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We employ QCD sum rules to calculate theJ/ψDD∗ form factors and coupling constant by studying the three-
point J/ψD∗D correlation function. We find that the momentum dependence of the form factor depends on
the off-shell meson. We get a value for the coupling which is in agreement with estimates based on constituent
quark model.

Hadrons are composites of the underlying quarks whose
effective fields describe point-like physics only when all the
interacting particles are on mass-shell. When at least one
of the particles in a vertex is off-shell, the finite size effects
of the hadrons become important. Therefore, the knowledge
of the form factors in hadronic vertices is of crucial impor-
tance to estimate any hadronic amplitude using hadronic de-
grees of freedom. This work is devoted to the study of the
J/ψD∗D form factor, which is important, for instance, in
the evaluation of the dissociation cross section ofJ/ψ by
pions andρ mesons using effective Lagrangians [1, 2, 3].
Since a decrease ofJ/ψ production in heavy ions collisions
might signal the formation of a quark-gluon plasma (QGP)
[4], a precise evaluation of the background, i.e., conven-
tional J/ψ absorption by co-moving pions andρ mesons,
is of fundamental importance.

The J/ψD∗D coupling has been studied by some au-
thors using different approaches: vector meson dominance
model plus relativistic potential model [1] and constituent
quark meson model [5]. Unfortunately, the numerical re-
sults from these calculations may differ by almost a factor
two. The relevance of this difference can not be underesti-
mated since the cross section is proportional to the square of
the coupling constants. In ref. [3] it was shown that the use
of different coupling constants and form factors can lead to
cross sections that differ by more than one order of magni-
tude, and that can even have a different behavior as a func-
tion of

√
s.

In previous works we have used the QCD sum rules
(QCDSR) to study theD∗Dπ [6, 7], DDρ [8] andJ/ψDD
[9] form factors, considering two different mesons off mass-
shell. In these works the QCDSR results for the form fac-
tors were parametrized by analytical forms such that the
respective extrapolations to the off-shell meson poles pro-
vided consistent values for the corresponding coupling con-
stant. In this work we use the QCDSR approach to evaluate
theJ/ψD∗D form factors and use the same procedure de-
scribed above to estimate theJ/ψD∗D coupling constant.

The three-point function associated with aH1H2H3 ver-
tex (see Fig. 1), whereH1 andH3 are the incoming and out-
going external mesons respectively andH2 is the off-shell
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Figure 1. Diagram representing theH1(p)H2(q)H3(p
′) vertex.

meson, is given by

Γµν(p, p′) =
∫

d4x d4y eip′.x e−i(p′−p).y

× 〈0|T{j3(x)j†2(y)j†1(0)}|0〉 , (1)

whereji is the interpolating field forHi. ForJ/ψ, D∗ and
D mesons the interpolating fields are respectivelyj

(ψ)
µ =

c̄γµc, j
(D∗)
ν = q̄γνc andj(D) = iq̄γ5c with q andc being a

light quark and the charm quark fields.
The phenomenological side of the vertex function,

Γ(p, p′), is obtained by the consideration ofH1 andH3 state
contribution to the matrix element in Eq. (1):

Γ(phen)
µν (p, p′) =

1
p2 −m2

1

1
p′2 −m2

3

〈0|j3|H3(p′)〉

×〈H3(p′)|j†2|H1(p)〉〈H1(p)|j†1|0〉+ h. r. , (2)

where h. r. means higher resonances.
The matrix element of the currentj2 defines the vertex

functionVλλ′(p, p′):

〈H3(p′)|j†2|H1(p)〉 = 〈H2(q)|j†2|0〉
Vλλ′(p, p′)
q2 −m2

2

, (3)

whereq = p′−p. Callingp1, p2 andp3 the four momentum
of J/ψ, D∗ andD respectively one has

V λλ′(p1, p2, p3) = gψDD∗(q2)εαβγδελ
α(p1)ελ′

γ (p2)p3βp2δ .
(4)
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The vacuum to meson transition amplitudes appearing in
Eqs. (2) and (3) are given in terms of the corresponding me-
son decay constantsfHi by

〈0|j(D)|D〉 =
m2

DfD

mc
, (5)

and
〈V (p, ε)|j†α|0〉 = mV fV ε∗α , (6)

for the vector mesonV = J/ψ or V = D∗. Therefore,
using Eqs. (3), (4), (5) and (6) in Eq. (2) we get

Γ(phen)
µν (p, p′) = C

gψDD∗(q2)εαβµνpαp′β

(q2 −m2
2)(p2 −m2

1)(p′
2 −m2

3)
+ h. r. , (7)

where

C =
m2

DmD∗mψfDfD∗fψ

mc
. (8)

The contribution of higher resonances and continuum in
Eq. (7) will be taken into account as usual in the standard
form of ref. [10].

The QCD side, or theoretical side, of the vertex func-
tion is evaluated by performing Wilson’s operator product

expansion (OPE) of the operator in Eq. (1). WritingΓµν in
terms of the invariant amplitude:

Γµν(p, p′) = Λ(p2, p′2, q2)εαβµνpαp′β , (9)

we can write a double dispersion relation forΛ, over the
virtualitiesp2 andp′2 holdingQ2 = −q2 fixed:

Λ(p2, p′2, Q2) = − 1
4π2

∫
dsdu

ρ(s, u,Q2)
(s− p2)(u− p′2)

,

(10)
where ρ(s, u, Q2) equals the double discontinuity of the
amplitudeΛ(p2, p′2, Q2) on the cutssmin ≤ s ≤ ∞,
m2

c ≤ u ≤ ∞, with smin = 4m2
c in the case of off-shell

D∗ or D and smin = m2
c in the case of off-shellJ/ψ.

We consider diagrams up to dimension three which include
the perturbative diagram and the quark condensate. To im-
prove the matching between the two sides of the sum rules,
we perform a double Borel transformation in both variables
P 2 = −p2 → M2 and P ′2 = −p′2 → M ′2 We get
one sum rule for each meson considered off-shell. Calling
gM

ψDD∗(q2) the ψDD∗ form factor for the off-shell meson
M , we get the following sum rules:

c

C
g
(D)
ψDD∗(t)

(t−m2
D)

e−
m2

D∗
M′2 e−

m2
ψ

M2 =
1

4π2

∫ s0

4m2

∫ u0

umin

dsduρ(D)(u, s, t)e−
s

M2 e−
u

M′2 Θ(umax − u), (11)

C
g
(D∗)
ψDD∗(t)

(t−m2
D∗)

e−
m2

D
M′2 e−

m2
ψ

M2 =
1

4π2

∫ s0

4m2

∫ u0

umin

dsduρ(D∗)(u, s, t)e−
s

M2 e−
u

M′2 Θ(umax − u), (12)

and

C
g
(J/ψ)
ψDD∗(t)

(t−m2
ψ)

e−
m2

D
M′2 e−

m2
D∗

M2 =
1

4π2

∫ s0

m2

∫ u0

umin

dsduρ(J/ψ)(u, s, t)e−
s

M2 e−
u

M′2 Θ(umax − u), (13)

d

with t = q2,

ρ(D)(u, s, t) = ρ(D∗)(u, s, t) =
3mc√

λ

(
1 +

sλ2

λ

)
, (14)

λ = (u + s− t)2 − 4us, λ2 = u + t− s + 2m2
c and

c

umax
min =

1
2m2

c

[
−st + m2

c(s + 2t)±
√

s(s− 4m2
c)(t−m2

c)2
]
, (15)

in the case of off-shellD or D∗. In the case of an off-shellJ/ψ we get:

ρ(J/ψ)(u, s, t) =
3mc

λ3/2

[
(u− s)2 − t(u + s− 2m2

c)
]− 4π2 < q̄q > δ(s−m2

c)δ(u−m2
c), (16)

and

umax
min =

1
2m2

c

[
−st + m2

c(2s + t)±
√

t(t− 4m2
c)(s−m2

c)2
]
. (17)

d
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In the Eqs. (11), (12) and (13) we have transferred to the
QCD side the higher resonances contributions through the
introduction of the continuum thresholdss0 andu0.
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Figure 2. M2 dependence ofg(D)

J/ψDD∗(Q
2) for Q2 =

−0.21 GeV2 andQ2 = 5.0 GeV2.

The parameter values used in all calculations aremc =
1.3 GeV, mD = 1.87 GeV, mD∗ = 2.01 GeV, mψ =
3.1 GeV,fD = (170± 10) MeV, fD∗ = (240± 20) MeV,
fJ/ψ = (405 ± 15) MeV, 〈qq〉 = −(0.23)3 GeV3. The
continuum thresholds for the sum rules ares0 = (m1+∆s)2
andu0 = (m3 + ∆u)2 with ∆s = ∆u = 0.5 GeV.

We first discuss theJ/ψDD∗ form factor with an off-
shell D meson. In Fig. 2 we show the behavior of the
form factor g(D)

J/ψDD∗(Q2) at Q2 = 5.0 GeV2 andQ2 =
−0.21 GeV2, as a function of the Borel massM2 using

M ′2 = M2 m2
D∗

m2
ψ

. We can see that the QCDSR results are

rather stable in the interval7 ≤ M2 ≤ 11 GeV2. In Fig. 3
we showg

(D)
J/ψDD∗(Q2 = −0.21 GeV2) as a function ofM2

andM ′2.
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We first discuss the J/ψDD∗ form factor with an off-

shell D meson. In Fig. 2 we show the behavior of the
form factor g

(D)
J/ψDD∗

(Q2) at Q2 = 5.0 GeV2 and Q2 =

−0.21 GeV2, as a function of the Borel mass M2 using

M ′2 = M2 m2

D∗

m2

ψ

. We can see that the QCDSR results are

rather stable in the interval 7 ≤ M2 ≤ 11 GeV2. In Fig. 3
we show g

(D)
J/ψDD∗

(Q2 = −0.21 GeV2) as a function of M2

and M ′2.

Figure 3. M2 and M ′2 dependence of g
(D)
ψDD∗(Q2 =

−0.21 GeV2) .

From Fig. 3 we see that the stability is still good even
considering the two independent Borel parameters. The
same kind of stability is obtained for other values of Q2 and
for the other two form factors.

Fixing M2 = m2
1 and M ′2 = m2

3 we show, in Fig. 4,
the momentum dependence of the QCDSR results for the
form factors g

(D)
ψDD∗ , g

(D∗)
ψDD∗ and g

(J/ψ)
ψDD∗ through the circles,

squares and triangles respectively. Since the present appro-
ach cannot be used at Q2 << 0, to extract the gψDD∗ cou-
pling from the form factors we need to extrapolate the curve
to Q2 = −m2

2: the mass of the off-shell meson.

−10 −8 −6 −4 −2 0 2 4 6
Q

2
(GeV

2
)

1

2

3

4

5

6

7

8

−m
2
ψ

g
ψ

D
D

*(
G

eV
−

1 )

−m2

D
−m2

D*

Figure 4. Momentum dependence of the J/ψDD∗ form factors.
The dotted, dashed and solid lines give the parameterization of the
QCDSR results (triangles, squares and circles) through Eqs. (18),
(19) and (20) respectively.

In order to do this extrapolation we fit the QCDSR re-
sults with an analytical expression. We tried to fit our re-
sults with a mono-pole form, since this is very often used
for form factors, but the fit was only good for g

(J/ψ)
ψDD∗ . For

g
(D)
ψDD∗ and g

(D∗)
ψDD∗ we obtained good fits using a Gaussian

form. We get:

g
(J/ψ)
ψDD∗(Q

2) =
199.2

Q2 + 56.8
, (18)

g
(D∗)
ψDD∗(Q

2) = 19.9exp

[

− (Q2 + 27)2

345

]

, (19)

g
(D)
ψDD∗(Q

2) = 12.7exp

[

− (Q2 + 25.8)2

450

]

. (20)

These fits are also shown in Fig. 4 through the dotted, dashed
and solid lines respectively. From Fig. 4 we see that all three
form factors lead to compatible values for the coupling cons-
tant when the form factors are extrapolated to the off-shell
meson mass (shown as open circles in Fig. 4). Considering
the uncertainties in the continuum threshold, and the diffe-
rence in the values of the coupling constants extracted when
the D, D∗ or J/ψ mesons are off-shell, our result for the
J/ψDD∗ coupling constant is:

gψDD∗ = (3.48 ± 0.76)GeV−1. (21)

In Table I we show the results obtained for the same cou-
pling constant using different approaches.in refs. [1] and [5].
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Table I: Values of the coupling constantgψDD∗ in GeV−1

evaluated using different approaches.

this work ref. [1] ref. [5]

3.48± 0.76 8.02± 0.62 4.05± 0.25

While our result is compatible with the coupling ob-
tained using constituent quark meson model [5], it is half of
the value obtained with the vector meson dominance model
plus relativistic potential model [1].

To summarize: we have used the method of QCD sum
rules to compute form factors and coupling constant in the
J/ψDD∗ vertex. Our results for the coupling show once
more that this method is robust, yielding numbers which
are approximately the same regardless of which particle we
choose to be off-shell and depending weakly on the choice
of the continuum threshold. As for the form factors, we ob-
tain a harder form factor when the off-shell particle isJ/ψ,
when compared with the form factors obtained when the off-
shell particles areD or D∗.

Acknowledgments

This work was supported by CNPq and FAPESP.

References

[1] Y. Oh, T. Song and S.H. Lee, Phys. Rev. C63, 034901 (2001);
Y. Oh, T. Song, S.H. Lee and C.-Y. Wong, nucl-th/0205065.

[2] F.S. Navarra, M. Nielsen, and M.R. Robilotta, Phys. Rev.
C64, 021901 (R) (2001).

[3] K.L. Haglin and C. Gale, hep-ph/0305174.

[4] T. Matsui and H. Satz, Phys. Lett. B178, 416 (1986).

[5] A. Deandrea, G. Nardulli and D. Polosa, hep-ph0302273.

[6] F.S. Navarra, M. Nielsen, M.E. Bracco, M. Chiapparini, and
C.L. Schat, Phys. Lett. B489, 319 (2000).

[7] F.S. Navarra, M. Nielsen, and M.E. Bracco, Phys. Rev. D65,
037502 (2002).

[8] R.D. Matheus, F.S. Navarra, M. Nielsen, and R. Rodrigues da
Silva, Phys. Lett. B541, 265 (2002).

[9] M.E. Bracco, M. Chiapparini, A. Lozea, F.S. Navarra, and M.
Nielsen, Phys. Lett. B521, 1 (2001).

[10] B.L. Ioffe and A.V. Smilga, Nucl. Phys. B216, 373 (1983);
Phys. Lett. B114, 353 (1982).


