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We present calculations of the conductance in semiconductor quasi-one-dimensional systems using
the Landauer formalism. We consider the e�ects on the transport properties inside semiconductor
quantum waveguides of di�erent shapes when a defect is located either in the wire region or in the
quasi-two-dimensional region. We observe changes on the plateau's threshold when the defect is
placed inside the wire and lowering of the conductance plateaus themselves below the conductance
quantum G0=2e

2/h when the defect is outside the wire.

Introduction

The �rst experimental evidences of conductance

quantization through one-dimensional (1D) quantum
systems were made by van Wees et al. [1] and Wharam

et al. [2], both in 1988[3]. These experiments were

conducted on quantum point contacts (QPC) made

from doped semiconductor heterostructures which form

a quasi-two-dimensional electron gas (2DEG). The sys-
tem is in the Electronic Quantum Limit and from now

on we assume it to be a pure 2DEG that is, we neglect

the scattering with the higher heterostructure levels.

The electron 
ow through the point contact is con-
strained to 1D by by means of a negative potential bias

applied on the metal plates of the contact.

The fabrication of these structures is made by epi-

taxial growth. In the case of this study, we considered

GaAs-AlGaAs heterostructures with a layer of modu-
lated n-doped AlGaAs. In general some of the Alu-

minum atoms will defuse through the interface of the

junction acting as scattering centers for the electrons.

The �rst theoretical considerations concerning de-

fects on QPC's were made by Nixon et al.[4], who con-
sidered random distribution of defects along the struc-

ture. Recently, Topinka et al.[5], recorded electron 
ow

through a QPC under the in
uence of an AFM tip,

placed outside the point contact and functioning as a
probe for the electron wavefunction.

Our aim was to study theoretically the e�ects that

the existence of these scattering centres might have

on the conductance plateaus on two di�erent shapes

of quantum waveguides. The �rst one being a QPC
(one constriction) and the second one an open quantum

dot (OQD) structure (two narrow constrictions and one

wide constriction)(see Fig.1).

Theoretical Modelling

Figure 1. Schematic illustration of the the two structures that were studied and their con�ning potential 1a) QPC 1b) OQD.

In order to simulate the two structures which were
considered we used the voltage pro�le schematized on
Fig. 1a. and 1b. within the envelope function and ef-

fective mass approximations [6]. The eigenstates of the
continuum of the electron bath were considered to be
discretized by the solutions of a quantum well with in�-
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nite potential barriers and length much greater than the
dimension of the constriction. The constricted regions
were depicted as square wells with constant potential
barrier V0.

The solutions inside the constricted regions were
found by projecting the basis of the electron bath
(jnx >) onto the Hamiltonian of the system. There-
fore, we write the wavefunctions:

j fIg
m >=

NX
n

amnjnx > j1z > (1)

the amn's are determined by projecting the Hamilto-
nian

Hnarrow = Te + V0Y

�
jxj �

Lx

2

�
(2)

for the narrow constrictions on Fig. 1a. and 1b. and

Hwide = Te + V0Y

�
x+

Lx

2

�
+ V0Y [x� (Lx2 + Lwx)]

(3)
for the wide constriction on Fig. 1b into Eq. 1 and
diagonalizing the eigenvalue problem.

The defect is simulated by a positive square bar-
rier of height Vdef placed at di�erent regions of the
waveguide. The contribution to the Hamiltonian
is Vdef

�
Y
�
x�

�
xD � LD

2

��
� Y

�
x�

�
xD + LD

2

���
,

added to either the narrow or the wide constriction
Hamiltonian depending on the position of the defect.

The electrons were considered to be injected with
an energy E, which must be conserved along the struc-
ture. Therefore, the wavevector for each region is given
by:

k
fIg
yi =

r
2m�

~2

�
E � �Ii

�
(4)

where �Ii is the energy of the i-th level of the well in
x-direction for the I-th region.

Hence, the total wavefuntion can be writen, for each
region:

j	 >1

n0= eik
1

n0
yjn0x > +

NX
n

rn0ne
�ik1nyjnx > (5)

j	 >
fIg
n0 =

NX
j

�
�n0je

ik
fIg
j + �n0je

�ik
fIg
j

�
j 

fIg
j > (6)

j	 >3

n0=

NX
n

tn0ne
ik3nyjnx > (7)

By imposing the condition of continuity of both the
wavefunction and the 
ux at each interface, we obtain
a system of non-homogeneous linear equations that can
be solved for the r's and t's (the re
ection and trans-
mission coeÆcients). The conductance can then be cal-
culated by the Landauer formula[7]:

G (E) =
X
n0

X
i

���� k
3

i

k1n0

���� jtij2 (8)

This Procedure is know as Mode Matching and has
been widely used for this kind of problem [8,9].

Results and Discussion

On our calculations we considered a square defect
10�Ax10�A and 600meV high (the same potencial esti-
mated for the depleted region that de�ne the struc-
ture). This is higher than a structural defect for which
Vdef v300meV, but simulates a depleted area induced
by an electrostatic contact. The e�ective mass was con-
sidered to be 0:067m0. For the case with one constric-
tion, the contact was taken to be 500�A (Lx)wide 700�A
long. For the case of two constrictions the wire is as
wide as the �rst one and each constriction is 500�A long.
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Figure 2. a) Conductance as a function of initial electron
energy with the defect placed on x=0�A. b) Projection on the
xy plane of the Electron Density inside the Point Contact
for an initial energy of 3meV.

The conductance curves shown on Fig. 2 were made
by placing the defect inside the wire on two di�erent
places along the y-axis for the QPC case. We can ob-
serve that the defect shifts the 1st plateau threshold
to higher energies. We can also see that the second
plateau remains unchanged.

On Fig. 3 the defect is kept at x = 130�Aand is
made to vary in the y direction. It is evident that the
opposite behavior of Fig. 2 now occurs.

The interpretation of this phenomenon relies on the
electron densities depicted as density plots on Fig. 2
and 3. The low energy wavefunction (�rst conduction
mode) presents a high electron density closer to the y-

axis, so the e�ect of the defect on the electrons will
be higher when x � 0. On the other hand, when the
energy is 11meV, the wavefunction has a knot and the
charge density is concentrated parallel to the y-axis. In
that case the electrons are not in
uenced by the defect,
when the latter is placed at x = 0.
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Figure 3. a) Conductance as a function of initial electron
energy with the defect placed on x=130�A. b) Projection on
the xy-plane of the Electron Density inside Point Contact
for an initial energy of 11 meV.

The opposite happens for the second plateau, when
we have a combined e�ect of the two �rst eigenstates of
the constriction. In this case, the defect displaced from
the wire centre shows a stronger in
uence on the sec-
ond plateau as a consequence of the second eigenstate
wavefunction spatial distribution.
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Fig. 4. Conductance as a function of initial electron energy
with the defect placed outside the wire (at y=800 �A).

When we place the defect outside the QPC, as seen
in Fig. 4, there is no energy threshold shift. How-
ever, the conductance plateaus appear below G0 due to
the scattering of the electrons by the defect, preventing
some of them to reach the drain. The in
uence of the
defect's position has the same electron density interpre-
tation that was given to the phenomena in Fig. 2 and 3.

From the analysis of the conductance curves for the
OQD we can point out in Fig. 5 the bound state that
names this structure[10]. The state signature is a peak
on the conductance due to resonant tunnelling of the
electrons through the quantum dot ground state. The
greater con�nement on the x direction in the narrow
constriction (outside the dot) gives rise to a virtual con-
�ning potential in the y direction on both sides of the
dot (wider constriction).

Figure 5. Conductance as a function of initial electron en-
ergy with the defect placed at x=0�Afor the for the OQD
case.

We can also see a Fano-resonance-type curve which
is due to the repulsion of the second energy level of
the OQD and the �rst band of the conducting channel.
Hence, we have the formation of a band gap in the con-
ductance showing the destructive interference between
the channels.

By placing the defect inside the dot there is a raise
in the energy along the x direction, thus blue-shifting
the bound state and the Fano-resonance. The conduc-
tance plateau a slight decrease. Relying on what was
said about Fig. 4, we can imagine that the defect acts
somehow as if it were on the 2DEG and the lowering
of the conductance plateaus is due to the scattering on
the defect and on the �rst two interfaces only.

In summary, we have seen that the existence of de-
fects has an important role on ballistic transport. In
general, the defects will appear in far greater num-
ber and randomly distributed throughout the structure
and their main e�ect will be to lower the conductance
plateaus.
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