [8], eco-
nomics [9–12], among many others [13]. Furthermore, it has
been regarded as a possible foundation for non-extensive sta-
tistical mechanics [3] based on Tsallis entropy [14] as we
show later on. In this manuscript we introduce a different
analysis of differential stochastic dynamics in which the ex-
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ponent of a Feller process is assumed as the superstatistical
parameter. The main advantage of this proposal is that it per-
mits the evolution of the functional form of the second-order
Kramers-Moyal moment in opposition to previous presenta-
tions.

II. SUPERSTATISTICS

Consider an inhomogeneous system composed by a large
set of cells that have different values of some parameter β̃ as
we have referred to here above. Within each cell, local equi-
librium is reached very promptly. The parameter β̃ is taken as
constant throughout a period of time T after which it changes
into a new value. This update occurs always in accordance
with a distribution p(β̃) for the parameter. Taking into con-
sideration that each cell is in local equilibrium, thus present-
ing a Boltzmann factor, e−βE ,1 the long-term stationary dis-
tribution 2 of the non-equilibrium system is obtained from a
weighted average of local Boltzmann factors, with β≡ β

(
β̃
)

,

P(E) =
∫

p
(

β̃
)

ρ(E)
e−βE

Z (β)
dβ̃, (1)

where ρ(E) represents the density of states, and Z (β) the nor-
malisation constant. Going back to the example of a Brown-
ian particle moving across a medium treated in Ref. [3], we
get that its velocity, ~v, is obtained from the local Langevin
equation,

d~v =−γ~vdt +σd~Wt . (2)

Seeing that the medium is inhomogeneous, either γ [15] or σ
vary from cell to cell on a large time scale T 3. Therefore,
local Boltzmann factor has,

β =
2γ

mσ2 , (3)

1 E is the effective energy in each cell.
2 The observation time t À T .
3 If γ is the random parameter then, β̃ = γ, else if σ is the random parameter

then, β̃ = σ.
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which is random. From Eq. (3), the parameter β can also
fluctuate for the case of a particle with varying mass [16].

Within time scale T , and according to Eq. (2), the local
stationary distribution of velocities is a Gaussian conditioned
to value β,

p′ (~v |β) =
(

β
2π

)d/2

exp
[
−1

2
βm~v2

]
. (4)

If the system is able to reach some local equilibrium before
an update of β̃ takes place, i.e., T À γ−1 = τ, then, we can
determine the marginal velocities probability distribution of
the long-term behaviour of the Brownian particle,

P(~v) =
∫ ∞

0
p(β) p′ (~v |β) dβ. (5)

Hence, it is straightforward to verify that the form of P(~v)
depends explicitly on the functional form of p(β). Specif-
ically, it was verified in Ref. [3] that, when p(β) is the
χ2−distribution with n degrees of freedom, Eq. (5) yields,

P(~v) =
1
Z

[
1+(1−q) β0~v2 ]1/(1−q)

, (6)

where q = 1 + 2
n+d , Z is the normalisation factor, and β0 the

average inverse temperature (see Ref. [1] for details). Such a
distribution P(~v) maximises Tsallis entropy [14],

Sq =
1− ∫

[p(x)]q dx
q−1

(q ∈ℜ) . (7)

This fact has turned out superstatistics into the first dynami-
cal scenario for the emergence of non-extensive statistical me-
chanics [17].

III. THE MODEL

Consider the following one-dimensional stochastic differ-
ential equation,

dv =−γvdt +ω
[
v2]α

dWt , (v 6= 0 if α < 0) , (8)

where Wt is a regular Wiener stochastic process, i.e., 〈dWt〉=
0, and 〈dWt dWt ′〉 = dt δ(t− t ′) 4. Stochastic equation
(8) belongs to the Feller class of (multiplicative noise)
processes [18] with γ ≥ 0, α < 1

4 for a (time-dependent) nor-
malisable probability density function (PDF) f (v, t). The as-
sociated Fokker-Plank Equation of Eq. (8) is

∂ f (v, t)
∂t

=
∂
∂v

[γv f (v, t)]+
1
2

∂2

∂v2

[
ω2 [

v2]2α
f (v, t)

]
, (9)

4 The main advantage of writing
[
v2]α instead of |v|α′ with α′ = 2α is that

of analyticity for all v when α > 0.

whose solution f (v, t) relaxes exponentially with a character-
istic time, τ, into the stationary solution,

p(v) =
1
Z

exp
[
− γ

ω2 (1−2α)
v2(1−2α)

](
v2)−2α

, (10)

i.e., a Weibull-like distribution, W (v). Z is the normalisation
constant,

∫
p(v) dv,

Z =
2

1−4α

[
γ

ω2 (1−2α)

] 1−4α
4α−2

Γ
[

2+
1

4α−2

]
. (11)

For α = 0, Eq. (8) becomes the standard Langevin equation,
and p(v) the Gaussian distribution,

G (v) =
1
Z

exp
[
− γ

ω2 v2
]
, (12)

with Z =
√

πω2

γ .
After the transient, f (v, t) ≈ p(v). The mean value of v,

v̄≡ ∫
v p(v) dv, is equal to zero as well as all odd moments of

p(v). Regarding the second-order moment, v2 ≡ ∫
v2 p(v) dv,

we have got

v2 =





ω2

2γ if α = 0

4α−1
4α−3

[
ω2(1−2α)

γ

] 1
1−2α Γ[ 5−8α

2−4α ]
Γ[2+ 1

4α−2 ]
if α 6= 0

. (13)

If we consider v as the velocity of a particle of unitary mass
which does a 1D random walk, using equipartition theo-
rem we are able to determine the inverse temperature, β ≡
(k T )−1 5, yielding

β = v2. (14)

Evaluating the kurtosis

κ≡
(

v2
)−2 ∫

v4 p(v) dv, (15)

we have obtained

κ =





3 if α = 0

(3−4α)2

(4α−5)(4α−1)
Γ[ 7−8α

2−4α ]Γ[2+ 1
4α−2 ]

{Γ[ 5−8α
2−4α ]}2 if α 6= 0

. (16)

As it is visible from Fig. 1, distribution (10) is platykurtic for
α < 0, and leptokurtic for α > 0.

Moving on, we shall now consider that exponent α instead
of constant, varies according to superstatistical requirements.
In other words, let us consider an inhomogeneous system
which is composed by a large set of cells that have differ-
ent values of α. Within each cell, the value of α is updated at

5 In this expression T is the tempetature.
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FIG. 1: Kurtosis, κ, vs. α. Upper panel: Non-positive values of
α which lead into platykurtic distributions. In the limit α → −∞,
κ = 1. Lower panel: Non-negative values of α leading into leptokur-
tic distributions which has α = 1

4 as upper bound. The dashed line
corresponds to the kurtosis of a Gaussian κ = 3.

every elapsed time interval `, in agreement with a certain PDF
ρ(α). The update scale, `, is much greater than relaxation
time scale τ. Noticing that each cell is in local equilibrium,
the long-term stationary distribution of the non-equilibrium
system is obtained performing the integral,

P(v) =
∫

ρ(α) p(v) dα. (17)

As possible applications of such a model we name: descrip-
tion of velocities in granular material (particularly see figures
of Ref. [19]) and unconventional turbulent fluids, or even the
dynamics of financial observables. Explicitly, systems which
undergo through different phases during their time evolution
or situations where different stages are measured when obser-
vations are made at the same point of space. In a thermody-
namic context, the fluctuations in α correspond to fluctuations
in temperature, but obtained through a completely different
way from the proposal presented in Ref. [3]. Specifically, fluc-
tuations in α induce a modification of the functional form of
the 2nd order Kramers-Moyal coefficient, while in Ref. [3] its
functional form is always preserved.

A. Some examples

1. Dichotomous case

This case represents the simplest form to introduce fluctua-
tions in α, and for which a full analytical treatment is possible.

Its probability density function is simply,

ρ(α) =
1
2

δ(α−α0)+
1
2

δ(α−α1) , (α0 6= α1) . (18)

Amongst all endless possibilities for α0 and α1, let us firstly
consider cases for which one of the exponents is equal to zero.
The long-term distribution is thus given by

P(v) =
1
2

G (x)+
1
2

Wα (x) . (19)

For small values of |v|, and α < 0, P(v) approaches the limit√
γ

4πω2 as
[
v2

]−2α.
In Fig. 2 we exhibit the resulting probability density func-

tion, P(v), for α0 = 0, and α1 = −1, α1 = − 1
2 , and α = 1

5 .
The value v2

e f ,

v2
e f ≡

∫
v2 P(v) dv, (20)

is presented in Fig. 3 for several values of α1.
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FIG. 2: Probability density function P(v) vs. v for the case of su-
perstatistical processes with a dichotomous distribution (18) where
γ = ω = 1. Upper panel: In both cases α0 = 0, and α1 =−1 for the
full line, and α1 = − 1

2 for the dashed line. Lower panel: P(v) vs. v
for a dichotomous case with α0 = 0 and α = 1

5 (γ = ω = 1) in a log-

log scale. For this case, the variance v2
e f = 0.2860 . . . and kurtosis

κ = 11.953 . . ..

2. Uniform distribution case

If, for the previous example the analytical form of P(v) is
easily obtained, that does not happen in situations in which α
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FIG. 3: Standard deviation, v2
e f , vs. dynamical exponent α1 for su-

perstatistical process with a dichotomous PDF (18) where α0 = 0,
and γ = ω = 1. For α1 = 0, v2

e f = 1
2 , and for α1 = −∞ the value

of v2
e f tends to 3

4 (upper panel). For positive values of α1, v2
e f is a

monotonically decreasing function of α1 with v2
e f = 1

4 for α1 = 1
4 .

evolves according to a uniform distribution between α0 e α1,

ρ(α) =





1
α0−α1

if α1 ≤ α≤ α0

0 otherwise
. (21)

However, it is possible to evaluate numerically the form of the
long-term distribution as we present for two particular cases
in Fig. 4. Computing the kurtosis, κ, for both cases we have
verified that the two examples are platykurtic.

Another possibility is to consider just non-negative values
for α. This situation is more likely to be experimentally veri-
fied, since kurtosis excess is quite ubiquitous. In this case, and
since we are considering leptokurtic distributions, P(v) is also
leptokurtic. An illustration of this sort of example is presented
in Fig. 5 where α uniformly varies between 0 and 1

5 .
Moreover, extending our range of values for exponent α,

we can consider positive and negative values as we present in
Fig. 6. For this last case, in the long-term, the system endures
both platykurtic and leptokurtic regimes.

3. The χ2-distribution

Another distribution that appears in various phenomena is
the χ2-distribution,

ρ(α) =
νν

ᾱΓ [ν]

( |α|
ᾱ

)ν−1

exp
[
− ν

ᾱ
|α|

]
. (22)

FIG. 4: Numerically obtained probability density function P(v) vs.
v for the case of superstatistical processes with uniform distribution,
Eq. (21) where γ = ω = 1. The black line corresponds to α0 = 0, and
α1 =− 1

2 , with v2
e f = 0.833 . . ., and kurtosis, κ = 1.755 . . .. The grey

line corresponds to a uniform distribution with α0 = − 1
2 α1 = − 3

2

yielding v2
e f = 1.169 . . ., and kurtosis, κ = 1.179 . . ..

For this case an analytical form is not, in principle, possible
to obtain. Nonetheless, we obtain the numerical solution for
P(v) as we show in Fig. 7.

B. A generalised Weibull distribution

In this subsection we treat, the standard case where in Eq.
(8) ω evolves on a superstatistical fashion rather than α. For
this particular case, when Ω≡ ω−2 follows a χ2-distribution,

ρ(Ω) =
1

Ω0 Γ
[ ν

2

]
(

ν
2Ω0

) ν
2

Ω2+ ν
2 exp

[
−ν

2
Ω
Ω0

]
, (23)

the long-term stationary distribution, P(v), that corresponds
to a weighted average of p(v) over all possible values of Ω,
yields

qW (v) =
1
Z′

expq

[
−

(
v2

)a

ṽ

]
(
v2)b

, (24)

where,

q =
4+ν−6α−2να
2+ν−2α−2να

, ṽ =
ν(1−2α)2 Ω0

(2+ν−2α(1+ν))γ
, (25)

and

a = 1−2α, b =−2α. (26)

Owing to its comparability to the Weibull distribution inside
Sq framework, and following Ref. [21] we shall call PDF (24)
q-Weibull distribution. The q-Weibull distribution has been
used to numerically adjust a variety of PDFs, but, to the best
of my knowledge, no dynamical basis has been presented so
far. Distribution (24) belongs to the Burr class of probabil-
ity density functions [22]. For small values of |v|, qW (v) in
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FIG. 5: Left panel: The full line represents the numerically obtained probability density function P(v) vs. v for the case of superstatistical
processes with uniform distribution, Eq. (21), where α0 = 0, and α1 = 1

5 (γ = 100,ω = 10). The dashed line represents the PDF of the upper
bound α = 1

5 , and the dotted line the PDF of the lower bound α = 0 (a Gaussian). The long-term PDF decays slower than the Gaussian. The
grey symbols represent the PDF obtained from the numerical simulation of a superstatistical system with the same parameters γ and ω and
PDF ρ(α). In the inset we show ρ(α) of that process. Right panels: Excerpt of a superstatistical time series of v which evolves according
to Eq. (8) with γ = 100, ω = 10, and α associated with a uniform distribution between α = 0 and α = 1

5 . The time scale of updating α is
1 time unit which is rather larger than 10−2 that is the time scale of relaxation towards stationarity. For this case α0 = 0, and α1 = 1

5 , with

v2
e f = 0.285 . . ., and kurtosis, κ = 5.272 . . .. A fair similar distribution, namely Fig. 6(b), has been obtained in Ref. [20] for the velocities PDF

of a long-range Hamiltonian system at a quasi-stationary state.

FIG. 6: Numerically obtained probability density function P(v) vs.
v for the case of superstatistical process with uniform distribution,
Eq. (21), where α0 = − 1

5 , and α1 = 1
5 (γ = ω = 1). In this case

v2
e f = 0.476 . . ., and kurtosis, κ = 3.129 . . .. Interestingly, this ex-

ample suggests the existence of, at least, one distribution ρ(α) with
α0 6= α1 6= 0 for which P(v) is mesokurtic.

Eq. (24) goes to zero as a power law with exponent b, and for
large |v|, the same distribution also vanishes as a power law
but with exponent a/(1−q) + b. For this case, it is possi-
ble to evaluate even moments of order m when the following
conditions are verified,

a > 0, b >−m+1
2

,
a

q−1
−b >

m+1
2

. (27)

When b = 0, i.e., α = 0, P(v) turns into a q-Gaussian distrib-
ution recovering the scenario of Ref. [3]. In Fig. 8 we depict

FIG. 7: Numerically obtained probability density function P(v) vs.
v for the case of superstatistical processes with a χ2-distribution, Eq.
(22) where ν = 5, and α = γ = ω = 1. For this example we have
v2

e f = 1.150 . . ., and kurtosis, κ = 1.999.

examples of qW (v) for some values of a, b, and q.

IV. REMARKS AND PERSPECTIVES

In this manuscript we have discussed a superstatistical ap-
proach of a stochastic process which belongs to the Feller
class, and whose (local) stationary probability density func-
tion is reminiscent of a Weibull distribution. Such proposal,
which might be seen has a dynamical analogue for Ref. [23],
has been driven on two ways. The first one in which the power
of multiplicative noise term is time-dependent, and another
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FIG. 8: Representation of qW (v) vs. v for several values of parameters a,b,q , and ṽ = 1. Left panels contain linear-linear representations,

whereas right panels exhibit the same qW (v) but in a log-log scale. For long dashed lines (a = 2,b = 1); short dashed lines
(

a = 5
4 ,b = 1

4

)
;

and for the full lines (a = 1,b = 0) which correspond to a q-Gaussian PDF. In upper panels we have q = 7
4 . Because of conditions (27), the

(a = 2,b = 1) case is the only one to have a finite v2
e f . Explicitly, v2

e f = 6.424 . . .. Midst panels: q = 3
2 . Both of the three cases have a finite

v2
e f . Specifically, v2

e f =
√

2 for (a = 2,b = 1), v2
e f = 2 for (a = 1,b = 0), and v2

e f = 24/5 for
(

a = 5
4 ,b = 1

4

)
. Curiously, case (a = 2,b = 1)

has κ = 3 just like a Gaussian distribution, i.e., a mesokurtic distribution. Lower panels: q = 3
4 . In this case, distributions present a compact

support, [−vc,vc], by reason of Tsallis cut-off, where vc =
(

1
1−q

) 1
2a .

one that is equivalent to the evolution of the noise width in
the stochastic term of the corresponding differential equation.
The main advantage of the former is the possibility of mim-
icking systems which hold a rather complex dynamics that
goes through a (random) sequence of dynamical regimes. We
have determined either analytically or numerically the long-
term probability density function which can assume all types
of kurtosis. Concerning the latter superstatistical approach,
we have verified that it allows the emergence of a generalisa-
tion of the Weibull distribution within the framework of Tsal-
lis non-additive entropy. This distribution has proved to be
valid for numerical adjustments in a large variety of systems.
For the q-Weibull, we have also been able to obtain platykur-
tic, mesokurtic, and leptokurtic distributions. In respect of
is actual implementation to the analysis of experimental data

we must refer that it requires the development of techniques
to capture both of ρ(α) and T as it was introduced for cases
with fluctuations in ω [5][24]. The solution for this non-trivial
challenge either on an experimental or theoretical level is cer-
tainly welcomed.

Last of all, the extension of the idea of a stochastic dy-
namics with superstatistical exponents that lead to a consistent
emergence of leptokurtic long-term probability density func-
tions by means of considering, e.g., a non-zero mean or the
combination of independent multiplicative and additive noises
will be the focus of further research.
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