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Kinetic Phase Transition in the Mixed-Spin Ising Model
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In this work we studied a ferromagnetic mixed-spin Ising model including a single ion crystal-field term. The
model system consists of two interpenetrating sublattices with spins σ = 1/2 and S = 1. The spins σ = 1/2
occupy the sites of one sublattice, their nearest-neighbours are spins S on the other sublattice, and vice versa.
The system is in contact with a heat bath, the spins flipping according to the Metropolis transition rate and, at
the same time, subject to an external flow of energy, which is simulated by a two-spin flip process. The model
is studied via the dynamical pair approximation and through Monte Carlo simulations. We have determined
the phase diagram of the model in the plane crystal-field D versus competition parameter p. The parameter p
accounts for the competition between the one- and two-spin flip processes. In the pair approximation, the phase
diagram, at high temperatures, present three phases separated by two transition lines: a continuous transition
line between the ferromagnetic and paramagnetic phases, and a first-order transition line between the paramag-
netic and antiferromagnetic phases. However, Monte Carlo simulations predict the same topology for the phase
diagram as the pair approximation, but all the transition lines are continuous for any value of the temperature.

The mixed-spin Ising model has received much atten-
tion in the last years. The main motivation is that the model,
containing spins of different magnitudes, is used to under-
stand the behavior of certain ferrimagnetic systems that are
of great technological interest. From a theoretical point of
view many different approaches have been employed in the
study of this model: effective-field theories with correla-
tions [1, 2], the mean-field renormalization group [3, 4],
the Bethe-Peierls method [5], and Monte Carlo simulations
[7, 6]. In these studies, just the equilibrium states were in-
vestigated.

In the study of the stationary states of the nonequilib-
rium thermodynamic systems we do not have at our dis-
posal a closed formalism to deal with these systems as in
the equilibrium problems [8, 9]. In this work we shall con-
sider a mixed-spin Ising model defined on a square lattice,
with spins σ = 1/2 and S = 1. The lattice is divided
into two interpenetrating sublattices, with the σ spins oc-
cupying the sites of one sublattice, while the S spins oc-
cupy the sites of the other sublattice, each sublattice con-
taining N sites. A state of the system is represented by
(σ, S) ≡ (σ1, ..., σj , ..., σN ; S1, ..., Si, ..., SN ), where the
spin variables σj can assume the values ±1, and the spin
variables Si assume values ±1 and 0. The system is repre-
sented by the following hamiltonian model

H = −J
∑
〈i,j〉

Siσj − D
∑

i

S2
i , (1)

where the sum is over all nearest neighboring pairs of spins.
J is the coupling constant between nearest neighbors spins
and D is the crystal-field contribution.

Let us call p(σ, S; t) the probability of finding the sys-
tem in the state (σ, S) at time t. The equations of motion

for the probability of the states of the system is given by the
master equation

d

dt
p(σ, S; t) = −

∑
σ′,S′

W (σ, S → σ′, S′)p(σ, S; t)

+
∑
σ′,S′

W (σ′, S′ → σ, S)p(σ′, S′; t), (2)

where W (σ, S → σ′, S′) is the probability, per unit of
time, for the transition from the state (σ, S) to the state
(σ′, S′). In this model, we assumed that the transition rate
W (σ, S → σ′, S′) is due to the competition between two
independent stochastic processes. First, the one-spin flip
Glauber process [10], intended to describe the relaxation of
the spins σ and S in contact with the heat bath. This transi-
tion rate can be written as

WG(σ, S → σ′, S′) = WG(σ, S → σ′, S)
+WG(σ, S → σ, S′) . (3)

Second, the two-spin flip process, chosen to be independent
of temperature, and meant to increase the energy of the sys-
tem, can be written as WGD(σ, S → σ′, S′). Then, we have
the following equation for the total transition probability:

W (σ, S → σ′, S′) = pWG(σ, S → σ′, S′)
+(1 − p)WGD(σ, S → σ′, S′), (4)

where 0 ≤ p ≤ 1 is the competition parameter between the
one- and two-spin flip processes. From the master equation
we found the equations of motion for the sublattice magne-
tizations m1 = 〈σj〉 and m2 = 〈Si〉, and also for the corre-
lation functions q =

〈
S2

i

〉
, q1 =

〈
σjS

2
i

〉
and r = 〈σjSi〉 as

in ref. [11].
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These mean values are calculated using the following
transition rates: for the one-spin flip transition rate, which
simulates the contact of the system with the heat bath, we
used the Metropolis prescription, given by

ωj(σ) = min[1, exp(−β∆Ej)] , (5)

where β = 1/kBT , and T is the absolute temperature of
the heat bath. ∆Ej is the change in energy after flipping the
spin σj at site j. We also assumed a similar expression for
ωi(S). On the other hand, for the two-spin flip transition
rate, which favors the increase of the energy of the system,
we chose the following rule

ωij(S, σ) =
{

0 if ∆Eij ≤ 0
1 if ∆Eij > 0 ,

(6)

where ∆Eij is the change in energy after flipping the spins
Si and σj , at the neighboring sites i and j.

In the present study of this model we used the dynam-
ical pair approximation and Monte Carlo simulations. The
set of equations of motion obtained from the master equa-
tion can be solved through the dynamical pair approxima-
tion [11], and the steady states of the system can be found as
a function of T , p and D. The equations are solved numer-
ically by employing the fourth-order Runge-Kutta method.
The solutions and the corresponding phases are defined in
the following way: ferromagnetic phase (F), m1 	= m2,
m1 and m2 having the same signs; paramagnetic phase
(P), m1 = m2 = 0; antiferromagnetic phase (AF), where
m1 	= m2, m1 and m2 having different signs.

We present in Fig. 1, the phase diagram of the model
in the plane crystal-field intensity D versus competition
parameter p, for two selected values of temperature. For
these temperatures, the phase diagram displays three differ-
ent phases separated by different transition lines. For the
values of p in the range 1 ≥ p � 0.96, and D > −4.0J , the
phase diagram presents only a ferromagnetic phase (F). At
low temperatures, T = 0.1J in Fig. 1, the continuous line
changes into a first-order line for negative values of D. The
transition between the ferromagnetic (F) and paramagnetic
(P) phases exhibits a tricritical point. Increasing the tem-
perature beyond T = 0.262J the tricritical behavior disap-
pears. The area occupied by the ferromagnetic phase (F) in-
creases when the temperature decreases. On the other hand,
for small values of p, what corresponds to a large flow of
energy into the system, the phase diagram presents the anti-
ferromagnetic (AF) and paramagnetic (P) phases, which are
separated by a first-order transition line. For this model, this
transition line is almost independent of temperature.
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Figure 1. Phase diagram in the plane crystal-field D vs competi-
tion parameter p, for two selected temperatures, in the dynamic pair
approximation. The letters F, AF and P, denote ferromagnetic, an-
tiferromagnetic and paramagnetic phases, respectively. The solid
lines represent continuous phase transitions, and the dashed lines
are the first-order transition points. The temperatures are indicated
in the figure.

We also performed Monte Carlo simulations for this
model, in order to get a better understanding of the phase
transitions found from the pair approximation calculations.
We considered a square lattice of linear size L, with L rang-
ing from L = 16 to L = 128, and we applied periodic
boundary conditions. For each simulation run, the initial
states of the system were completely random. A new con-
figuration is generated by the following Markov process: for
selected values of the temperature T , crystal-field intensity
D, and the competition parameter p, we choose a spin at
random on the lattice, and we generate a random number ξ
between zero and one. If ξ ≤ p we considered the one-spin
flip process, according to the heat bath algorithm. On the
other hand, if ξ > p, then we consider the two-spin flip pro-
cess. In this case, we randomly select another spin, which
is a nearest neighbor of the initial spin, and then the state
of the system is changed only if energy increases. We dis-
carded the initial 5×104 MCS (Monte Carlo steps) until the
system enters in a stationary regime. Then, we used more
5 × 104 MCS to calculate the averages of the quantities of
interest. One MCS corresponds to L2 one- and two-spin flip
trials.

We calculated the sublattice magnetization per spin,

m1 = 1
N 〈∑i Si〉 and m2 = 1

N

〈∑
j σj

〉
. The transition

lines of the phase diagram were obtained from the total and
staggered magnetizations, defined as mF

L = 1
2 |(m1 + m2)|

and mAF
L = 1

2 |(m1−m2)|, respectively. We also calculated
the reduced fourth-order Binder cumulants associated with
these magnetizations. From the crossing point of the cu-
mulants for different lattice sizes we determined the critical
points of the model.

We also found the phase diagram of the model in the
plane crystal-field D versus competition parameter p from
the results of the simulations. Fig. 2 shows the phase dia-
gram of the model for two different values of temperature.
As in the pair approximation we obtain the same three dif-
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ferent phases observed in Fig. 1. However, in the Monte
Carlo simulations, all the transition lines are continuous,
and no tricritical point is observed. For large values of p
(0.95 ≤ p ≤ 1.0) and D ≥ −4J , Fig. 2 shows only a
ferromagnetic phase (F). The area occupied by this phase
also decreases for increasing values of the temperature. On
the other hand, the antiferromagnetic phase appears only for
very small values of p. In Fig. 2 we see that it is restricted to
0.0 ≤ p ≤ 0.06 region. Compared with the phase diagram
obtained in the context of the pair approximation, we note
that the paramagnetic phase (P) occupies a very large area.
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Figure 2. Phase diagram in the plane crystal-field D vs competition
parameter p, from Monte Carlo simulations, for two selected tem-
peratures, as indicated in the figure. The letters F, AF and P, denote
the ferromagnetic, antiferromagnetic and paramagnetic phases, re-
spectively. The lines joining the squares and the circles represent
continuous transition lines.
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