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We have the purpose of analyzing the effect of explicit diffusion processes in a predator-prey stochastic
lattice model. More precisely we wish to investigate the possible effects due to diffusion upon the thresholds
of coexistence of species, i. e., the possible changes in the transition between the active state and the absorbing
state devoid of predators. To accomplish this task we have performed time dependent simulations and dynamic
mean-field approximations. Our results indicate that the diffusive process can enhance the species coexistence.
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I. INTRODUCTION

Computational physics descriptions and the usual analysis
of numerical simulation data provided by the statistical me-
chanics can give worthy contributions to the study of pop-
ulation biology problems. A basic, but not trivial, issue of
population biology, is the one concerned to the dynamics of a
predator-prey system. This problem has been considered from
the theoretical point of view since Lotka who in 1920 [1], [2],
[3], followed by Volterra [4], has introduced the first model (to
be called here LV model) able to elucidate the main features
of species interactions and populational cycles in predator-
prey systems. After that, the LV model has been modified to
contemplate other important features of these systems and we
may say that most of the theoretical approaches presently used
to describe problems of the population biology have some ba-
sis on the LV model. Among those descriptions we point out
the stochastic lattice gas models approach [5], [6], which will
concern us in the present article. These models are able to
provide spatial patterns of species distribution which can be
coupled to local time oscillations as well as other important
features of predator-prey systems [7], [8], [9], [10].

Doubtlessly a mark in the understanding of predator-prey
interactions, and their coexistence in space distributed sys-
tems, is the experiment on predation performed by Huffaker in
1958 [11]. He has verified that an heterogeneous habitat can
be crucial to maintain the coexistence of species for a long pe-
riod of time. Experiments performed in homogeneous habitat
have shown that predators eat prey very quickly, prey get ex-
tinct and then predators die of starvation. These experimental
results have evidenced that the coexistence of species for a
long period of time can be directly related to a heterogeneous
spatial distribution of the individuals of each species. Partic-
ularly, this feature should be taken into account in the mod-
elling of predator-prey systems which population sizes can at-
tain very small values, or when populations loose contact and
become isolated during some period of time. That is, when
the species populations are spatially distributed.

Much of the theoretical developments to describe the rôle of
space in population biology problems were, in a certain way,

motivated by the Huffaker’s experiments. We detach two rel-
evant stochastic approaches which take into account the local-
ization of species individuals and their local interactions: (i)
the stochastic lattice gas models, also called interacting par-
ticle systems [7], [8]; (ii) the metapopulation approaches and
patch models [12], [13], [14], [15]. In the last decades, both
approaches have been largely used to analyze, at different lev-
els of description, the different features of population biology
problems. Several investigations have been developed in this
issue and here we just cite some of them [7]-[10], [12]-[41].

In the present article we are concerned on the effect of dif-
fusive processes in predator-prey systems described by the
stochastic lattice model introduced by Satulovsky and Tomé
[9]. However, before entering into the details of our stochas-
tic dynamic analysis, we will briefly expose, in what follows,
the main features of the LV model, as well as related models;
patch models and spatial models for predator-prey systems are
also exposed. This is not a review on theoretical approaches of
population biology, but a very basic, brief and simple expla-
nation of some of the features of some theoretical approaches.
Our purpose is just to clarify the issue treated in the present
article.

A. Lotka-Volterra model and related models

The definition and description of the dynamics of predator-
prey system consists in one of the fundamental problems of
the population biology. One considers two species, predator
and prey, sharing the same habitat. To understand the dynam-
ics of coexistence of both populations it is necessary to estab-
lish the main characteristics of their interaction. We depart
from the LV model for a predator-prey system which is de-
fined by a set of two ordinary differential equations for prey
size population, denoted by H, and predators size population,
denoted by P. This description is based on the law of mass
action and the differential equations can be written in the fol-
lowing form

dH
dt

= r1H − r2 H P, (1)
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dP
dt

= r2H P− r3 P, (2)

where r1,r2 and r3 are nonnegative constants related to the
processes considered in the LV model. The process of prolif-
eration of prey is proportional to the prey number, which is
expressed by the term (r1H) in Eq. (1). Thus, in the absence
of predators the prey population size increases exponentially
in time. This result comes from the assumption that there is
an unlimited amount of resources and space for prey prolifera-
tion. The predator-prey interaction, the most relevant and cru-
cial process, is expressed as the product of predators number
and the prey number (term (r2HP) in Eqs. (1) and (2)). Ac-
cording to this autocatalytic process, predators increase their
number just when consuming prey and there is just one prey
species available for them. Finally, predators size population
decreases according to a spontaneous process which occur at
rate r3. It is worth to note that it is implicitly assumed in the
LV model that predators and prey populations are very well
mixed in an homogeneous habitat. These are usual presup-
poses when one uses the law of mass action, as it was used to
derive all terms of Eqs. (1) and (2). In this case the predator-
prey system can be described at any instant of time t only by
their size populations, that is, by (H(t),P(t)).

The trivial solution of Eqs. (1) and (2) is unstable and the
non-trivial one is a center for which any perturbation around
is periodic. Once an initial condition is fixed we can say that
both population sizes oscillate in time with the same period,
out-of-phase and a peak in the prey number is always followed
by a peak in the predators number. These are relevant features
of the population cycles encountered in experiments on pre-
dation [11] and in nature. In this case, a famous example con-
sists on the long term data related to the population cycles of
the snowshoe hare and the lynx of the Canadian boreal forest
[43], [44], [45], [46], [47], [48], [49].

However, the LV model displays infinitely many periodic
orbits in the P−H phase plane and these are related to differ-
ent initial conditions [44]. In this respect the LV model fails
in describing biologic populations, since it is not expected that
a small change on the initial assumptions will lead to differ-
ent population cycles [48]. In order to answer for the stabil-
ity of a predator-prey system important modifications in the
LV model were performed. One of them consists in taking
into account the fact that there exists a maximum prey pop-
ulation size that the system can support since the amount of
food for prey proliferation is not unlimited. This feature can
be expressed by the consideration of a logistic term to describe
prey proliferation. So that the first term in Eq. (1) is replaced
by r1H(1−H/C), where C is a constant related to the maxi-
mum prey number, and the constant r1 is the prey reproduction
rate (in the absence of predators). The resulting modified LV
model predicts stable nontrivial solutions which are attained
by damped oscillations of the population sizes. Another rel-
evant modification of the LV model that has been considered
concerns to the response of predators to prey population size
changes, the so called functional responses f (H) [48]. One
consider the term related to predator-prey interaction in Eqs.
(1) and (2) written as (r2 f (H) P). In the original LV model
f (H) is linear; in general it is stated according to the biolog-

ical effect to be described. Interesting functional responses
where considered by Holling and Tanner [47]. Their models,
for specific sets of parameters, are able to predict species co-
existence which can be stable or related to population cycles.
These sets of parameters and the different models seem to de-
scribe qualitatively some predator-prey systems observed in
nature [50].

B. Patch models

A more sophisticated approach to describe the dynamics
of a predator-prey system can be attained considering patch
models and the metapopulation models approaches [13], [14].
This description was primordially considered by Levins in
1969 [42] to analyze a single species system whose individu-
als can proliferate and die at given rates. The main feature
captured in the Levins approach relies in the fact that it is
capable to recognize the necessity of taking into account the
space available for the species proliferation. In the metapopu-
lation approach it is considered that the population can be sub-
divided in subpopulations which live in interconnected habitat
patches. Instead of treating the dynamics of the entire popu-
lation sizes, one treats the dynamics of the fraction of patches
occupied by species individuals. The most simple patch for-
mulation, as stated by Levins, consists of an ordinary differ-
ential equation for the fraction of patches occupied by the
species individuals; this equations is build up on the basis of
the law of mass action. A natural extension of Levins ap-
proach for a two-species system, as a predator-prey system,
could be accomplished considering three types of patches:
empty patches, patches occupied by prey and patches occu-
pied by predators. The dynamics of such a model can be
stated as follows: prey can proliferate in empty patches with
a given rate a, predators can proliferate in prey patches at rate
b, and can die, leaving an empty patch, with a given rate c. In
this context a simple description, which takes into account the
LV model mechanism of interaction between the two species,
may be given by,

dx
dt

= ax(1− x− y)−bxy (3)

dy
dt

= bxy− cy, (4)

where x is the fraction of patches occupied by prey, y the frac-
tion of patches occupied by predators and (1− x− y) is the
fraction of empty patches. This set of equations can be re-
garded as a special case of a patch model analyzed by Hastings
[15]. We remark that, as we will see in section III, the same
equations are also provided by the simple mean-field approx-
imation of a lattice gas model for a predator-prey system. The
first term in Eq. (3), ax(1− x− y), is a logistic term which
takes into account the space available for prey proliferation.
The fraction of patches occupied by prey (predators) can be
seen as the density of prey (predators). The structure of the
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set of Eqs. (3) and (4) differ from the structure of the set of
Eqs. (1) and (2) just by the logistic term. This patch model
display nontrivial stable stationary solutions corresponding to
stable coexistence of prey and predators.

The metapopulation approach has been developed to in-
clude local stochastic dynamics and is nowadays largely used
to model ecological problems. One of the issues investigated
in the scope of this approach concerns to the dynamics of
species distributed over fragmented habitats. A relevant prob-
lem treated in this case concerns the relationship between the
fragmentation of the habitat and the conservation of species
and biodiversity [14], [29], [37].

C. Stochastic lattice models

Theoretical descriptions based on the assumptions of the
LV modified models, as the ones above described, can be ad-
equate if we want to describe the dynamics of species popu-
lations which are mixed and dispersed over an homogeneous
space. In this case the descriptive level of the population dy-
namic problem is such that the spatial structure is not relevant.
However, under certain circumstances, one needs a theoretical
approach which takes into account the spatial structure of the
habitat and the localization of the individuals of each species.
So, we need to establish the level of description needed and
desired to describe a given population biology problem. This
problem has been very well placed by Durrett and Levin [7].
They have treated the dynamics of a biological population
problem by considering different levels of description and,
consequently, different theoretical approaches.

That study gives particular attention to the approach based
on stochastic lattice gas models, also called interacting par-
ticle systems [5, 6], which has been largely exploited, in the
last years. A multiplicity of works have evidenced the im-
portance of spatial structured models to describe ecological
problems [7], [8]. The approach of the stochastic lattice gas
models is based on Markovian processes defined on discrete
spaces, which are able to take into account the localization of
discrete individuals of a given population. Such a description
allows us to treat the important features for the determination
of the thresholds of species coexistence, and spatial patterns of
distribution of the species individuals, by considering simple
models [10], [27], [32]. Usually the spatial stochastic struc-
tured models are studied by means of computational simula-
tions and dynamic mean-field approximations.

One of the first systematic statistical mechanics analysis of
a very simple stochastic lattice model for a predator-prey sys-
tem was performed by Satulovsky and Tomé in 1994 [9]. The
model, to be called ST model, is able to exhibit local time os-
cillations of species populations and stable coexistence. Other
deeper investigations on this model and similar models fol-
lowed [10], [27], [28], [34], [38]. The ST model has a phase
diagram displaying an active phase, where there is species
coexistence with local time oscillations and coexistence with
stationary densities; it also exhibits an absorbing phase which
correspond to the extinction of one of the species. A version

of the ST model with synchronous updating, a PCA, was con-
sidered by de Carvalho, Tomé and Arashiro [10, 31, 33, 38].
In this case it has been shown [38] that the whole transition
line between the active and absorbing states is a line of criti-
cal points which belongs in the directed percolation universal-
ity class but one point belonging in the dynamic percolation
universality class [16].

It is worth to note that mean-field approaches for spatial
models, as the ST model [9] and its synchronous version [40]
are able to provide species coexistence with self-sustained
coupled time oscillations which are attained from a regime of
stable coexistence by a Hopf bifurcation. The oscillations are
stable against any perturbation on the initial conditions and
they have a very well defined amplitude and period. The lat-
ter is the same for the prey density time series and predators
density time series, and an abundance of prey is always fol-
lowed by an abundance of predators. However, if the spatial
structure of these models is explicitly considered, for exam-
ple, when one performs Monte Carlo simulations on square
lattices, it can be verified that the amplitude of oscillations
decays as the system size increases; and, it vanishes in the
thermodynamic limit [9], [33]. Therefore, oscillations are not
globally synchronized, but remain synchronized in finite and
small regions of the space; these are called local oscillations
and have the property of being coupled to heterogeneous and
interesting spatial patterns of species distribution.

The same behavior is observed for other spatial models [8]:
coexistence with time oscillations resulting from Hopf bifur-
cations provided by mean-field approaches, and local oscil-
lations with pattern formation when the spatial structure of
the model is indeed considered. From these results we could
infer that population cycles observed in nature and in experi-
ments may be synchronized at subregions of the habitat. How-
ever, we must be careful with these results, since, usually, the
predator-prey lattice models are still to crude to be directly
compared with data obtained from experiments and from col-
lected data for population cycles in nature. We can drawn
some analogies and try to capture the fundamental proper-
ties of prey-predator systems. For example, the ST model
[9], exhibits for a given range of the model parameters, pro-
nounceable predator and prey oscillations [10] which seem
to be qualitatively similar to the hare-linx population cycles.
However, until now, it was not included in this model the in-
herent features, as intrinsic population growth rates, which al-
lows us to make direct relationships between the theoretical
description and the observed population cycles.

D. Scope of this article

In the present paper we focus on the dynamics of a predator-
prey system and analyze the relevance of modelling the ex-
plicit movement of individuals. We depart from the stochas-
tic lattice model for a predator-prey system [9, 25], the ST
model, and include local stochastic processes of diffusion.
Our analysis is performed by means of time dependent sim-
ulations [5, 51] which is one of the appropriated simulation
techniques to investigate nonequilibrium phase transitions to
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an absorbing state. We also perform mean-field approxima-
tions. In section II we define the predator-prey stochastic
model with diffusion. In section III we analyze the model
by means of simple and pair mean-field approximations. In
section IV we show our computational simulation results and
in section V we present a discussion of our results.

II. PREDATOR-PREY STOCHASTIC LATTICE MODEL
WITH DIFFUSION

We model a predator-prey system by a Markovian stochas-
tic dynamics defined in a discrete space where individuals of
each species are localized. The dynamics is asynchronous
and comprehends a set of subprocesses which mimic the re-
action processes of birth, death and predation and the explicit
movement of individuals of each species by diffusive local
processes.

We consider a regular lattice which represents the habitat
where individuals can survive and interact with each other.
For each site i on the lattice, i = 1,2, ...,N, we associate a
stochastic discrete variable ηi which can take the values: 1,
if site i is occupied by a prey individual; 2, if site i is occu-
pied by a predator and 0, if site i is empty. Each site can be
occupied by at most one individual. The stochastic dynam-
ics is defined over the configurational space spanned by the
stochastic vector, η = (η1,η2, . . . ,ηN), the microscopic state.
The time evolution of the probability P(η, t) associated to the
stochastic vector η at time t is given by the master equation,

d
d

P(η, t) = ∑
η′

{
W (η|η′)P(η′, t)−W (η|η′)P(η′, t)

}
, (5)

where W (η|η′) = w(η|η′)/τ is the conditional transition rate,
from η′ = (η′

1,η
′
2, . . . ,η

′
N) to η, and w(η|η′) is defined by the

expression,

w(η|η′) = d wdiff(η|η′)+(1−d) wreact(η|η′), (6)

where d is the probability of diffusion, wdiff(η|η′) denotes the
conditional probability transition associated to the diffusive
processes and wreact(η|η′) denotes the conditional probability
transition associated to the reactive processes. In what follows
we define each of these processes.

i) Diffusion. The possible diffusion processes are:

X +Z � Z +X ,

Y +Z � Z +Y,

X +Y � Y +X ,

where X denotes prey (ηi = 1), Y denotes predators (ηi = 2)
and Z denotes a vacant site (ηi = 0), that is, food supply for
prey and therefore a source for prey proliferation. We chose
at random a pair of nearest neighbors sites i and j. After that
we exchange the states of these two sites with probability d.
We define the transition probability associated to this process,

which was denoted in expression (6) by wdiff(η|η′), as fol-
lows:

wdiff(10|01) = δ(ηi,1)δ(η j,0)+δ(ηi,0)δ(η j,1), (7)

which is related to diffusion of prey in empty sites;

wdiff(12|21) = δ(ηi,1)δ(η j,2)+δ(ηi,2)δ(η j,1), (8)

which is related to diffusion of prey between prey and preda-
tors;

wdiff(20|02) = δ(ηi,2)δ(η j,0)+δ(ηi,0)δ(η j,2), (9)

which is related to diffusion of predators in empty sites.
ii) Reactions. The possible reaction processes are

X +Z → X +X

X +Y → Y +Y

Y → Z

and the cyclic process

X → Y → Z → X

for the local reactions are always observed.
At each time step we choose a site i at random and it is

updated according to the following set of local rules:
(a) Prey birth. If site i is empty then it can be occupied by

a prey and the transition probability per site associated is

wreact(1|0) = a δ(ηi,0)
1
z ∑

j
δ(η j,1), (10)

where the summation is over the nearest neighbor of site i, a is
a parameter related to the prey birth probability, z is the coor-
dination number of lattice, δ(x,y) denotes here the Kronecker
delta.

(b) Predation and predators birth. The process of predation
is accompanied by the instantaneous death of prey and birth
of predator. If the site i is occupied by prey then in the next
instant of time, with probability

wreact(2|1) = b δ(ηi,1)
1
z ∑

j
δ(η j,2), (11)

where b is a parameter related to the predation probability, site
i will be occupied by a predator;

(c) Death of predators. The third reactive process is related
to the death of predators, which happens spontaneously, with
probability

wreact(0|2) = c δ(ηi,2), (12)

where c is a parameter related to the predators death.
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FIG. 1: Phase diagram in the plane c versus d, obtained from pair
mean-field (upper curve) approximation and from numerical simula-
tions (lower curve), where c is the predator death probability and d
is the diffusion probability. The probability a of prey birth and the
probability b of predation are equal, a = b = 1− c. The full circle
corresponds to the transition point given by the simple mean-field
approximation.

III. DYNAMIC MEAN-FIELD APPROXIMATION

We analyze the model by means of two levels of mean-field
approximation: the simple (SMF) and pair (PMF) approxima-
tion [39, 52]. In the SMF, the probability of a cluster of sites
is approximated by a product of one-site probabilities. In this
case it suffices to consider the time evolution for the density
of prey x = P(1) and the density of predator y = P(2). The
time evolution equations, obtained from the master equation,
assuming that space is homogeneous and isotropic, are given
by

dx
dt

= ax(1− x− y)−bxy (13)

and

dy
dt

= bxy− cy (14)

The solution of these equations gives a continuous phase tran-
sition from an active state (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) to a prey
absorbing state (x = 1, y = 0) occurring at b = c. Here we
are considering only the case a = b which implies that the
transition occurs at cSMF

crit = 1/3 [9, 25]. We point out that
this approximation is not able to take into account explicitly
the diffusion process so the resulting transition line does not
depend on d. We note that equations (13) and (14) have the
same form of equations (3) and (4) which were devised under
the assumptions of a patch model.

PMF is the first approximation that is able to shown prop-
erties that depends explicitly on the diffusion. In this approxi-
mation correlations of higher order are written in terms of one-
site and two-site probabilities. Assuming again that space is
homogeneous and isotropic it suffices to use the two densities
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FIG. 2: Log-log plot of the time evolution of the mean number of
predators 〈N〉. The figure shows the behavior of this quantity for
a = b, d = 0.2 and for five values of c: 0.2348, 0.2350, 0.2354,
0.2356 and 0.2358, from top to bottom.

x = P(1) and y = P(2) and three nearest neighbor pair corre-
lations u = P(10), v = P(12) and w = P(20). The time evo-
lution equations for these variables are too cumbersome and
will not be written down. These equations are integrated nu-
merically by repeated iterations to get the stationary solutions.
Figure 1 shows the transition line in the space c versus d for
the case a = b. We see that as one increases the value of dif-
fusion probability d the transition from the active (where the
species coexistence takes place) to the absorbing state occurs
at higher values of c. That is, the diffusion process enhances
the coexistence of species. We see that the transition line ap-
proaches the simple mean-field value, c = 1/3, for sufficiently
large diffusion, d = 1.

IV. SIMULATIONAL RESULTS

The simulation procedure is carried out as follows. At each
time step we choose a random number ζ homogeneously dis-
tributed between 0 and 1. If ζ < d, the diffusion process is
carried out. Otherwise the reactions of birth, death and preda-
tion are realized. That is, the diffusion , described by Eqs.
(7), (8) and (9), occur with probability d and the reaction
processes (10), (11) and (12) occur with probabilities (1−d)a,
(1−d)b and 1−d)c, respectively. We are also assuming that
a+b+ c = 1.

We have performed time dependent simulations [5, 51] for
the present model as follows. We have considered a regular
square lattice and an initial condition where all sites of the lat-
tice are completely covered by prey with the exception of the
origin of the lattice which is occupied by one predator. With
a set of samples we have analyzed some of the relevant quan-
tities for the determination of the transition point. With this
purpose we have studied the temporal behavior of the mean
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FIG. 3: Log-log plot of the time evolution of the survival probability
P. The figure shows the behavior of this quantity for a = b, d =
0.2 and for five values of c: 0.2348, 0.2350, 0.2354, 0.2356 and
0.2358, from top to bottom.

number of predators 〈N〉, the survival probability P, i.e. the
probability of having at least one predator in the lattice at time
t. We also have analyzed the mean-square distance of spread-
ing of activity from the origin, 〈R2〉, as a function of time.
Each run is initiated by randomly chosen one site and them
the rules defined in Eqs. (6)-(12) are applied. The updating is
asynchronous and we consider lattice sizes sufficiently large
so that predators do not reach the borders of the lattice during
the simulation time.

According to the scaling laws for time dependent simula-
tions [51] at criticality the following asymptotic behaviors are
expected,

〈N〉 ∼ tη, P ∼ t−δ, 〈R2〉 ∼ tz, (15)

where η, δ and z are dynamic critical exponents.
Figures 2, 3 and 4 show the behavior of 〈N〉, P(t) and 〈R2〉

as a function of time for a given set of parameters a, b and
d = 0.2 and different values of c near criticality. According to
the scaling relations (15) a straight line fitted to the data points
in the log-log plot of these quantities allow us to obtain the lo-
calization of the critical point. Using the parametrization in-
troduced in [9], [10], we can express the parameters a, b and c,
as a = (1−c)/2− p,b = (1−c)/2+ p, with −1/2 ≤ p ≤ 1/2
and 0 ≤ c ≤ 1−2|p|. For p = 0.0 we estimate that the transi-
tion from the active state to the absorbing state, and diffusion
probability d = 0.2, occurs at c1

crit = 0.2354. For the same
set of parameters, but without explicit diffusion (parameter
d = 0.0), it has been obtained c0

crit = 0.1816(1) [9].
The exponent values were determined performing 100 sim-

ulations, each one with 5000 independent runs. Each simula-
tion contributes with a value of the exponents in a histogram.
The exponent values are estimated as the mean value of the
associated distribution and the statistical errors are achieved

1000

t

1000

<
R

²>

FIG. 4: Log-log plot of the time evolution of the mean square dis-
tance of spreading of predators 〈R2〉. The figure shows the behav-
ior of this quantity for a = b, d = 0.2 and for five values of c:
0.2348, 0.2350, 0.2354, 0.2356 and 0.2358, from top to bottom.

through the standard deviations. As long as the histogram dis-
tribution is compatible with a Gaussian distribution, the use
of this method can provide lower statistical errors with more
simulations. If the histograms become incompatible with a
Gaussian distribution then the errors can not be evaluated in
such a way. In this case, the relevant error is the one associated
to the critical value of c.

Considering this procedure we get the following esti-
mates for the values of the dynamic critical exponents: η =
0.236(5), δ = 0.441(8) and z = 1.129(8). Then, within the
statistical errors, the values for the exponents η, δ and z, seem
to be in agreement with the ones of the directed percolation
universality class [5].

Finally, we observe that our numerical results show that, for
the set of parameters considered here, the threshold of coexis-
tence of species increases when the explicit diffusion process
is considered.

V. DISCUSSION

We have performed a simulational analysis and also a
mean-field analysis of a predator-prey stochastic structured
model with diffusive process. The diffusion mimics the ex-
plicit movement of individuals in the habitat. We have con-
sidered that diffusion is allowed to occur, with a given prob-
ability, and for any pair of neighboring sites which are in
different states. We have focused on the effect of these dif-
fusive processes in the threshold of coexistence of species.
For the set of parameters considered here our results indicate
that local diffusion between any pair of neighboring elements
(prey, predators and vacant sites) with the same probability,
increases the threshold of species coexistence in the predator-
prey stochastic lattice model. Our simulational results also
indicate that, for the set of parameters considered, there is no
modification in the critical behavior associated to the transi-
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tion from the active state (coexistence of species) to the prey
absorbing state. The phase transition is continuous and seem
to belong to the directed percolation universality class as it
occurs for null diffusion.

It is worth noticing that the enlargement of the active phase
is a consequence of the type of diffusive processes we have
considered. The fact that prey can move over the lattice pro-
motes their birth in empty sites and the meeting with preda-
tors. This gives place to the possible predation and birth of
predators. Then the number of predators is increased even
when their probability of death c is considerably high. The
movement of prey promotes the mixing of the space. For high
values of diffusion the critical line given by the pair mean-field
approximation approaches very quickly the simple mean-field

result where the transition from the active state to the prey
absorbing state occurs at cSMF

crit = 1/3 for a = b (the set of pa-
rameters considered here).

In future work we plan to obtain the whole phase diagram of
the model, as well as to analyze the possible types of species
coexistence, for different values of the diffusion probability
by means of extensive numerical simulations.
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da Fı́sica Estatı́stica no Brasil (Editora Livraria da Fı́sica, São
Paulo, 2003), p. 128.
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