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Gupta-Bleuler quantization for massive and massless free vector fields
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It is shown that the usual quantum field theory leads to an ultraviolet divergence in the vacuum energies and an
infrared divergence in the two-point functions of the massive and massless vector fields. Using a new method of
quantization it is shown that the vacuum energies converge, and the normal ordering procedure is not necessary.
Also the propagators are calculated, which are automatically renormalied.
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1. INTRODUCTION

Particles of spin-1 are described as the quanta of vector
fields. Such vector bosons play a central role as the medi-
ators of interactions in particle physics. The important ex-
amples are the gauge fields of the electromagnetic (massless
photons), the weak (massive W± and Z0 bosons), and the
strong (massless gluons) interactions. On a somewhat less
fundamental level vector fields can also be used to describe
spin-1 mesons, for example the ρ and the ω mesons.

It has been shown [1, 2] that one can construct a covari-
ant quantization of massless minimally coupled scalar field
in de Sitter space-time, which is causal and free of any diver-
gences. The essential point of these papers is the unavoidable
presence of the negative norm states. Also they do not prop-
agate in the physical space, they play a renormalization role.
In the previous paper [3] we have shown that this is also true
for linear gravity (the traceless rank-2 massless tensor field).
These questions have recently been studied by several au-
thors [4–7].

These auxiliary states (the negative norm states) appear to
be necessary for obtaining a fully covariant quantization of
the free minimally coupled scalar field in de Sitter space-
time, which is free of any infrared divergence. It has been
shown that these auxiliary states automatically renormalize
the infrared divergence in the two-point function [3, 4] and
remove the ultraviolet divergence in the vacuum energy [2].
This method is applied to the massless vector field in de Sitter
space [8, 9], interacting quantum fields and Casimir effect in
Mincowski space-time [10–12].

We would like to generalize this quantization method to
the massive and massless free vector fields in Minkowski
space-time. These auxiliary states once again, automatically
leads to renormalized two-point functions and removes the
ultraviolet divergences in the vacuum energies.

This new quantization method is used for consideration
of the Casimir effect for the scalar field [10]. It can be ex-
tended for the electromagnetic field in 4-dimensional space-
time. The crucial point is that when we impose the physical
boundary conditions on the field operator, only the positive
norm states are affected. The negative norm states do not
interact with the physical states or real physical world, thus
they cannot be affected by the physical boundary conditions
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as well. The results for the Casimir energy and Casimir force
are the same given in [13, 14].

In section 2 a brief review of the massive vector field quan-
tization, using usual quantum field theory is presented. The
ultraviolet divergence of the vacuum energy and the infrared
divergence of the two-point function is explicitly shown for
this field. Then using Gupta-Bleuler quantization it is shown
that the vacuum energy converges and the infrared diver-
gence of the propagator disappears. In section 3 the ultravi-
olet divergence of the vacuum energy and the infrared diver-
gence of the two-point function of the massless vector field
is shown clearly in the framework of usual quantum field
theory. Also the vacuum energy and the propagator of this
field is calculated using Gupta-Bleuler quantization, which
are free of any divergences. Finally a brief conclusion is
given in section 4.

2. MASSIVE VECTOR FIELD

The lagrangian density for the massive vector field Aµ(x),
in Minkowskian flat space-time is that of Proca [13]

L = −1
4

FµνFµν +
1
2

m2AµAµ, (2.1)

where Fµν = ∂µAν − ∂νAµ. The variational principal to (2.1)
yields the field equation

∂µFµν +m2Aν = 0. (2.2)

Taking the divergence of Eq. (2.2) we have m2∂νAν = 0, and
since m2 �= 0, we find the Lorenz gauge and Eq.(2.2) can be
written as

�Aµ +m2Aµ = 0, ∂µAµ = 0. (2.3)

2.1. Usual quantum field theory

There are three independent components of a massive
spin-1 field, and the Lorentz condition may serve to elimi-
nate one of the four components of Aµ; we take this to be
A0. Note that the positive sign in front of the mass term in
the Lagrangian will result in a term − 1

2 m2(A.A) when A0 is
eliminated, so that the mass term has a negative coefficient,
as it does for the Klein-Gordon Lagrangian. The field Aµ(x)
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has the expansion

Aµ(x)=
∫ d3k

(2π)32ωk

3

∑
λ=1

ε(λ)
µ (k)

[
a(λ)(k)e−ik.x +a(λ)†(k)eik.x

]
,

(2.4)
in which ωk =

√
k2 +m2, and

[a(λ)(k),a(λ′)†(k′)] = 2ωk(2π)3δλλ′δ3(k−k′),

[a(λ)(k),a(λ′)(k′)] = [a(λ)†(k),a(λ′)†(k′)] = 0. (2.5)

The polarization vectors ε(λ)
µ (k), obey the following rela-

tions,

ε(λ).ε(λ′) = δλλ′ , ε(λ)
µ (k)kµ = 0. (2.6)

It may be checked out that the Hamiltonian is

H = ∑
λ

∫ d3k
(2π)32k0

k0

2

[
a(λ)(k)a(λ)†(k)+a(λ)†(k)a(λ)(k)

]
.

(2.7)
It is clear that the above integral and so the vacuum energy
diverges. Unless the “normal ordering” procedure is used.

We now calculate the propagator for massive spin-1 parti-
cles. Recall that the relation between the propagator and the
two-point function is [13]

〈0|T (Aµ(x)Aν(y))|0〉 = iGµν(x− y). (2.8)

We calculate the left-hand side by substituting Aµ(x) from
(2.4)

〈0|T (Aµ(x)Aν(y))|0〉 = i
∫ d4k

(2π)4
e−ik.(x−y)

k2 −m2 + iε

3

∑
λ=1

ε(λ)
µ (k)ε(λ)

ν (k). (2.9)

By a direct calculation one can show that this propagator
bears an infrared divergence and the divergent term appears
in it’s imaginary part (Appendix-A).

2.2. Gupta-Bleuler quantization

In the Krein quantum field theory the field operator is de-
fined as follows [2, 4, 11]

Aµ(x) =
1√
2

[
A(p)

µ (x)+A(n)
µ (x)

]
, (2.10)

A(p)
µ (x) =

∫ d3k
(2π)32ωk

3

∑
λ=1

ε(λ)
µ (k)

[
a(λ)(k)e−ik.x

+a(λ)†(k)eik.x
]
, (2.11)

A(n)
µ (x) =

∫ d3k
(2π)32ωk

3

∑
λ=1

ε(λ)
µ (k)

[
b(λ)(k)eik.x

+b(λ)†(k)e−ik.x
]
, (2.12)

where A(p)
µ (x) and A(n)

µ (x) have positive and negative norm
respectively, in the sense of Klein-Gordon inner product.
Creation and annihilation operators obey the following com-
mutation relations

[a(λ)(k),a(λ′)(k′)] = 0, [a(λ)†(k),a(λ′)†(k′)] = 0,

[a(λ)(k),a(λ′)†(k′)] = 2ωk(2π)3δλλ′δ3(k−k′), (2.13)

[b(λ)(k),b(λ′)(k′)] = 0, [b(λ)†(k),b(λ′)†(k′)] = 0,

[b(λ)(k),b(λ′)†(k′)] = −2ωk(2π)3δλλ′δ3(k−k′), (2.14)

[a(λ)(k),b(λ)(k′)] = 0, [a(λ)†(k),b(λ′)†(k′)] = 0,

[a(λ)(k),b(λ′)†(k′)] = 0, [a(λ)†(k),b(λ′)(k′)] = 0. (2.15)

The vacuum state |0〉 is then defined by

a(λ)†(k)|0〉 = |1k〉, a(λ)(k)|0〉 = 0, ∀ k, λ, (2.16)

b(λ)†(k)|0〉 = |1̄k〉, b(λ)(k)|0〉 = 0, ∀ k, λ, (2.17)

b(λ)(k)|1k〉 = 0, a(λ)(k)|1̄k〉 = 0, ∀ k, λ, (2.18)

where |1k〉 is called a one particle state and |1̄k〉 is called
a one “unparticle state”. These commutation relations, to-
gether with the normalization of the vacuum

〈0|0〉 = 1,

lead to positive (negative) norms on the physical (unphysical)
sector:

〈1k|1k′ 〉 = δ3(k−k′), 〈1̄k|1̄k′ 〉 = −δ3(k−k′). (2.19)

Using the field operator (2.10) one can show that

H =
3

∑
λ=1

∫ d3k
(2π)32k0

k0

2

[
a(λ)†(k)a(λ)(k)

+b(λ)†(k)b(λ)(k)+a(λ)†(k)b(λ)†(k)+a(λ)(k)b(λ)(k)
]
.

(2.20)
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This energy is zero for the vacuum state and it is not needed
to use the “normal ordering” procedure. It is also positive
for any particles state or physical state |Nk〉 (those built from
repeated action of the a†(k)’s on the vacuum)

〈Nk|H|Nk〉 =
3

∑
λ=1

∫ d3k
(2π)32k0

k0

2

×〈Nk|a(λ)†(k)a(λ)(k)|Nk〉 ≥ 0, |0k〉 ≡ |0〉. (2.21)

At this stage we calculate the propagator for the massive
spin-1 particles, using Gupta-Bleuler quantization. Using
(2.10) in the left hand side of (2.8) we have

〈0|T (Aµ(x)Aν(y))|0〉 =
1
2

[
〈0|T (A(p)

µ (x)A(p)
ν (y))|0〉

+〈0|T (A(n)
µ (x)A(n)

ν (y))|0〉
]

=
1
2

[
W (p)

µν (x,y)+W (n)
µν (x,y)

]
. (2.22)

By a direct calculation one can show that W (n)
µν (x,y) =

−
[
W (p)

µν (x,y)
]∗

and W (p)
µν (x,y) is the two-point function for

the positive modes as it is calculated in the previous subsec-
tion. Therefore

〈0|T (Aµ(x)Aν(y))|0〉 = i Im

[
W (p)

µν (x,y)
]

= i Im

[
i
∫ d4k

(2π)4
e−ik.(x−y)

k2 −m2 + iε

3

∑
λ=1

ε(λ)
µ (k)ε(λ)

ν (k)

]
, (2.23)

and the propagator for the transverse photon in the Krein
space quantization is then

Gµν(x−y)= iR e

[∫ d4k
(2π)4

e−ik.(x−y)

k2 −m2 + iε

3

∑
λ=1

ε(λ)
µ (k)ε(λ)

ν (k)

]
,

(2.24)
which is free of any infrared divergence and it is not need
to use the renormalization procedure. Indeed this quantiza-
tion method acts as an automatic renormalization factor for
infrared divergence in the two-point function.

3. MASSLESS VECTOR FIELD

The six components of the electromagnetic field (three of
electric and three of magnetic field) may be written as an
antisymmetric tensor Fµν, and the homogeneous Maxwell
equations follow if it is assumed that Fµν is a 4-dimensional
curl of the field Aµ

Fµν = ∂µAν −∂νAµ, (3.1)

∂µFµν = 0, (3.2)

�Aν −∂ν(∂µAµ) = 0. (3.3)

These equations follow from a variational principle with the
Lagrangian [13]

L = −1
4

FµνFµν, (3.4)

where Aµ is regarded as the dynamical field. The gauge trans-
formation Aµ → A′

µ = Aµ + ∂µΛ(x), leaves Fµν unchanged.
Potentials satisfying this additional condition,

φ = 0, ∇.A = 0, (3.5)

are said to belong to the radiation (or Coulomb) gauge. In
this gauge there are clearly only two independent compo-
nents of Aµ. This is the case in the real world, so working in
the radiation gauge keeps the physical nature of the electro-
magnetic field most evident. Let us therefore study quantiza-
tion in this gauge.

3.1. Usual quantum field theory

Note that in view of the radiation gauge Maxwell’s equa-
tions (3.3) become

�Aµ = 0, (3.6)

further, since in the radiation gauge we have φ = 0, this be-
comes

�A = 0. (3.7)

This is the Klein-Gordon equation for a massless field, and
we write

A(x)=
∫ d3k

(2π)32k0

2

∑
λ=1

ε(λ)(k)
[
a(λ)(k)e−ik.x +a(λ)†(k)eik.x

]
,

(3.8)
where ε(λ)(k) are known as polarization vectors, k2 =
0, k0 = |k|, and

k.ε(λ)(k) = 0, ε(λ)(k).ε(λ′)(k) = δλλ′ . (3.9)

The creation and annihilation operators obey the following
commutation relations

[a(λ)(k),a(λ′)†(k′)] = 2k0(2π)3δλλ′δ3(k−k′),

[a(λ)(k),a(λ′)(k′)] = [a(λ)†(k),a(λ′)†(k′)] = 0. (3.10)

These commutation relations have the same form as those for
scalar field, and have the same interpretation as annihilation
and creation operators for photons.

Let us now calculate the vacuum energy. It may be written
as

H =
1
2

∫
d3x(E2 +B2) =

1
2

∫
d3x(Ȧ2 +(∇×A)2)

=
1
2

∫
(Ȧ2 −A.∇2A)d3x. (3.11)



562 M. Dehghani

Substituting (3.8) in (3.11), we obtain after some algebra

H =
2

∑
λ=1

∫ d3k
(2π)32k0

k0

2

[
a(λ)(k)a(λ)†(k)+a(λ)†(k)a(λ)(k)

]
.

(3.12)
It is clear that the above integral and so the vacuum energy
diverges. Unless the ”normal ordering” procedure is used.

The propagator for the transverse (physical) photons may
be calculated in the same manner as for massive photons,
after some algebra we have

〈0|T (Aµ(x)Aν(y))|0〉= i
∫ d4k

(2π)4
e−ik.(x−y)

k2 + iε

2

∑
λ=1

ε(λ)
µ (k)ε(λ)

ν (k).

(3.13)
This propagator bears an infrared divergence in it’s imagi-
nary part (Appendix-A).

3.2. Gupta-Bleuler quantization

Similar to the previous case, the field operator is defined
as follows [2, 4, 11]

A(x) =
1√
2

[
A(p)(x)+A(n)(x)

]
, (3.14)

A(p)(x) =
∫ d3k

(2π)32k0

2

∑
λ=1

ε(λ)(k)
[
a(λ)(k)e−ik.x

+a(λ)†(k)eik.x
]
, (3.15)

A(n)(x) =
∫ d3k

(2π)32k0

2

∑
λ=1

ε(λ)(k)
[
b(λ)(k)eik.x

+b(λ)†(k)e−ik.x
]
, (3.16)

where A(p)(x) and A(n)(x) have positive and negative norm
respectively, in the sense of Klein-Gordon inner product.
a(k) and b(k) are two independent operators. Creation and
annihilation operators are constrained to obey the following
commutation relations

[a(λ)(k),a(λ′)(k′)] = 0, [a(λ)†(k),a(λ′)†(k′)] = 0,

[a(λ)(k),a(λ′)†(k′)] = 2k0(2π)3δλλ′δ3(k−k′), (3.17)

[b(λ)(k),b(λ′)(k′)] = 0, [b(λ)†(k),b(λ′)†(k′)] = 0,

[b(λ)(k),b(λ′)†(k′)] = −2k0(2π)3δλλ′δ3(k−k′), (3.18)

[a(λ)(k),b(λ)(k′)] = 0, [a(λ)†(k),b(λ′)†(k′)] = 0,

[a(λ)(k),b(λ′)†(k′)] = 0, [a(λ)†(k),b(λ′)(k′)] = 0. (3.19)

The vacuum is defined by the relations given in Eqs.(2.16)-
(2.18).

If we calculate the energy operator in terms of the field
operator (3.14), we have

H =
2

∑
λ=1

∫ d3k
(2π)32k0

k0

2

[
a(λ)†(k)a(λ)(k)

+ b(λ)†(k)b(λ)(k)+ a(λ)†(k)b(λ)†(k)+a(λ)(k)b(λ)(k)
]
.

(3.20)

This energy is zero for the vacuum state and it is not needed
to use the “normal ordering” procedure. It is also positive
for any particles state or physical state |Nk〉 (those built from
repeated action of the a†(k)’s on the vacuum)

〈Nk|H|Nk〉 =
2

∑
λ=1

∫ d3k
(2π)32k0

k0

2

×〈Nk|a(λ)†(k)a(λ)(k)|Nk〉 ≥ 0, |0k〉 ≡ |0〉. (3.21)

At this stage we calculate the propagator for the physical
photons using Gupta-Bleuler quantization. Using (3.14) in
the left hand side of (2.8) we have

〈0|T (Aµ(x)Aν(y))|0〉 =
1
2

[
〈0|T (A(p)

µ (x)A(p)
ν (y))|0〉

+ 〈0|T (A(n)
µ (x)A(n)

ν (y))|0〉
]

=
1
2

[
W (p)

µν (x,y)+W (n)
µν (x,y)

]
. (3.22)

By a direct calculation one can show that W (n)
µν (x,y) =

−
[
W (p)

µν (x,y)
]∗

and W (p)
µν (x,y) is the two-point function for

the positive modes as it is calculated in the previous subsec-
tion. Therefore

〈0|T (Aµ(x)Aν(y))|0〉 = i Im [W (p)
µν (x,y)]

= i Im

[
i
∫ d4k

(2π)4
e−ik.(x−y)

k2 + iε

2

∑
λ=1

ε(λ)
µ (k)ε(λ)

ν (k)

]
, (3.23)

and the propagator for the transverse photons in the Krein
space quantization is then

Dtr
µν(x− y) = iR e

[∫ d4k
(2π)4

e−ik.(x−y)

k2 + iε

2

∑
λ=1

ε(λ)
µ (k)ε(λ)

ν (k)

]
,

(3.24)
which is free of any infrared divergence and it is not need
to use the renormalization procedure. Indeed this quantiza-
tion method acts as an automatic renormalization factor for
infrared divergence in the propagators.

4. CONCLUSION

Through a generalization of the Gupta-Bleuler quantiza-
tion introduced in [2], a covariant quantization of the mas-
sive and massless vector fields in Minkowski space-time is
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constructed, which is free of any infrared (and ultraviolet)
divergences. It has been shown that this method of quanti-
zation acts as an automatic renormalization element of the
ultraviolet divergence in the stress tensors and a renormal-
ization factor for infrared divergence in the propagators. In
other words, using this new quantization method, the ultra-
violet divergence in the vacuum energies disappears and the
normal ordering is not necessary. Also the two-point func-
tions are automatically renormalized, without any renormal-
ization procedure.

APPENDIX A: SOME USEFUL MATHEMATICAL
FORMULA

In calculating the propagators given in Eqs. (2.9) and
(3.13) we encounter the integrals of the form

∫ d4k
(2π)4

e−ik.(x−y)

k2 −m2 + iε
, (A.1)

∫ d4k
(2π)4

kµkνe−ik.(x−y)

k2 −m2 + iε
, (A.2)

∫ d4k
(2π)4

e−ik.(x−y)

k2 + iε
, (A.3)

we give a brief explanation about these types of integrations.
Using the following integration formula in (A.1)

∫ ∞

0
dse−s(k2−m2+iε) =

1
k2 −m2 + iε

, (A.4)

and commuting d4k integration with ds and performing the

former, the integral can be solved in terms of the Bessel func-
tions as follows [11, 15]

∫ d4k
(2π)4

e−ik.(x−y)

k2 −m2 + iε
= − 1

8π
δ(σ)

+
m2

8π
θ(σ)

J1(
√

2m2σ)− iN1(
√

2m2σ)√
2m2σ

, σ ≥ 0,(A.5)

σ =
1
2
(x− y)2 =

1
2

gµν(x− y)µ(x− y)ν,

where Jν(x) and Nν(x) are real Bessel functions for real x and
ν.

Taking twice derivative ∂µ∂ν from both side of Eq.(A.5)
we have

∫ d4k
(2π)4

kµkνe−ik.(x−y)

k2 −m2 + iε
= −∂µ∂ν

∫ d4k
(2π)4

e−ik.(x−y)

k2 −m2 + iε
.

(A.6)
The limiting values of the various kinds of Bessel functions
for small values of their argument are as follows [16]

Jν(x) → 1
Γ(ν+1)

( x
2

)ν
,

Nν(x) →−Γ(ν)
π

(
2
x

)ν
, ν �= 0.

In the massless limit, Eq.(A.5) reduces to [15]

∫ d4k
(2π)4

e−ik.(x−y)

k2 + iε
=

i
8π2σ

− 1
8π

δ(σ). (A.7)
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