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Square-Gradient Scattering Mechanism in Surface-Corrugated Waveguides
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In this work we study the surface scattering mechanisms from rough surfaces of a multimode quasi-1D
waveguide (conducting quantum wires). The square-gradient scattering mechanism, which was missed in ex-
isting studies of the transport through surface-corrugated waveguides, is discovered. The main attention is paid
to the interplay between the new mechanism and the known one, as well as its effect on the waveguide trans-
port properties. For any value of the roughness height σ, the square-gradient terms in the expression for the
wave-scattering length (electron mean-free path) are dominant, provided the correlation length Rc of the surface
disorder is small enough.
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The wave transport through guiding surface-disordered sys-
tems is an important topic with many applications in the
physics of waveguides and mesoscopic devices for which the
roughness of boundaries is due to either inevitable imperfec-
tions or artificial patterns (see, e.g., Refs. 1-8 and references
therein). The goal of this contribution is to study the differ-
ent mechanisms of surface scattering in multimode quasi-1D
waveguides with rough surfaces. In order to treat the rough-
surface-scattering problem, we transform it to a bulk one that
is described by an effective Hamiltonian with a scattering po-
tential Û and flat boundaries. It is important to point out that
the potential Û has a specific structure whose detailed analy-
sis gives rise to discover an unexpected scattering mechanism,
which prevails in the commonly used region of small-scale
boundary perturbations.

In what follows, we consider an open plane waveguide (or
conducting quasi-one-dimensional quantum wire) of average
width d, stretched along the x-axis. For simplicity, one (lower)
surface of the waveguide is assumed to be flat, z = 0, while the
other (upper) surface has a rough profile, z = d +σξ(x); with
σ as the root-mean-square roughness height. The fluctuating
wire width w(x) is defined by

w(x) = d +σξ(x), 〈w(x)〉= d. (1)

The random function ξ(x) describes the roughness of the
upper boundary. It has unit root-mean-square value and
is assumed to be a statistically homogeneous and isotropic
Gaussian random process with zero average,

〈ξ(x)〉= 0, 〈ξ2(x)〉= 1, 〈ξ(x)ξ(x′)〉= W (|x− x′|). (2)

Here the angular brackets stand for statistical averaging over
different realizations of the surface profile ξ(x). We also as-
sume that its binary correlator W (x) decreases on the scale Rc

and has the normalization W (0) = 1; the correlation length,
Rc, is the measure of the profile roughness. The roughness-
height power (RHP) spectrum W (kx) is defined by

W (kx) =
Z ∞

−∞
dxexp(−ikxx)W (x). (3)

Since W (x) is an even function of x, its Fourier transform
(3) is even, real and nonnegative function of kx. The RHP
spectrum, W (kx), has maximum at kx = 0 with W (0) ∼ Rc,
and decreases on the scale R−1

c .
In order to analyze the rough surface scattering for our

model, we employ the method of the retarded Green’s func-
tion G(x,x′;z,z′). Specifically, we start with the Dirichlet
boundary-value problem

(
∂2

∂x2 +
∂2

∂z2 + k2
)

G(x,x′;z,z′)

= δ(x− x′)δ(z− z′), (4a)

G(x,x′;z = 0,z′) = G(x,x′;z = w(x),z′) = 0. (4b)

Here the wave number k is equal to ω/c for an electromag-
netic wave of the frequency ω and TE polarization, propagat-
ing through a waveguide with perfectly conducting walls. As
for an electron quantum wire, k is the Fermi wave number
within the isotropic Fermi-liquid model. In order to express
the rough surface scattering as a bulk one, we perform the
transformation to new coordinates,

xnew = xold , znew = zold d/[d +σξ(x)], (5)

in which both surfaces of the waveguide are flat. Corre-
spondingly, we introduce the canonically conjugate Green’s
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function, Gnew = d−1
√

w(x)w(x′)Gold and omit the subscript
“new” in what follows. As a result, we arrive at an equiva-
lent Dirichlet boundary-value problem, i.e., the new problem
fulfills the conditions

G(x,x′;z = 0,z′) = G(x,x′;z = d,z′) = 0. (6)

At the same time, we obtain an effective surface scattering
potential given by

Û(x,z) =
[

1− d2

w2(x)

]
∂2

∂z2

+
σ

w(x)

[
ξ′(x)

∂
∂x

+
∂
∂x

ξ′(x)
][

1
2

+ z
∂
∂z

]

− σ2ξ′2(x)
w2(x)

[
3
4

+3z
∂
∂z

+ z2 ∂2

∂z2

]
. (7)

Note that the prime over the function ξ(x) denotes derivative
with respect to x.

With the help of the Green’s theorem, the problem can be
reformulated as the following Dyson-type integral equation

G(x,x′;z,z′) = G0(|x− x′|;z,z′)

+
Z ∞

−∞
dx1

Z d

0
dz1

G0(|x− x1|;z,z1)Û(x1,z1)G(x1,x′;z1,z′). (8)

The Eq. (8) relates the perturbed by surface disorder Green’s
function G(x,x′;z,z′) to the Green’s function G0(|x−x′|;z,z′)
of the waveguide with flat boundaries and zero bulk potential.

In the expression (7), which is exact and valid for any form
of w(x), one can distinguish three different scattering terms.
The first one depends only on the rough profile, ξ(x), through
the fluctuating wire width w(x) (see Eq.(1)). The second and
third terms are related to the profile’s derivative, ξ′(x), and
the square of the profile’s derivative, ξ′2(x), respectively. In
this connection one should distinguish between the ampli-
tude, gradient and square-gradient scattering (SGS) mecha-
nisms. In the exact expression for Û(x,z) the contribution of
these mechanisms emerges in a mixed way, but with a de-
tailed analysis we have found a way to separate them and then
we arrive at a very useful approximate expression with three
groups of terms, each of them associated with the above scat-
tering mechanisms. The first and second groups, related re-
spectively to the mechanisms of amplitude and gradient scat-
tering, are controlled by the parameter σ/d. The third group,
which is due to the square-gradient mechanism, is controlled
by (σ/d)2. Since the last mechanism seems to be much
weaker in comparison with the others (in the case of small
surface corrugations, σ¿ d), it was neglected in previous an-
alytical studies of rough surface scattering performed with an
approximation in the lowest order in σ. We discover, however,
that apart from the (σ/d)2-dependence of this mechanism, the
independent parameter Rc, also has control over it.

The square gradient terms introduce the zero-mean-valued
operator V̂ (x) = ξ′2(x)−〈ξ′2(x)〉, which plays a special role.
Its binary correlator,

〈V̂ (x)V̂ (x′)〉= 2〈ξ′(x)ξ′(x′)〉2 = 2W ′′2(x− x′), (9)

determines the square-gradient power (SGP) spectrum

T (kx) =
Z ∞

−∞
dxexp(−ikxx)W ′′2(x). (10)

One should stress that although by integration by parts the
power spectrum of the roughness gradients σξ′(x) can be re-
duced to the RHP spectrum W (kx), this is not possible for the
SGP spectrum T (kx). This very fact reflects a highly non-
trivial role of the square-gradient scattering, giving rise to the
competition with the well known amplitude scattering, in spite
of the seeming smallness of the term σ2ξ′2(x).

To proceed, we pass from the problem for the random
Green’s function, G(x,x′;z,z′), in Eq.(8), to the problem for
the Green’s function 〈G(x,x′;z,z′)〉 averaged over the surface
disorder. To perform the averaging we can apply one of the
standard and well known perturbative methods. For exam-
ple, it can be the diagrammatic approach [10] or the tech-
nique developed in Ref. 2. Both of the methods allows one to
develop the consistent perturbative approach, with respect to
the scattering potential, which takes adequately into account
the multiple scattering from the corrugated boundary. After
quite cumbersome calculations, where the proper self-energy
in the Dyson-type equation was obtained within the second-
order approximation in the perturbation potential, we obtain
the desired average Green’s function. This function, in the
normal-mode representation, has the form

〈G(x,x′;z,z′)〉=
Nd

∑
n=1

sin
(πnz

d

)
sin

(
πnz′

d

)

×exp(ikn|x− x′|)
iknd

exp
(
−|x− x′|

2Ln

)
. (11)

Here kn =
√

k2− (πn/d)2 corresponds to the unperturbed
lengthwise wave number kx, and Nd = [kd/π] is the number
of propagating modes (or conducting electron channels) de-
termined by the integer part [. . .] of the ratio kd/π.

Our interest is in the attenuation length or total mean free
path Ln of the n-th mode. Its inverse value is given by the
imaginary part of the proper self-energy and, in accordance
with the form of the scattering potential, consists of two terms
describing different scattering mechanisms,

1
Ln

=
1

L(1)
n

+
1

L(2)
n

. (12)

The first length L(1)
n is determined by the expression



Brazilian Journal of Physics, vol. 36, no. 3B, September, 2006 973

1

L(1)
n

= σ2 (πn/d)2

knd

Nd

∑
n′=1

(πn′/d)2

kn′d

× [W (kn + kn′)+W (kn− kn′)] . (13)

Here the term corresponding to n′ = n is related to the am-
plitude scattering while the terms with n′ 6= n result from the
gradient one. Eq. (13) coincides with that previously obtained
by different methods (see, e.g., Ref. 1).

The SGS length L(2)
n is associated solely with the square-

gradient mechanism due to the operator V̂ (x),

1

L(2)
n

=
Nd

∑
n′=1

1

L(2)
n,n′

. (14)

Its term with n′ = n describes the intramode scattering,

1

L(2)
n,n

=
σ4

2
(πn/d)4

k2
n

[
1
3

+
1

(2πn)2

]2

[T (2kn)+T (0)] . (15)

The partial lengths L(2)
n,n′ 6=n specify the intermode scattering

(from n to n′ 6= n channel),

1

L(2)
n,n′ 6=n

=
8σ4

π4
(πn/d)2

kn

(πn′/d)2

kn′

(n2 +n′2)2

(n2−n′2)4

× [T (kn + kn′)+T (kn− kn′)] . (16)

To the best of our knowledge, in the surface-scattering prob-
lem for multi-mode waveguides the operator V̂ (x) was never
taken into account, and, as a result, the square-gradient atten-
uation length L(2)

n was missed in previous studies.
A detailed analysis of the requirements under which

Eqs. (12) – (16) are derived give us the following conditions
of weak scattering [9]:

Λn = 2knd/(πn/d)¿ 2Ln, Rc ¿ 2Ln. (17)

Here Λn is the distance between two successive reflections of
a wave from the rough surface inside the nth channel. The
conditions (17) imply that the wave is weakly attenuated on
both the correlation length Rc and the cycle length Λn. Note
that they implicitly includes the requirement that the surface
corrugations are small in height (σ¿ d), but does not restrict
the value σ/Rc of the roughness slope.

Hereafter we confine ourselves to the analysis of the widely
used case of small-scale boundary perturbations, when kRc ¿
1. In this case the surface roughness can be regarded as a
delta-correlated random process with the correlator W (x−
x′) ≈W (0)δ(x− x′) and a constant power spectrum W (kx) ≈
W (0) ∼ Rc. Taking into account the evident relationship
kΛn & 1, one can get the following inequalities to specify this
case

kRc ¿ 1 . kΛn. (18)

It is necessary to underline that in the regime of small-scale
roughness (18) the second of the weak-scattering conditions
(17) is not so restrictive as the first one and directly follows
from it, Rc ¿ Λn ¿ 2Ln.

Under the conditions (18), in Eqs. (13), (15) and (16) for
the attenuation lengths, the argument of the correlators W (kx)
and T (kx) turns out to be much less than the scale of their
decrease R−1

c . Therefore, for any item of the sum over n′, the
argument can be taken as zero.

The first attenuation length is presented by

Λn

2L(1)
n

≈ 2(kσ)2 n
kd/π

W (0)
k

Nd

∑
n′=1

(πn′/d)2

kn′d
(19a)

≈ (kσ)2 n
kd/π

kW (0)
2

. (19b)

Due the large number of the conducting modes Nd ≈ kd/πÀ
1, we can change the sum over n′ to an integral. In this way we
obtain Eq. (19b) from Eq. (19a). In order to correctly estimate
the result, one can take into account the formula

W (0) =
Z ∞

−∞
dxW (x) = 2Rc

Z ∞

0
dρW (Rcρ), (20)

which directly follows from the definition (3) for the Fourier
transform W (kx) of the binary correlator W (x). The function
W (Rcρ) is the dimensionless correlator of the dimensionless
variable ρ with the scale of decrease of the order of one. So,
the function W (Rcρ) does not depend on Rc. Therefore, the
integral over ρ entering Eq. (20) is a positive constant of the
order of unity. For example, W (0) =

√
2πRc and the integral

is
√

π/2 in the case of Gaussian correlations.
For the SGS length in Eq. (14), we have a fast decay of the

terms under the sign of sum, with the increase of the absolute
value of ∆n = n− n′. This can be seen by making use of the
following estimate,

(n2 +n′2)2

(n2−n′2)4
≈ 1

4(∆n)4 for nÀ |∆n|. (21)

If for simplicity we take the case Nd À nÀ 1, the sum can be
well evaluated just by its three terms with n′ = n,n±1. Thus,
we obtain

Λn

2L(2)
n

≈ π2

4
(kσ)4

knd
n3

(kd/π)
T (0)

k3 . (22)

The explicit form for T (0) directly follows from the definition
(10) for the correlator T (kx),
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FIG. 1: Plot of Λn/2L(1)
n (increasing curves) and Λn/2L(2)

n (decreas-
ing curves) vs. kRc at kd/π = 100.5 for a random surface profile ξ(x)
that have the Gaussian binary correlator W (x) = exp(−x2/2R2

c).
Dashed lines show the corresponding asymptotic expressions.

T (0) =
Z ∞

−∞
dxW ′′2(x)

= R−3
c

Z ∞

−∞
dρ

[
d2W (Rcρ)

dρ2

]2

. (23)

If the roughness correlations are Gaussian, we have T (0) =
3
√

π/4R3
c and the integral over ρ entering Eq. (23) is equal to

3
√

π/4.
As follows from Eq. (13), with the decrease of kRc the in-

verse value of the first attenuation length typically decreases.
In contrast, from Eq. (14) one can see the monotonous in-
crease of the inverse SGS length with the decrease of kRc.
Specifically, we have 1/L(1)

n ∝ kRc and 1/L(2)
n ∝ (kRc)−3.

According to this analysis it becomes clear that the curves
displaying 1/L(1)

n and 1/L(2)
n , with respect to kRc, must in-

tersect, and one can observe the crossover from the square-
gradient to amplitude surface scattering. If the crossing point,
(kRc)cr, falls onto the present region of small-scale roughness
(kRc ¿ 1), its dependence on the model parameters can be es-
timated by equating to one the ratio of the asymptotics (19b)
and (22). Thus, we have

(kRc)2
cr ∼ (kσ)n/

√
knd. (24)

To the left from this point (kRc)cr the SGS length prevails,
L(2)

n ¿ L(1)
n . To its right the main contribution is due to the first

attenuation length, L(1)
n ¿ L(2)

n . The expression (24) shows
that the crossing point is smaller for smaller values of the di-
mensionless roughness height kσ, as well as for smaller mode
indices n, or for larger values of the parameter kd/π. This
analytical estimation determine the region of small values of
Rc, where the new attenuation length L(2)

n should not be ne-
glected, in spite of the fact that 1/L(1)

n is proportional to σ2

while 1/L(2)
n is proportional to σ4.

In Fig. 1 we display separately the behavior of Λn/2L(1)
n

and Λn/2L(1)
n , as a function of the dimensionless correlation

parameter kRc. With dashed lines we plot the asymptotics
(19b) and (22) for the region (18). One can make sure that
within this region both lengths are sufficiently well described
by their corresponding asymptotic expressions.

The figure also shows the crossing point between Λn/2L(2)
n

and Λn/2L(1)
n for two values of (kσ)2 and mode index n. This

point for the couple of curves with parameters (kσ)2 = 10−4

and n = 50, is very close to that for the couple with parameters
(kσ)2 = 10−2 and n = 10. Approximately, both points are
(kRc)cr ∼ 0.2. They are well located in the interval of small-
scale roughness and their values are in agreement with (24).
The couple of curves corresponding to the parameters (kσ)2 =
10−2 and n = 50, has a crossing point in the transition region
kRc ∼ 1 between small- and large-scale corrugations.

In conclusion, we have discovered the square-gradient
scattering mechanism which was missed in existing studies of
the transport through surface-corrugated waveguides. In char-
acterizing its contribution we have found that it prevails in the
region of small-scale perturbation, kRc ¿ 1, where the surface
roughness is typically described by a white-noise potential.
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