Acessibilidade / Reportar erro

Superconducting properties of mesoscopic squares

We apply the complete nonlinear Time Dependent Ginzburg Landau (TDGL) equations to study the vortex dynamics in a mesoscopic type II superconductor using the numerical method based on the technique of gauge invariant variables. The solution of these equations shows how the vorticity penetrates into and goes out of the superconductor through the surface boundary. We calculate the spatial distribution of the superconducting electron density and the phase of the superconducting order parameter in a mesoscopic superconducting square sample containing two holes in the presence of a uniform perpendicular magnetic field. The dynamics of different vortex states are studied as a function of the external magnetic field.

Vortex; Mesoscopics; Gizburg - Landau


Sociedade Brasileira de Física Caixa Postal 66328, 05315-970 São Paulo SP - Brazil, Tel.: +55 11 3091-6922, Fax: (55 11) 3816-2063 - São Paulo - SP - Brazil
E-mail: sbfisica@sbfisica.org.br