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Systems Biology(system-level understanding in biological science), from the physical-chemical point of view,
is involved with irreversible thermodynamics and nonlinear kinetic theory of open systems which are founded
on nonequilibrium statistical mechanics. We describe a modern thermo-statistical approach for dealing with
complex systems, in particular biological systems. We consider the case of a very peculiar complex behavior
in open boson systems sufficiently away, from equilibrium, which appear to have large relevance in the func-
tioning of biological systems. This is, on the one hand, the so-called Fröhlich-Bose-Einstein-like condensation
leading in steady-state conditions to the emergence of a particular case of quantum-large-scale coherent order-
ing, of the type of a selforganizing-synergetic dissipative structure. Moreover, additional complexity emerges
in the form of propagation, in this condensate, of signals (information) consisting of nearly undamped and
undistorted, long-distance propagating, solitary waves (the pseudoparticle soliton). It can be accompanied by
a so-called Fr̈ohlich-Cherenkov cone of emission of polar vibrations, and it is also possible the formation of
metastable states of the form of the so-called bioelectrets. These are phenomena apparently working in bio-
logical processes, which are presently gaining relevant status on the basis of eventually providing a large-scale
quantum-coherent behavior in cytoskeletons of neurons and the conscious (non-computational) activity in the
brain. Emphasis is centered on the quantum-mechanical-statistical irreversible thermodynamics of these open
systems, and the informational characteristics of the phenomena. Ways for their experimental evidencing are
pointed out and discussed.

1 On the role of physics in biology

What is Biophysics? For us, life is the most important phe-
nomenon in Nature. It is also very complex, and in order
to understand life and living processes several branches of
science are needed. Biophysics uses biological and physical
concepts for the study of life. One of the greatest physicist
of the twentieth century, Erwin Schrödinger, wrote a beauti-
ful little book which he namedWhat is life?[1]. Though this
book is now outdated in can be read with benefit by the mod-
ern scientist. Not only Physics but specially Biochemistry
are essential to answer the question. So today, Biophysics is
understood as a broad interdisciplinary area encompassing
Biology, Physics, Biochemistry, mathematical and compu-
tational modelling, Theory of Information, and others. It
is thus a very rich part of modern science with tremendous
opportunities for basic and applied research. Physicists oc-
casionally used models, intuitive theories and techniques to
describe biology and life sciences. But also in the past, biol-
ogists, physicians, pharmacologists and other life scientists,
rarely looked for physical concepts and instrumentation to
help solve their problems. Until the mid-twentieth century
Biology has been largely a descriptive field. It is only in the
last half of theXX century that this gave place to a more
complete, integrated approach, in which we can talk about
Biophysics as an independent branch of Science [2].

A recent article inScience[3] had the seemingly taunt-
ing title of “Physicists advance into Biology”, and a sub-
title indicating that “physicists are [. . . ] hoping that their
mechanistic approach will yield new insight into biologi-
cal systems”: Both statements are open to questioning. The
first one because there appears not to be an “invasion”, but
more precisely a “miscegenation” of sciences developing
at the last decades of the second millennium and now go-
ing through the beginning of the XXI century. This has
been foresighted and clearly stated by the renowned Nobel-
Prize laureate Werner Heisenberg, who in 1970, in an article
on the Wednesday October 6th. issue of theSüddeutsche
Zeitung, wrote that “the characteristic feature of the com-
ing development will surely consists in the unification of
science, the conquest of the boundaries that have grown
up historically between the different individual disciplines”
[4]. In a sense this implies in a kind of “Renaissance” in
the direction of an Aristotelian global philosophy of Natu-
ral Sciences. Even more interesting is the statement in the
subtitle in [3], concerning the interdisciplinary aspects of
Physics and Biology. What is most relevant to a theoretical
physical approach to Biology is not the usual reductionist-
mechanicist-deterministic scheme of Physics, but an emerg-
ing scheme at a holistic-dynamicist-stochastic level. Citing
the Nobel-Prize laureate Ilya Prigogine in a book in collab-
oration with Isabelle Stengers [5], “science centered around
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the basic conviction that at some level the world is simple
and is governed by time-reversible fundamental laws. Today
this appears as an excessive simplification. We may com-
pare it to reduce buildings to piles of bricks [. . . ] it is on
the level of the building as a whole that we apprehend it as a
creature of time, as a product of a culture, a society, a style.”
Moreover, Prigogine and Nicolis [6] wrote that “physics has
emphasized stability and permanence. We now see that, at
best, such qualification applies only to very limited aspects.
Wherever we look, we discover evolutionary processes lead-
ing to diversification and increasing complexity.” Prigogine
and the so-called Brussel’s school of thought, are among the
pioneers of the nowadays referred-to as the highly interdis-
ciplinary science of complexity. Complexity is regarded to
be part of a frontier field in the particular science of Physics
[7]. It is considered that the 1972 article inScience[8] by
the Nobel-Prize laureate Philip W. Anderson constitutes one
of the main “Manifests” on the subject (see also references
[7-14]). Complex behavior in matter is nowadays a sub-
ject attracting an increasing interest.Complex Systems are
not merely complicated (even though they could), but char-
acterized by the fact of displaying highly coherent behav-
ior involving the collective organization in a vast number of
constituent elements.It is said that it is one of the univer-
sal miracles of Nature that huge assemblages of particles,
subject only to the blind forces of nature, are nevertheless
capable of organizing themselves into patterns of coopera-
tive activity [7]. Complex behavior in matter can only arise
in thenonlinear domain of the theory of dynamical systems
[one of its founders being L. von Bertalanffy in the thirties
[9]], since in the linear domain the principle of superposi-
tion of states cannot give rise to any unexpected behavior
of a synergetic character. For thermodynamic systems, as
the biological ones, coherent behavior is only possible in
the nonlinear regime far from equilibrium, once in the lin-
ear (also referred as Onsagerian) regime around equilibrium
synergetic organization is inhibited according to Prigogine’s
theorem of minimum entropy production [6, 10].

Systems Biology — as a branch of Dynamical Sys-
tems in Bertalanffy’s style — deals with the problems of
organization, with phenomena not resolvable into molec-
ular or macromolecular events, and the dynamic interac-
tions leading to complex functioning in living organisms.
From the physico-chemical point of view it involves the ir-
reversible thermodynamics of open systems and nonlinear
kinetic theory, as already noticed. It has been stated that,
system-level understanding has been a recurrent theme in
biological science, gaining ample interest nowadays (see,
eg. [15]) as becoming “fed” with basic information pro-
vided by the exploding molecular biology. Hence, there
is now a golden opportunity for system-level analysis to
be grounded in molecular-level understanding resulting in
a continuous spectrum of knowledge, and while an under-
standing of genes and proteins continues to be important,
the focus is on understanding the structure and dynamics of
biological systems. [16]

Biological systems are complex systems by antonoma-
sia, displaying an enormous variety of physico-chemical
processes. Therefore, as it is the case, they present an

also enormous number of rich and noticeable phenomena on
the morphological, biochemical, biophysical, biomechani-
cal, etc., levels. It ought to be emphasized that living or-
ganism are open systems driven (generally far) away from
equilibrium and, then, the relevant area of Biophysics for
their study is that of the nonlinear irreversible thermody-
namics of open systems and its microscopic foundations (at
the classical or quantal, nonlinear, memory-dependent, non-
local, etc., levels) provided by nonequilibrium nonlinear sta-
tistical mechanics. These disciplines, irreversible thermody-
namics of open systems and statistical mechanics of arbitrar-
ily far-from-equilibrium systems, even though initiated in
theXIX century by the great names of Boltzmann, Maxwell,
and Gibbs, have been marred by conceptual and practical
difficulties, but have recently shown vigorous development.

It is certainly a truism to say that the complicate hetero-
geneous spatial structure and functioning (temporal evolu-
tion) of living organisms, starting with the individual cell,
set down quite difficult problems at the biophysical and bio-
chemical levels of Biology. In recent decades a good amount
of effort has in particular been devoted to some physico-
chemical aspects of biosystems, like, how to increase our
knowledge of the chemical composition of life forms; to
determine the structure of macromolecules, proteins, etc.
(as noted in [3], understanding of structure is the first vi-
tal step, without which any further analysis run aground); to
determine the reactions that lead to processes of sintetiza-
tion of multiple components; to understand the mechanisms
and codes required to determine the structure of proteins;
and so on. Moreover, as already noticed, to consider liv-
ing systems at the biophysical level we must be well aware
of the fact that we are dealing with macroscopic open sys-
tems in nonequilibrium conditions. In other words, we ob-
serve macroscopic organization — at the spatial, temporal
and functional levels — of the microscopic components of
the system, namely, molecules, atoms, radicals, ions, elec-
trons. The macroscopic behavior is of course correlated to
the details of the microscopic structure. However, it must
be further emphasized that this does not mean that know-
ing the microscopic details and their mechanistic laws, the
redutionist scheme shall reveal the interesting macroscopic
properties. Not only — as it is well known — is the num-
ber of microscopic states so huge that cannot be handled
out, but still more important, and fundamental, is the rele-
vant fact that macroscopic properties are expressed in terms
of concepts that do not belong in mechanics, which arecol-
lective macroscopic effects.Hence, as already pointed out
above, reductionist and deterministic methods of mechan-
ics must be superseded — or, better to say, extended — to
build a macrophysics, holistic in the sense of collective, and
with both deterministic and chance characteristics. Some at-
tempts in such direction have been developed with the intro-
duction of approaches like Prigogine’s dissipative structures
[11], Fröhlich macroconcepts [12], Haken synergetics [13]
and computer-modelling [17].

Which may be the theoretical approach in Physics to
carry on a program to deal with at the microscopic as well
as, at the same time, the all important, macroscopic levels
of biosystems and their synergetic aspects? During the last
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decades this question concerning the theoretical description
of the macroscopic behavior of dissipative open many-body
systems in arbitrarily far-from-equilibrium conditions has
been encompassed in a seemingly powerful, concise, and el-
egant formalism, established on sound basic principles. This
is a nonequilibrium statistical ensemble formalism, accom-
panied with a nonlinear quantum kinetic theory, a response
function theory for systems arbitrarily away from equilib-
rium, a statistical thermodynamics for dissipative systems,
and a higher-order generalized hydrodynamics. This is the
formalism used for the study of complex behavior in bio-
logical systems, mainly the so-called Fröhlich’s effect and
some other accompanying phenomena, as the long-distance
propagation of nearly undamped and undistorted signals.

The formalism is based on a particular kind of scientific
inference and the Bayesian approach to probability theory.
According to Philip Anderson [18] the latter appears to be
the most appropriate to use in science since it provides the
degree of confidence that is consistent with keeping the idea
that a proposition is correct when based on the fact to accept
that other conditioning propositions are true: “These statis-
tics are the correct way to do inductive reasoning from nec-
essarily imperfect experimental data.” This approach may
be considered as an emerging paradigm in science, in the
sense of the words of E. T. Jaynes thatScience is informa-
tion organized in a particular way. In the case of the natural
sciences we can cite Jaynes [19]: “How shall we best think
about Nature and most efficiently predict her behavior, given
only our incomplete knowledge? [. . . ] we need to see it, not
as an example of the N-body equations of motion, but as an
example of the logic of scientific inference, which by-passes
all the details by going directly from our macroscopic infor-
mation to the best macroscopic predictions that can be made
from that information [. . . ] Predictive Statistical Mechan-
ics is not a physical theory, but a method of reasoning that
accomplishes this by finding, not the particular things that
the equations of motion say in any particular case, but the
general things that they say, in ‘almost-all’ cases consistent
with our information, for those are the reproducible things.”
Evidently, there remain quite difficult points to be cleared
up, mainly how to determine in which extension this infor-
mation depends on us, or up to what degree it is a “prop-
erty” of Nature, or, better to say, of dynamical systems in
general. Again, according to Jaynes, the question as to how
the theoretically valid and pragmatically useful ways to ap-
ply Probability Theory in science was faced by Sir Harold
Jeffreys [20, 21], in the sense that he stated the general phi-
losophy of what scientific inference is, and proceeded to de-
velop a mathematical theory and its implementations. At the
beginning of his book on Probability theory, Jeffreys main-
tains that the fundamental problem of scientific progress and
a fundamental one of everyday life, is that of learning from
experience. Knowledge obtained in this way is partly merely
description of what we have already observed, but partly
consists of making inferences from past experience to pre-
dict future experiences.

As already noticed, the nonequilibrium statistical en-
semble formalism allows for the construction of a nonlin-
ear quantum transport theory of a large scope and a re-

sponse function theory for far-from-equilibrium systems. It
also provides a thermodynamics of irreversible processes,
dubbed as Informational Statistical Thermodynamics (IST,
sometimes referred-to as Information-theoretic Thermody-
namics). This IST was apparently pioneered by Hobson
[22] after the publication of Jaynes’ s seminal articles on
the information-theoretic foundations of Statistical Mechan-
ics [23, 24]. This irreversible statistical thermodynamics
provides the foundations for the treatment of dissipative
open macrosystems away (either near of far) from equilib-
rium [25]. This is the situation of biosystems, a result of
the evident general feature that to function they require to
have energy available which is provided by metabolic pro-
cesses, that is, the open biosystem “feeds” on this energy
and is driven away from equilibrium. A quite fundamen-
tal point is that the evolution of the system has associated
a nonlinear kinetics. From the point of view of the macro-
scopic physics here involved (irreversible thermodynamics
and kinetic theory), it consists in providing the description
of nontrivial nonlinear effects that change in time and space
and are maintained by means of a continuous energy supply.

We have already stressed the fact that the nonlinear-
ity of the equations that describe the evolution in time of
the macroscopic properties of the system is of fundamental
relevance, and the source for complex behavior in matter.
Complexity manifests itself in different situations involving
this nonlinear domain of dynamical systems theory, and two
relevant aspects are the nowadays fashionable determinis-
tic chaos and self-organization in dissipative systems. This
latter type of complex behavior in macroscopic system is
the one that could apparently have enormous relevance in
biosystems, in what is related to the origin of life, its func-
tioning, and evolution. Two questions naturally arise con-
cerning complex behavior in matter: (1) Which is the mi-
croscopic origin of complexity?, and (2) How can we deal
theoretically with complex systems and be able to perform
their rigorous analysis?

Here we describe an application of these ideas to a par-
ticular case of complex behavior in biosystems, with even-
tual large relevance in biopolymers (e.g.α-chains in pro-
teins), membranes, and microtubules in neuronal cells and
its eventual connection with consciousnness as proposed by
Roger Penrose [26]. Hence, and in conclusion of this Sec-
tion, we may state that the results to be described, resulting
from a promising particularly successful marriage of non-
linear nonequilibrium Statistical Thermodynamics and Bi-
ology, lead us to paraphrase Herbert Fröhlich saying thatit
is particularly auspicious to see that biological systems may
display complex behavior describable in terms of appropri-
ate physical concepts.

2 General Considerations on Com-
plexity in Boson Systems

More than thirty years have elapsed since the renowned late
Herbert Fr̈ohlich first presented his concept of long-range
coherence in biological systems [27], a question presently
in a process of strong revival providing an attractive and rel-
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evant field of research in Physics and Biology. According to
Fröhlich, biophysical systems possessing longitudinal elec-
tric vibrational modes may display, under appropriate con-
ditions, a collective phenomenon akin to a Bose-Einstein
condensation — not in equilibrium but as a complex be-
havior consisting in the emergence of a dissipative struc-
ture in Prigogine’s sense [11]. Fröhlich’s results are based
on the idea that active biological systems are open and very
far from equilibrium and have considerable amounts of en-
ergy available, through metabolic processes, that cause non-
linear changes in molecules and larger biological subsys-
tems. In ‘Life as a Collective Phenomena’ [28], F. Fröhlich
(Herbert’s son) expressed that if one thinks without precon-
ceptions of collective phenomena in which the discrete con-
stitutive individuals are modified in their behavior, and in-
deed in their constituting a large collective group where the
whole is more than and different from a simple addition of
its parts, living organisms would seem to be the ideal exam-
ple. Such a hypothesis of biological explanation in terms of
long-range coherence was originally suggested by Fröhlich
at the first meeting ofL’Institut de la Viein 1967 [27].

In Fröhlich model vibrational-polar modes are excited
by a continuous supply of energy pumped by an external
source, while these modes interact with the surrounding
medium acting as a thermal bath. The interplay of these two
effects — pumping of energy substracting entropy from the
system and dissipative internal effects adding entropy to the
system —, may lead to the emergence of complex behav-
ior in the system consisting in what can be calledFröhlich
effect:Provided the energy supply is sufficiently large com-
pared with the energy loss, the system attains a stationary
state in which the energy that feeds the polar modes is chan-
nelled into the modes with the lowest frequencies. The lat-
ter largely increase their populations at the expenses of the
other higher-in-frequency modes, in a way reminescent of a
Bose-Einstein condensation [29]. This highly excited sub-
set of modes may exhibit long-range phase correlations of
an electret type [30].

Fröhlich’s synchronous large-scale collective oscilla-
tions imply in intercellular microwave emissions which
would constitute a non-chemical and non-thermal interac-
tion between cells. These oscillations could therefore be re-
vealed by detection of emissions of GHz or THz radiation.
Such electromagnetic signals are of extremely low magni-
tude and the receiver technology to measure them was not
available during Fr̈ohlich’s time. It is only now that the pre-
dicted signals could be detected by adapting technology that
has been developed for space and astrophysical research.
Hence, a whole new area of biophysics is now ready for in-
vestigation [31].

Earlier experiments looking after Fröhlich effect were
not conclusive, but now — as notice above — a ‘second
generation’ of experiments are becoming available. They re-
quire further improvement, but already some preliminary re-
sults are encouraging [31]: Some evidence of a non-thermal
influence of coherent microwave radiation on the genome
conformational state inE. colihas been reported, which may
indicate that chromosomalDNA could be the target of mm
microwave irradiation within this system. Also low inten-

sity microwave irradiation of leukocytes results in a signif-
icant increase in biophoton emission in the optical range,
the origin of which is thought to involveDNA. Also it is
worth noticing the possible influence of the concept of bio-
coherence on the very particular dipolar system which is wa-
ter. It can be considered the possibility that biological wa-
ter might itself support coherent dipolar excitations extend-
ing over mesoscopic regions; thus water, instead of being
a passive space-filling solvent would be rised to an impor-
tant singular position whose full significance has yet to be
elucidated.

Nonbiological implications of Fr̈ohlich effect could also
be far-reaching. It can be mentioned some connection with
homeopathy and atmospheric aerosol physics [31]. Regard-
ing the latter, sunlight-pumped Fröhlich-like coherent exci-
tations may play a role in producing anomalies in the spec-
trum of light absorption [32]. At this point we may mention
a public safety concern, namely, the influence and eventual
deleterious effects of mobile phones in close proximity to
the head of the user as a result of the action of microwaves
on the biological material.

Moreover, we call the attention to an important addi-
tional aspect of Fr̈ohlich effect in connection with the long-
range propagation of signals in biological and nonbiologi-
cal materials. Such signals are wavepackets consisting of
Schr̈odinger-Davydov solitons[33] which are a dynamical
consequence of the same nonlinearities which are respon-
sible for Fr̈ohlich effect. It can be shown that the solitary
wave which, in biological as well as nonbiological systems,
is strongly damped as a result of the usual dissipative effects,
may propagate with weak decay travelling long distances
when moving in the background provided by a steady-state
Fröhlich’s condensate [34]. There already exist cases where
theory is seemingly validated by experiment. One in the
medical area of diagnosis, ultrasound imaging, is related not
to Fröhlich effect in polar vibrational systems, but in acous-
tical vibrational ones. Fr̈ohlich effect can also follow in the
latter case with the pumping source being an anntena emit-
ing ultrasound signals. A Davydov soliton, differently of the
regular dispersive sound wave, travels long distances nearly
unaltered, what can be of particular interest for improv-
ing detection in ultrasonography [35]. An interesting ad-
ditional complex behavior follows, consisting in that when
the soliton propagates with a velocity larger than that of the
group velocity of the normal vibrational modes there fol-
lows a phenomenon akin to Cherenkov effect in radiation
theory, namely a large emission of phonons in two sym-
metric cones centered on the soliton; this allows to interpret
the so-called X-waves in ultrasonography as thisFröhlich-
Cherenkov effect[35]. In what regards nonbiological mate-
rials, we first notice the case of the molecular polymer ac-
etanilide — which is a good mimic of certain biopolymers
— where Davydov soliton is evidenced in the infrared ab-
sorption spectrum. In this case is open to the experimenter
to look for an indirect verification of formation of Fröhlich
condensate, determining the lifetime of the soliton (obtained
via the Raman spectrum linewidth) when submitting the po-
lar vibrational oscillations (the CO-stretching or Amide-I
modes) to the action of an external pumping source (e.g. in-
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frared radiation) covering the frequencies of the dispersion
relation of the vibrational modes [34].

Other example where Fröhlich’s condensation and
Davydov’s soliton appear to be present is the case of the so-
called‘Excitoner’, meaning stimulated coherent emission of
excitons created by random excitations, in a situation simi-
lar to the case of photons in a laser [36, 37]. In this case
excitons, created in a semiconductor by an intense pulse of
laser radiation, travel through the sample as a packet and
are detected on the back of the sample. A weak signal in
normal conditions of thermal excitation is largely enhanced
when the system is pumped by a continuous external source
of infrared radiation. The theory suggests the formation of a
nonthermally excited Fröhlich condensate of excitons where
a weakly damped Schrödinger-Davydov soliton is created,
whose shape is in very good agreement with the experi-
mental observation [38]. In summary, boson systems away
from equilibrium may show a particularly noticeable com-
plex behavior — Fr̈ohlich effect; Davydov soliton; eventu-
ally Fröhlich-Cherenkov effect —, and the ‘Excitoner’, cit-
ing D. Snoke [36], is a phenomenon which may provide a
new kind of light source, but only time and imagination can
tell what new applications may arise from this novel effect.

Besides all these earlier aspects of Fröhlich’s effect,
quite recently there has been attempts to link it to a, say,
quantum theory and the brain (see chapter 7 in Ref. [26]).
Roger Penrose argues that computational procedures alone
cannot adequately explain all the operational manifestations
of human conscious understanding. It would be necessary
to look for something different as the appropriate type of
controlling mechanism — at least in the case of synaptic
changes that might have some relevance to actualconscious
activity. Such non-computational action must be the re-
sult of some reasonable large-scale quantum-coherent phe-
nomenon, coupled in some subtle way to macroscopic be-
havior. As a first step, we must look for a genuine role
for quantum coherence incytoskeletal activity. Specifi-
cally, it would be required that there would be large-scale
quantum-coherent behavior — of the like of the proposal
put forward by Fr̈ohlich — ocurring within themicrotubules
in the cytoskeleton of neurons. The suggestion is that
this quantum activity should be non-computationally linked
to a computational-like action (as for example argued by
Hameroffet al. [39, 40]) taking place along microtubules
(see Prologue in Ref. [26]).

Hence, Fr̈ohlich’s original ideas that such large-scale
quantum states would be likely to occur in cell membranes,
can be now extended — and perhaps more plausibly — in-
troducing the possibility of presenting themselves in the mi-
crotubules, where then we can seek for coherent quantum
behavior of this kind.

On the basis of this it appears to be appropriate to have
an in-depth analysis of Fröhlich-Bose-Einstein-like conden-
sation. This is so not only for the microscopic quantum me-
chanical aspects involved but, mainly, for the macroscopic
aspects, that is to say, the particular nonequilibrium ther-
modynamics associated to the complex behavior of the open
boson system providing the substrate for the phenomenon to
occur. We must recall the quite important fact thatbiological

systems are material systems which are open and working,
in general, in far-from-equilibrium thermodynamic condi-
tions.

Moreover, some additional related aspects of this com-
plex system are present, which can give rise to associated
phenomena of large relevance in biological systems, and
mainly in the brain. They are the following:

1. Presence of ordered water (or biological water), which
has extreme dielectric properties.

2. Formation of an ordered state of charge-density waves
of the kind of an electret state.

3. The question of propagation of signals (information)
at long distances, which possible in Fröhlich conden-
sate, consisting of nearly undamped and undistorted
Schr̈odinger-Davydov solitons.

4. Preferentially-directed emission of vibrational motion
in a Fr̈ohlich-Cherenkov cone.

Let us make some general previous comments on this,
before proceeding with a review of results concerning the
statistical thermodynamics of this engaging set of phenom-
ena.

2.1 Biological water.

According to Penrose[26], “There is in the case of micro-
tubules another matter of interest here, and this concerns the
very nature ofwater. The tubes themselves appear to be
empty — a curious and possibly significant fact in itself —
if we are looking to these tubes to provide for us the con-
trolled conditions favorable to some kind of collective quan-
tum oscillations. “Empty,” here, means that they essentialy
contain just water (without even dissolved ions). We might
think that “water,” with its randomly moving molecules, is
not a sufficiently organized kind of structure for quantum-
coherent oscillations to be likely to occur. However, the wa-
ter that is found in cells is not at all like the ordinary water
that is found in the oceans — disordered, with molecules
moving about in an incoherent random way. Some of it —
and it is a controversial matter how much — exists in an
orderedstate. Such an ordered state of water may extend
some 3 nm or more outwards from cytoskeletal surfaces. It
seems not unreasonable to suppose that the water inside the
microtubules is also of an ordered nature, and this would
strongly favor the possibility of quantum-coherent oscilla-
tions within, or in relation to, these tubes.”

2.2 The electret state

It has been conjectured the association of Fröhlich effect
with the emergence of an induced ferroelectric metastable
state of theelectrettype [30, 41]. We recall that an electret
is a piece of dielectric material exhibiting quasi-permanent
electrical charges. The term “quasi-permanent” meaning
that the time constants characteristics for the decay of the
charge are much larger than the time periods over which
studies are performed with the electret.
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Charge and polarization storage via the electret state
has now been found in many biomaterials, where may have
an important role in fundamental biophysical phenomena,
as well as in biomedical applications. An important as-
pect of electret research in biophysics is that water bound
to biopolymers in the so-called structured form (also called
bound water or biowater) may also be induced into an elec-
tret state. The presence of electret states in biomaterials,
mainly in biopolymers, seems to justify the usage of the term
bioelectret.

It is worth noticing that the first electret was made with
a material of biological origin, namely, carnauba wax from
the carnauba palm tree of Brazil. This was the material orig-
inally used by Eguchi [42] to verify experimentally the the-
oretical proposal of Heaviside [43], who coined the name
electret. Extensive pioneering investigations were due to
Gross [44], and electret research gradually moved to involve
many materials. Later on moved to the field of materials
of biological origin like proteins, and the picture emerged
that the electret effect may in fact be a universal property
of biopolymers in general such as polypeptides, polynu-
cleotides, polysacharides, etc. We are here adding to these
possibilities the cytoskeleton.

2.3 Propagation of signals

The same nonlinearity in the kinetic equations, which are
responsible for the complex behavior consisting of Fröhlich
effect, give rise to the existence of a particular kind of ex-
citation in this systems, namely, theSchr̈odinger-Davydov
soliton.This is a quite convenient source for the propagation
of signals, with the particular characteristic of being wholly
reconstructed without distortion after collision processes.

Solitonis the name coined to describe a pulse-like non-
linear wave (the solitary wave referred to above) which
emerges from a collision with a similar pulse having un-
changed shape or speed. Its relevance in applied sciences
has been described in a 1973 review paper by A. C. Scottet
al. [45].

The original category of solitary waves consists in the
one observed by the Scottish engineer Scott-Russell in Au-
gust 1834 in an English water channel, and reported in a
1844 meeting of the British Society for the Advancement of
Science [46]. During the second half of this century many
other types of solitary waves have been associated with a
number of physical situations in condensed matter physics.
Several, seemingly, have a fundamental role in important
technological areas of large relevance for contemporary so-
ciety. Among them we may highlight the case of doped or-
ganic polymers with very large conductivity for, e. g., use in
very light — almost two-dimensional (sheets) — batteries
[47, 48, 49], and the case of propagation of light in optical
fibers [50]. Another example is that of the so-called Davy-
dov’s solitons [33, 51], which may have a quite relevant role
in bioenergetics.

Davydov’s theory has received plenty of attention, and
a long list of results published up to the first half of 1992
are discussed in a comprehensive review due to A. C. Scott
[52]. As pointed out in that review, one question concern-

ing Davydov’s soliton is that of its stability at normal phys-
iological conditions, that is, the ability of the excitation to
transport energy (and so information) at long distances in
the living organism, in spite of the relaxation mechanisms
that are expected to damp it out at very short (micrometers)
distances. As we have shown, in fact Schrödinger-Davydov
solitons are present in systems which follow Fröhlich mod-
elling and, quite important, when travelling in Fröhlich con-
densate they provide undamped and undeformed ways to
propagate signals at long distances [34, 53].

2.4 Fröhlich-Cherenkov emission

Further complex behavior is expected in this particular and
notable system, that is, the possible emergence of a partic-
ular phenomenon, which we callFröhlich-Cherenkov effect,
consisting in that when the soliton is propagating with a ve-
locity larger than the group velocity of the normal modes
of vibration in the medium, a large number of phonons are
emitted at a certain angle with the direction of propagation
of the soliton [54].

We proceed next to present a revision of the main results
on the subject, from a point of view of statistical thermody-
namics.

3 Fröhlich Effect in Polar Modes

Let us consider a physical system modelling the conditions
that lead to the emergence of Fröhlich effect. It is described
in Fig. 1, where it is shown a particular biological system
and the mechanical analog whose quantum mechanical sta-
tistical thermodynamics has been analyzed. What we do
have is a periodic chain in which the polar vibrations of in-
terest are the CO-stretching (Amide I) modes. The system
is in interaction with the surroundings, a thermal bath mod-
elled by an elastic-continuum-like medium. The reservoirs
provide a homeostatic-like mechanism responsible for keep-
ing the elastic continuum in equilibrium at temperatureT0

(say 300 K). A source continuously pumps energy on the
polar modes driving them out of equilibrium.

The Hamiltonian consists of the energy of the free sub-
systems, namely, that of the free vibrations, withω~q being
their frequency dispersion relation (~q is a wave-vector run-
ning over the reciprocal-space Brillouin zone), and that of
the thermal bath composed by oscillations with frequency
dispersion relationΩ~q, with a Debye cut-off frequencyΩD.
The interaction HamiltonianHI contains the interaction
of the system of polar vibrations with an external source
(that pumps energy on the system), and the anharmonic in-
teractions between both subsystems. The latter are com-
posed of several contributions associated with quasi-particle
(phonons) collisions involving the system and the thermal
bath.
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Figure 1. An atomic model of theα-helix structure in a protein
and a rough description of the mechanical model we used (After
Ref. [29]).

For the quantum-mechanical statistical thermodynamic
study of Fr̈ohlich effect, whose results are reviewed here,
we have resorted to an informational statistical thermo-
dynamics based on the Nonequilibrium Statistical Oper-
ator Method (NESOM) [55-59] Besides providing micro-
scopic foundations to phenomenological irreversible ther-
modynamicsNESOM, also allows for the construction of
a nonlinear generalized quantum transport theory — a far-
reaching generalization of Chapman-Enskog’s and Mori’s
methods — which describes the evolution of the system at
the macroscopic level in arbitrary nonequilibrium situations
[60, 61, 62]. A most appropriated construction of the non-
equilibrium ensemble formalism is based on a variational
approach, consisting in the determination of the nonequi-
librium statistical operator by means of Jaynes’ principle of
maximization of the quantity of uncertaintity of information
(of Information Theory), usually referred-to as maximiza-
tion of the informational entropy (MaxEnt for short). Thus
from now on we will call the formalism as MaxEnt-NESOM,
which is extensively described and discussed in Ref. [58]
(see also Refs. [57] and [59]).

The next step consists in the choice, within the tenets
of MaxEnt-NESOM, of the basic set of dynamical variables
relevant for the present problem. Since we are dealing with
excitation of vibrations in modes~q (with energy~ω~q), we
need to introduce the number of excitations in each mode,
ν̂~q = a†~qa~q. The quantitiesa~q (a†~q), b~q (b†~q) are as usual the
annihilation (creation) operators of, respectively, normal-
mode vibrations in the system and bath in mode~q.

Moreover, once the formation of a coherent state is ex-
pected (Davydov’s soliton), we must consider the field am-
plitudesa~q anda†~q. Finally, since the thermal bath is taken
as remaining constantly in a stationary state at a temperature
T0, via an efficient homeostatic mechanism, we introduce its
Hamiltonian,HB . The average of these quantities over the

NESOM nonequilibrium ensemble constituts the basic set of
macrovariables, which we call

{
ν~q(t), 〈a†~q|t〉, 〈a~q|t〉, EB

}
, (1)

that is, they define Gibbs’s space of nonequilibrium ther-
modynamic states. This is the thermodynamic state space
in Informational Statistical Thermodynamics (IST for short)
[25].

The basic thermodynamic macrovariables are then given
by

ν~q(t) = Tr {ν̂~q%(t)} ; (2a)

〈a~q|t〉 = Tr {a~q%(t)} ; (2b)

〈a†~q|t〉 = 〈a~q|t〉∗ = Tr
{

a†~q%(t)
}

; (2c)

EB = Tr
{

ĤB%(t)
}

, (2d)

where%(t) is the nonequilibrium statistical operator in the
present case, including the time-dependent part associated
with the nonequilibrium macrostate of the system of interest
(which is evolving in time) and the time-constant canoni-
cal distribution of the bath in equilibrium at temperatureT0.
HenceEB is time independent since it depends only on the
latter; Tr indicates as usual the trace operation.

We recall that the nonequilibrium thermodynamic state
of the system, which is characterized by the set of
macrovariables of Eqs. (2), can also — alternatively and
completely — be characterized by the Lagrange multipli-
ers that the variational MaxEnt-NESOM introduces. They
constitute a set of intensive nonequilibrium thermodynamic
variables, which we designate by

{
F~q(t), f~q(t), f∗~q (t), β0

}
, (3)

whereβ0 = (kBT0)−1, since the thermal bath remains in
a stationary state at fixed temperatureT0, kB is Boltzmann
universal constant. The nonequilibrium statistical operator
depends on the dynamical variablesν̂~q, a~q, a†~q, andĤ0B (the
latter being the Hamiltonian of the stationary thermal bath)
and on the Lagrange multipliers (nonequilibrium intensive
thermodynamic variables) of Eq. (3).

Let us now consider the equations of evolution for the
basic variables. Sinceβ0 is assumed to be constant in time,
and so isEB , we are simply left to calculate the equations of
evolution for the population of the vibrational modes,ν~q(t),
and of the amplitude〈a~q|t〉 and its complex conjugate. As
noticed, these equations are derived resorting to the nonlin-
ear quantum generalized transport theory that the MaxEnt-
NESOMprovides. It was introduced as an approximate treat-
ment, however appropriate for the present case since the
anharmonic interactions are weak, consisting the so-called
second-order approximation in relaxation theory,SOART for
short [60]. It is usually referred to as the quasi-linear the-
ory of relaxation [63], which is a Markovian approximation
involving only the second order in the interaction strengths
[60].

The calculation shows that, because of the symmetry
properties of the system and the selected choice of basic
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variables, several contributions in MaxEnt-NESOM-SOART

vanish in this case: The surviving ones correspond to the
Golden Rule of quantum mechanics averaged over the non-
equilibrium ensemble [29]. In compact form, the one for the
population is

d

dt
ν~q(t) = I~q +

5∑

j=1

J~q(j)(t) + ζ~q(t) , (4)

where the first term on the right hand side is the one asso-
ciated with the pumping source, whereI~q is then the rate of
population increase that it generates, the five collision oper-
atorsJ~q(i)(t) are those arising out of the anharmonic inter-
actions. The first two terms correspond to collisional events
involving a single polar vibration and two of the bath, and

give rise to a pure dissipative term which takes the form

J~q(1)(t) + J~q(2)(t) = − 1
τ~q

[
ν~q(t)− ν

(0)
~q

]
, (5)

whereν
(0)
~q is the population in equilibrium at temperature

T0, andτ~q plays the role of a relaxation time. The other
terms,J~q(3)(t), J~q(4)(t), and J~q(5)(t) are those which are
nonlinear in the populations of the polar modes (and then
can be the source of complexity). The first two are those
responsible for the so-calledFröhlich effect, as a result that
they account for, through the nonlinear terms, of the transfer
of energy to the polar modes lowest in frequency. In fact,
they contain nonlinear contributions proportional to

c
∑

~q′
|V (2)

~q~q′ |2ν~q(t)ν~q′(t)
[
δ(Ω~q−~q′ − ω~q′ + ω~q)− δ(Ω~q−~q′ + ω~q′ − ω~q)

]
, (6)

d

whereV
(2)
~q~q′ is the matrix element for the interaction (cou-

pling strength), and we may notice that for modes~q′ such
thatω~q′ > ω~q the energy conservation as required by the first
delta function is satisfied, while this is not possible for the
second. Hence, this nonlinear contribution tends to increase
the population in mode~q at the expenses of the other modes
higher in frequency. Reciprocally, forω~q′ < ω~q, the mode~q

transfers energy to the modes lower in frequency. Moreover,
in Eq. (4) the termζ~q(t) acts as a source coupling the pop-
ulations of the vibrational modes to the amplitudes of the
expected coherent excitation (Davydov’s soliton as showna
posteriori).

On the other hand, the equations of evolution for the field
amplitudes are

c

∂

∂t
〈a~q|t〉 = −i ω̃q̃ 〈aq̃|t〉 − Γq̃ 〈aq̃|t〉+ Γq̃ 〈aq̃ |t〉∗ − iWq̃ 〈aq̃ |t〉∗+

+
∑

~q1~q2

R~q1~q2〈a~q1 |t〉〈a†~q2
|t〉

(
〈a~q−~q1+~q2 |t〉+ 〈a†−~q+~q1−~q2

|t〉
)

, (7a)

∂

∂t
〈a†~q|t〉 = the c.c. of the r.h.s. of Eq. (7a), (7b)

whereω̃~q = ω~q +W~q, W~q is a term of renormalization of frequency which will not be of interest in the following analysis, and
the lengthy expression forR~q1~q2

is given elsewhere [53] (its detailed expression is unnecessary for the analysis here). Finally,
Γ~q(t), which has a quite relevant role in what follows, is given by

Γ~q (t) =
1
2
τ−1
~q (t) +

4π

~2

∑

~q′
|V (2)

~q~q′ |2
[
1 + ν~q′ + νB

~q−~q′
]
δ(Ω~q−~q′ + ω~q′ − ω~q)

− 4π

~2

∑

~q′
|V (2)

~q~q′ |2
[
ν~q′ − νB

~q−~q′
]
δ(Ω~q−~q′ − ω~q′ + ω~q)

+
4π

~2

∑

~q′
|V (2)

~q~q′ |2
[
ν~q′ − νB

~q+~q′
]
δ(Ω~q+~q′ − ω~q′ − ω~q) . (8)

d
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whereνB
~p is the population of the phonons of the thermal

bath in mode~p.
The coupled equations (7) contain linear and tri-linear

terms. Ignoring the latter, the resulting linearized equation
has as solutions the normal damped wave motion, proceed-
ing with a renormalized frequencỹω~q and lifetimeΓ−1

~q . The
complete equations, i.e. including the nonlinear terms, are
of the Davydov’s soliton type, but with damping, or more
precisely, are nonlinear damped Schrödinger-like equations
[45, 64].

The presentation above has clearly evidenced the pres-
ence in the kinetic equations for the populations of the po-
lar modes of the nonlinearities which are responsible for
Fröhlich’s effect. Let us better characterize this. We recall
the results of Refs. [29] and [65]: conservation of energy
and momentum in the collisional events leads to the relevant
fact that the polar modes are coupled in bundles involving a
certain small number of modes; such number depends on the
physical parameters of the system. Figure 2 illustrates a par-
ticular case when twelve modes are coupled (those six and
other six symmetrical in Brillouin zone). It is clear the emer-
gence of Fr̈ohlich’s effect at a (scaled) intensity of the exter-
nal source of roughly103; the mode at the lowest frequency
with population,ν1, greatly increases (note that the scale
is logarithmic) at the expenses of the other modes higher
in frequency. Hereλ is an open parameter measuring the
intensity of the nonlinear coupling in the kinetic equations
(for illustration we tookλ = 1).

Figure 2. Populations of a set of modes in the steady state under a
constant pumping intensitȳI.

Evidently, there exist a large number of sets of twelve
modes repeating this behavior, and then there is a collection
of modes, those at the low frequency side of the frequency
dispersion spectrum, which grow largely at the expenses
of all the other modes in Brillouin zone. This is shown

in Fig. 3, for a scaled intensity of the pumping source of
2.6× 105, i.e. (see Fig. 2) above the threshold for the onset
of Fröhlich’s effect. For comparison we have drawn the case
(diamond-line) when the nonlinear coupling is switched off
and clearly is observed a normal behavior of similar increase
in all the populations.
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Figure 3. Populations of the modes in the steady state forĪ =
2.6×105, compared with the case of absence of nonlinear interac-
tions.

In terms of the Lagrange multipliers of Eq. (4), the pop-
ulation in each mode~q is given by

ν~q(t) = [exp{F~q(t)} − 1]−1 + |f~q(t)/F~q(t)|2 , (9)

composed of a main contribution (resembling a Planck-
like distribution) plus another one related to the amplitudes
(|〈a~q|t〉|2) and small.

Now, the Lagrange parameterF~q(t) (intensive nonequi-
librium thermodynamic variable) can alternatively be writ-
ten in either of two forms, namely

F~q(t) = β0[~ω~q − µ~q(t)] , (10)

introducing a so-called quasi-chemical potential per mode
µ~q(t), as done by Landsberg [66] and Fröhlich [27], and
whereβ0 = 1/kBT0, or

F~q(t) = β~q(t)~ω~q =
~ω~q

kBT ∗~q (t)
, (11)

introducing a quasitemperature per mode as it is done in the
physics of semiconductors [67, 68] and in radiation theory
[69].
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Figure 4. The quasitemperature associated to the set of modes in
Fig. 2.

Figure 5. The quasi-chemical potential associated to the set of
modes in Fig. 2.

In the case of the modes involved in Fig. 2, we are pre-

senting in Fig. 4 the evolution in time of the quasitempera-
ture of these modes, which keeps increasing until the steady
state sets in. It is clear the large increase (note that the scale
is logarithmic) of the quasitemperature of the mode lowest in
frequency in the set. On the other hand, in Fig. 5 is presented
the evolution in time of the quasi-chemical potentials, show-
ing that µ1 tends to a steady-state value that comes quite
near to the frequencyω1 (tends to it as the intensity of the
source goes to infinity); hence, it ought to be noticed that the
quasi-chemical potential does not coincide with the lowest
frequency and therefore there is not a true analogy with a
Bose-Einstein condensation. Thus, to refer Fröhlich’s effect
as a Bose-Einstein-like condensation is a kind of freedom of
speech.

Having thus clearly characterized Fröhlich’s effect in
the context of aNESOM-based nonlinear quantum kinetic
theory, we proceed to describe the relevant associated phe-
nomenon of solitary waves propagation.

4 Undamped and Undeformed Sig-
nals

We consider now the propagation of coherent signals in
Fröhlich’s condensate, that is proceeding to the analysis of
the equations of evolution for the polar modes amplitudes,
as given by Eqs. (7a) and (7b).

We introduce a representation in direct space, defining
the averaged (over the nonequilibrium ensemble) field oper-
ator

ψ(x, t) =
∑

~q

〈a~q|t〉eiqx . (12)

for linear propagation along the, say,x direction in bulk
or along the one-dimensional polymer. At this point we
consider a first type of analysis, specifying the vibrational
modes as being of the class of longitudinal polar-modes we
have been considering. Their frequency dispersion relation
can be approximated (to a good degree of accuracy) by the
parabolic-lawω~q = ω0−αq2, whereω0 andα are constants,
standing for the frequency at the zone center (the maximum
one) and the curvature at this centre, respectively. Next, us-
ing Eqs. (7), after neglecting the coupling terms with the
conjugated amplitude (what can be shown to be the case
when we introduce from the outset a truncated Hamiltonian
in the so-called Rotating Wave Approximation [70]), it fol-
lows that the average field amplitude satisfies the equation

c

i~
∂

∂t
ψ(x, t) = (~ω0 + ~α

∂2

∂x2
)ψ(x, t)− i~

∫ L

0

dx′

L
Γ(x− x′)ψ(x′, t) +

+
∫ L

0

dx′

L

∫ L

0

dx′′

L
R(x− x′, x− x′′)ψ(x′, t)ψ(x′′, t)ψ∗(x, t), (13)

d
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whereΓ andR are the back-transforms to direct space of
Γ~q in Eq. (8) andR~q1~q2 in Eq. (7a), andL is the length of
the sample. Moreover, we have taken a time-independent
populationν~q, that is, according to Eq. (4) it is either the
equilibrium distribution at temperatureT0 when no external
pumping source is present (i. e.I~q(ω~q) = 0), or when in the
presence of a constant pumping source leading, after a short
transient has elapsed, to a steady state.

Equation (13) is a nonlinear Schrödinger-type equation
with damping [64]. Introducing a local approximation, that
is, neglecting space correlations, after using the expressions

R(x− x′, x− x′′) = ~Gδ(x− x′)δ(x− x′′),(14a)

Γ(x− x′) = γsδ(x− x′) , (14b)

it follows that Eq. (13) becomes

i
∂ψ(x, t)

∂t
− (ω0 − iγs)ψ(x, t)

−α
∂2

∂x2
ψ(x, t)−G |ψ(x, t)|2 ψ(x, t) = 0 , (15)

Equations (7) and (15) are of the form of the equations
derived by Davydov in an alternative way, but the present
thermodynamic treatment is clearly showing the presence of
damping effects. In equilibrium conditions at temperature
300 K, the damping constants have values corresponding to
lifetimes in the order of a few picoseconds. For the case of
a Gaussian signal impinged at the beginning of the polymer
chain, which can be approximated to a good degree of accu-
racy by a hyperbolic secant shape, and next using the Inverse
Scattering Method [71] it is obtained the solution

c

ψ(x, t) = A exp
{

i
[

υ

2α
x− (ωs − iγs) t− θ

2

]}
sech

[
A

( |G|
2α

)1/2

(x− υt)

]
, (16)

d

whereγs is, evidently, the reciprocal lifetime of the excita-
tion (takingγs = 0 andω0 = 0, Eq. (16) is the expression
for Davydov’s soliton in its original version [33, 51]), and
we usedG = |G|eiθ. Moreover,

ωs = ω0 − υ2

4α
+
|G| A2

2
, (17)

is the reciprocal period of the solitary wave andA andυ are
an amplitude and a velocity of propagation fixed by the ini-
tial condition of excitation imposed by the external source.

Hence, it is proved the possible presence of Davydov’s
solitons in polymers, like theα-helix protein in biological
matter, but, we stress, of a damped character. The mech-
anism for the formation of the soliton is in this case in-
terpreted as follows [52]: Vibrational energy of theCO-
stretching (Amide-I) oscillators that is localized on the
quasi-periodic helix acts — through a phonon coupling ef-
fect — to distort the structure of the helix. The helical dis-
tortion reacts — again through phonon coupling — to trap
the Amide-I oscillation and prevents its dispersion in a self-
trapping-like process.

Let us consider the experimental observation of this ex-
citation. As already noticed, experimental observation is
difficult in active biological materials. A way around this
difficulty consists into the experimental study of polymers
whose vibronic characteristics resemble those of biopoly-
mers, and a quite favorable one is acetanilide. Experiments
of infrared absorption in acetanilide showed an “anomalous”
band in theIR spectrum, which was ascribed to a Davy-
dov’s soliton [72], and later on reproduced in other exper-
iments, and also observed in Raman scattering experiments
[73, 74, 75, 76, 77].

We analyzed the experiment of Careriet. al [72], resort-
ing to a response function theory consistently derived in the
framework of MaxEnt-NESOM [57, 78, 79]. Without going

into details (see [34, 80]), the absorbance in the region of
theCO-stretching mode has the expression

α(ω) = αn(ω) + αs(ω) , (18)

which describes two bands: one centered aroundω~q, the fre-
quency of the normal mode, (~q being equal to theIR-photon
wave-vector) and with intensity proportional to the popu-
lation in equilibriumν~q at temperatureT0, since no exter-
nal pump is present [I~q = 0 in Eq. (4)] and the other is
centered aroundωs, the frequency of the soliton. The band
widths areγn = τ−1

0 andγs = τ−1
0 +A(|G|/2α)1/2, where

τ−1
0 is the one of Eq. (5), for~q near the zone center. Let

us consider the experiments of reference [72], and take, for
example, the case ofT0 = 80 K; on the basis of the red
shift of the band due to the soliton in relation to the nor-
mal CO-stretching band, that is,ω0 − ωs ≈ 16 cm−1, and
that γs − γn ≈ 3.6 cm−1, we find thatA(|G|/2α)1/2 ≈
2.3 × 106 cm−1 andυ ≈ 3 × 104 cm s−1. The calculated
spectra is shown as a full line in the lower part of Fig. 6,
while the dots are experimental points, evidencing a satis-
factory agreement; in this figure are also shown the spectra
corresponding toT0 = 50 K and 20 K, where again there is
a good agreement between theory and experiment.

In Fig. 7 it is shown the propagation of the energy ac-
companying the soliton (proportional to|ψ(x, t)|2) along a
few picoseconds after the application of the initial Gaussian-
like excitation. It is clearly evidenced the conservation of
the shape characteristic of the soliton, but accompanied, as
already described, with a decay in amplitude in the picosec-
ond range. Hence, a pulse signal impinged on the system
would be carried a few micrometers, since the velocity of
propagation is≈ 3× 104 cm s−1.
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Figure 6. Infrared absorption spectra in acetanilide for three differ-
ent values of temperature. Dotted curve is from the experimental
data of reference [37], and the full curve the calculation inNESOM-
based response function theory.

Figure 7. Optical vibrations: Profile of the soliton energy (propor-
tional to |ψ(x, t)|2) along a few picoseconds after application of
the initial Gaussian-like perturbation (in the experimental condi-
tions reported in Ref. [37] forT = 80 K).

However, the situation may be substantially modified if
the excitation propagates in a nonequilibrium background,
namely the one provided by the presence of a constant
pumping source [I~q 6= 0 in Eq. (4)] leading the system to
a steady state, with populations, say,ν̄~q, constant in time but
much larger than the population in equilibrium, particularly
in the Fr̈ohlich’s condensate described in the previous Sec-
tion. As we have seen the solitary wave is a wave packet
formed in terms of the amplitudes〈a~q|t〉, as indicated by
Eq. (12), which follows the equation of evolution, Eq. (7),

whose solution is Eq. (16). But Eq. (16) is a consequence
of the Eq. (7a) for the amplitudes, where we can see that is
present a damping with a characteristic lifetimeΓ−1

~q , given
by Eq. (8). But it has a peculiar form, i.e. it is composed
of a relaxation timeτ~q (associated to the decay of the po-
lar vibrations producing thermal agitation in the surround-
ing media) plus a contribution associated to the presence
of the nonlinear coupling terms in the equations of evolu-
tion. They depend on the populations of the polar modes
and have the very peculiar characteristic that for the modes
in the condensate, with increasing populations the quantity
Γ~q decreases and then the lifetime of these modes increases.
On the contrary, for the “normal” modesΓ~q increases and
then the lifetime of these modes decreases.

It is quite interesting to note a close connection with
Fröhlich’s effect, in the sense that in the steady state, the
population of the polar modes is given by

ν̄~q ' N~q/2Γ~q , (19)

and precisely the fact thatΓ~q decreases (and tends to zero
with increasing intensity of the pumping source) for the
modes in the condensate, these modes largely grow. Using
the “two fluid” model suggested by Fig. 3, that is neglecting
the minor differences between both types of modes with dif-
ferent~q, we can estimate the reciprocal of the lifetimes for
the modes in the condensate (index one) and in the “normal”
fluid (index nought) in terms of the intensity of the source,
what is shown in Fig. 8 (notice the logarithmic scale).

Hence, we can write Eq. (12) as

ψ(x, t) =
∑

~q∈R1

〈a~q|t〉eiqx +
∑

q̃∈R0

〈aq̃|t〉eiqx , (20)

whereR1 refers to the modes in the condensate andR0 in
the “normal” fluid. But beyond the threshold for emergence
of Fröhlich’s effect the contribution from the modes inR0

decay rapidly (pico- to subpico-second scales), surviving
with a very long lifetime the contribution of the modes in
R1. Therefore, the soliton is composed of an undeformed
wavepacket of these modes with a very long lifetime, i.e.
thatγS → 0 in Eq. (16).

Therefore we do have the quite relevant result that
once Fr̈ohlich’s condensate has been established, signals can
propagate along systems showing such complex behavior (a
macroscopic quantum-coherent state) as nearly undamped
— and then traversing long distances — and unaltered —
that is they are neither deformed nor, more important, modi-
fied while crossing other signals. This is illustrated in Fig. 9.
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Figure 8. Reciprocal lifetime of the representative high frequency
modes (index nought) and of the low frequency modes (index one)
with increasing intensity of the source. Both̄Γ are in units of
τ̄ ∼ 0.4 picoseconds, and the intensityS in adimensional units,
but such that1S corresponds to a pumping power of1 µW per
mode.

Figure 9. Movement, collision, and propagation of undeformed
and undamped solitons. After Ref. [81].

We reiterate then that the relevant point to be stressed
is thatFröhlich effectandDavydov soliton are phenomena
arising out of the same nonlinear kinetic effectsthat are
present in Eq. (4) for the populationsν~q(t), and in Eq. (8)
for the reciprocal lifetimesΓ~q. We stress once again that as
a consequence of the fact that, because of Fröhlich effect,
the population of the modes lowest in frequency largely in-
crease, concomitantly their lifetime also largely increases
(i.e. their reciprocal lifetimeΓ~q in Eq. (8) largely de-
creases), while for the modes at intermediate to high fre-
quencies their lifetime largely decreases (their reciprocal
lifetime Γ~q largely increases), as already illustrated in Fig. 8
[53]. Hence, in the expression for the average field ampli-
tude of Eq. (12), after a fraction of picosecond following

the application of the exciting pulse has elapsed, there sur-
vive for a long time the contributions from the modes low-
est in frequency, a survival time that keeps increasing as
the intensityS increases. This implies that it may be ex-
pected that an excitation composed by a coherent interplay
of the low-lying-in frequency excited polar (optical) modes
in biopolymers, may propagate in the form of aDavydov
solitary wave traveling undeformed and nearly undamped
while Fröhlich’s condensate state is maintained.

5 Fröhlich’s Effect in Non-polar
Modes

So far we have considered propagation of vibronic waves in
biological media, but restricted to the case of polar modes.
We briefly consider next the case of longitudinal acoustic
modes. For that purpose we return to Eqs. (4), where now
we take into account that the dispersion relationω~q is, for
acoustic-like vibrations,sq, wheres is the velocity of sound
in the media, this meaning that we are using a Debye model.
Using this dispersion relation, and theAnsatzthat the exci-
tation is expected to be a closed-packet solitary wave, we
arrive at the equivalent of Eq. (16), in this case acquiring the
expression

i
∂

∂t
ψ(x, t) +

~
2Ms

∂2

∂x2
ψ(x, t) + iγsψ(x, t)

−Gs|ψ(x, t)|2ψ(x, t) = 0 (21)

as shown in [54], withMS being a parameter with dimen-
sions of mass. Evidently, this Eq. (21) is formally identical
with Eq. (16) if in the latter we takeω0 = 0 and, of course
with the coefficients being those corresponding to this case
of LA (longitudinal acoustic) vibrations. However, a remark-
able difference may be noticed, namely, while in Eq. (15)
the coefficient in front of the second derivative in space is
determined, throughα, by the bandwidth of theLO (longi-
tudinal optical) vibrations dispersion relation, in this case,
as shown in Ref. [54], it depends through the pseudo-mass
Ms on the characteristics of the experiment, that is, depends
on the width of the solitary wave packet which is determined
by the initial condition. The solution for a given hyperbolic
secant-profile signal impinged on the system, say, the same
as in the previous subsection, is given by

ψ(x, t) = A exp
{

i
[Msv

~
x− (ωs − iγs)t− θ

2
]}

sech
{
A[ |Gs|Ms

~
]1/2(x− vt)

}
, (22)

where

ωs =
|Gs|A2

2
− Msv

2

4~
, (23)
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Figure 10. Acoustic vibrations: The steady state populations of the
three relevant modes in the set — as described in the main text —,
with increasing values of the intensity of the external source pump-
ing modes labeled 2 and 3 in the ultrasonic region (after Ref. [54]).

As in the case ofLO vibrations, the “acoustic” solitary
wave is damped, and one may wonder if, as in the case of
the “optical” solitary wave, this lifetime may be largely ex-
tended by the action of nonlinear kinetic terms enhanced
by the pumping of energy on the system. We reconsider
Eqs. (4), now specialized for theLA vibrations, and look for
the stationary states when a constant exciting source is con-
tinuously applied [54].

To perform numerical calculations we choose
a set of parameters in a typical order of mag-
nitude approximation. We take for the Bril-
louin end-zone wavenumberqB = 3.14× 107 cm−1,
ω~q = sq with s = 1.8× 105 cm s−1, Ω~q = sBq with
sB = 1.4× 105 cm s−1 (that is, Debye frequency-
dispersion relations for both the system,ω~q, and the bath,
Ω~q). Moreover, the matrix elementsV (1) andV (2) are pro-
portional to the square roots of the wavenumbers [80], say
V

(1,2)
~q~q′ = K(1,2)[|~q1||~q2||~q1 − ~q2|] 1

2 , andK(1) is determined
from a typical value of 10 ps for the lifetimeτ~q in Eq. (5)
(for any system it can be determined from the linewidth
in Raman scattering experiments). An open parameter
λ = |K(2)/K(1)|2 is introduced, and finally,L, the length of
the sample in the direction of propagation is taken as 10 cm.
Therefore, the permitted wavenumbers for propagation of
vibrations are contained in the intervalπ/L ≤ q ≤ qB . For
these characteristic values it follows that, because of en-
ergy and momentum conservation in the scattering events,
the set of equations of evolution, Eqs. (4), which in prin-
ciple couple all modes among themselves, can be sepa-
rated into independent sets each one having nine modes.
For example, taking the mode with the lowest wavenum-
ber π/L, the set to which it belongs contains the modes
κn−1π/L, whereκ = (s + sB)/(s− sB) = 8 in this case,
andn = 2, 3, . . . , 9. Let us callν1, . . . , ν9 the correspond-
ing populations, having frequenciesω1 = 5.6 × 104 Hz,
ω2 = 4.5×105 Hz. ω3 = 3.6×106 Hz,ω4 = 2.9×107 Hz,

Figure 11. Acoustic vibrations: The population in the steady state
for a pumping intensityS = 1023, of the modes along the spectrum
of frequencies of the acoustic modes. Dots indicate the modes in
the first set (the remaining part of the spectrum up to the highest
Brillouin frequencyωB = 9.5×1011 Hz has been omitted). (After
Ref. [54]).

ω5 = 2.3×108 Hz,ω6 = 1.8×109 Hz,ω7 = 1.5×1010 Hz,
ω8 = 1.2 × 1011 Hz, ω9 = 9.5 × 1011 Hz. Moreover, for
illustration, the open parameterλ is taken equal to1, and we
consider that only the modes2 and3 (in the ultrasonic re-
gion) are pumped with the same constant intensityS = Iτ̄ ,
whereI2 = I3 = I, andI1 andIn with n = 4, . . . , 9 are
null, andτ̄ is a characteristic time used for scaling purposes
(as in [29]) here equal to0.17 s. The results are shown
in Fig. 10, where it is evident the large enhancement of
the population in the mode lowest in frequency (ν1), for
S0 ' 1019, at the expenses of the two pumped modesν2

andν3, while the modesν4 to ν9 (higher in frequency) are
practically unaltered.

The emergence of Fröhlich effect is clearly evidenced
for this case of acoustical vibrations: In fact, pumping of
the modes in a restricted ultrasonic band (in the present case
in the interval4.5× 105 Hz≤ ω ≤ 2.8× 107 Hz), leads at
sufficiently high intensity of excitation to the transmission
of the pumped energy in these modes to those with lower
frequencies (ω < ω2), while those with larger frequencies
(ω > 2.8× 107 Hz) remain in near equilibrium, as shown
in Fig. 11. It may be noticed that for the given value of
τ̄ , for S = 1023, the flux power provided by the external
source, in the given interval of ultrasound frequencies being
excited, is of the order of milliwatts. Modes in the interval
5.6 × 104 ≤ ω~q ≤ 4.5 × 105, those lowest in frequency,
have large populations in comparison with those higher in
frequency.

We can see then that there follows a close analogy with
the case of polar vibrations, which is reinforced by the fact
that the lifetime of the modes in the condensate also largely
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Figure 12. Acoustic vibrations: The lifetime of the same modes as
in Fig. 11, in terms of the intensity of the pumping source (after
[54]).

Figure 13. The quasi-temperature, defined in Eq. (36) for the
modes in Fig. 10.

increases, as shown in Fig. 12 where the reciprocal of that
lifetimes are displayed for the modes considered in Fig. 10.
Therefore, the acoustical-vibrational soliton, composed by
the coherent interplay of low-frequency acoustical modes,
travels nearly undamped in the Fröhlich’s condensate.

Moreover, we can also associate to the excited acousti-
cal modes in Fig. 10 a quasitemperature as shown in Fig. 13,
and quasi-chemical potentials in Fig. 14 — as defined by
Eqs. (10) and (11) — which display the same behavior as in
the case of polar vibrations.

Figure 14. The quasi-chemical potential of the modes labeled 1 to 3
in Fig. 11, with mode 1 corresponding to the one with the lowest
frequency in the given set: it is evident the emergence of a “Bose-
Einstein-like condensation” forS approaching a critical value of
the order of1019.

6 Fröhlich-Cherenkov Effect

Considering either an “optical” or an “acoustical” soliton of
the Davydov type respectively described in the previous sec-
tions, we recall that the amplitude and the velocity of prop-
agation are determined by the initial condition of excitation
(that is, the energy and the momentum transferred in the pro-
cess of interaction with the external source). For example, in
the case of the acetanilide we have considered in section 4,
and in the conditions of the experiment of Careriet al. [72],
the velocity of propagation is larger than the group velocity
of the phonons in the optical branch corresponding to the
CO-stretching vibrations, which is small because the disper-
sion relation is flat.

When the soliton velocity of propagation, sayv, is larger
than the group velocity of the normal vibrations, (the ve-
locity of sounds when the acoustic modes are involved),
it may follow a Cherenkov-like effect. We recall that orig-
inally it was observed in connection with electromagnetic
radiation by Cherenkov in 1934 [69]. It is a result that in
a material media with an index of refractionn, the velocity
of propagation of light isc/n, smaller than the velocityc
in vacuum (sincen > 1), and if an electron with velocity
u > c/n (but with the relativistic limitation ofu < c) trav-
els in this medium then, along a cone defined by the angle
cos θ = c/n u, is emitted the so-called Cherenkov radiation:
that is, along such direction photons are strongly emitted.
This is the so-called superluminal radiation [82, 83].

Something similar is present in the case of phonons in
the photoinjected plasma in semiconductors in the presence
of an electric field: when the drift velocityv of the carriers
exceeds the group velocity of the~q-mode optical phonon,
then along a cone whose axis is along the electric field, and



474 Marcus V. Mesquitaet al.

with an aperture with angleθ~q defined by

cos θ = ω~q/vq , (24)

there follows a large emission of~q-mode optical phonons
[84].

This is also the case when the soliton, either optical or
acoustical, travels in bulk with a velocityv larger than the
group velocity of the normal vibronic waves. This is de-
scribed elsewhere [54], and next we briefly outline the re-
sults. Inspection of Eq. (5) tells us that the presence of the
direct coupling to the external source viaI~q tends to increase
the population of phonons. But, as already noticed, because
of Fröhlich effect, such pumped energy tends to concentrate
in the modes lowest in frequency, those at the Brillouin zone
boundary in the case of optical vibrations and around the
zone center in the case of acoustic vibrations.

Take the case of acoustic phonons, when there should
be a large increase in the population of the modes with
very small wavenumber. A straightforward calculation of
Eq. (2a) leads to the result that (cf. Eq. (9) for LO phonons)

ν~q(t) = [eFq̃(t) − 1]−1 +

∣∣∣∣∣
fq̃(t)
Fq̃

∣∣∣∣∣

2

· (25)

Evidently, in the absence of the perturbation, that is,
I~q = 0 and 〈a~q〉 = 0 and thenf~q = 0, it follows that
F~q(t) = ~sq/kBT0, and we recover the usual Planck dis-
tribution in equilibrium. In the presence of the perturbation
we need to obtain bothF~q(t) andf~q(t). On the one hand, a
direct calculation tell us that

|f~q(t)/F~q(t)|2 = |〈a~q|t〉|2

≈
∫ L

0

dx

L
|ψ(x, t)|2 ≈ (A2w2/L2)e−γst , (26)

after using Eqs. (20) and (22) [54], and, we recall, un-
der a sufficiently intense excitationγs is small and then

| < aq|t > |2 becomes near time independent; we have
calledw the width of the solitary wave packet.

On the other hand,F~q in steady state conditions after
application of the constant external excitation, depends on
the intensity of the pumping source. We recall that this La-
grange multiplier may be rewritten in either of two alterna-
tive forms [cf. Eqs. (10) and (11)], which specifically in this
case of steady-state acoustic vibrations in Debye model one
is

F~q = [~sq − µ~q]/kBT0 , (27)

whereµ~q plays the role of a quasi-chemical potential for
mode~q [85, 66] as we have already noticed in the Section
on polar vibrations. In Fig. 14 is shown the dependence of
the quasi-chemical potentials, corresponding to the modes
in Fig. 10, with the pumping intensity. The other is

F~q = ~sq/kBT ∗~q , (28)

introducing the quasitemperatureT ∗ per mode, as it is done
in semiconductor physics [86]. In Fig. 13 is shown the
dependence of the quasitemperature, corresponding to the
modes in Fig. 10, with the pumping intensity.

Let us take the choice of Eq. (28), then the quasitemper-
atureT ∗~q is given by

kBT ∗~q = ~sq/ ln[1 +
1

ν~q − |〈a~q〉|2 ] , (29)

and we recall that

|〈a~q〉|2 ≈ A2w2/L2, (30)

(for γs → 0, with ν~q determined in each case solving
Eq. (4)). Using Eqs. (27) to (30) we have that [54]

µ~q = ~vq cos η~q , (31)

c
where

cos η~q =
s

v

[
1− kBT0

~sq
ln[1 + (ν~q − |〈a~q〉|2)−1]

]
=

s

v
[1− T0

T ∗~q
] . (32)

d

Figure 15. The direction of propagation of the waves of Cherenkov
radiation, when spatial dispersion is taken into account, for the or-
dinary wave (subscript 1) and the anomalous wave (subscript 2)
(Adapted from Ref. [83]).

These results imply in this case in a phenomenon of a pecu-
liar character which we callFröhlich-Cherenkov-effect. In
fact, we note, first, that there follows a large enhancement of
phonons in mode~q for µ~q approaching~sq, and second, the
linear motion of the soliton defines a particular direction, the
one given by its velocity of propagation~v. Therefore, there
is a preferential direction of production of vibrational waves
determined by the condition

~sq ≈ ~vq cos η~q = µ~q , (33)

what implies in that

cos η~q ≈ s/v . (34)
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Equation (33) defines the direction of propagation~q of
the longitudinal vibration and its modulus. Sinceη~q depends
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and we recall that

|〈a~q〉|
2 ≈ A2w2/L2, (32)

(for γs → 0, with ν~q determined in each case solving

Eq. (8)). Using Eqs. (29) to (32) we have that [46]

µ~q = ~vq cos η~q (33)

where

c

cos η~q =
s

v

[

1 −
kBT0

~sq
ln[1 + (ν~q − |〈a~q〉|

2)−1]
]

=
s

v
[1 −

T0

T ∗
~q

] . (34)

d

These results imply in this case in a phenomenon of a pe-
culiar character which we call Frhlich-Cherenkov-effect. In
fact, we note, first, that there follows a large enhancement of
phonons in mode ~q for µ~q approaching ~sq, and second, the
linear motion of the soliton defines a particular direction, the
one given by its velocity of propagation ~v. Therefore, there
is a preferential direction of production of vibrational waves
given by

~sq ≈ ~vq cos η~q = µ~q (35)

or

cos η~q ≈ s/v. (36)

Equation (35) defines the direction of propagation ~q of
the longitudinal vibration and its modulus. Since η~q depends
only on the modulus of ~q, there follows two Cherenkov-like
privileged directions of emission of ~q-mode phonons, one
forward and one backwards, like the normal and anomalous
Cherenkov cones in radiation theory as illustrated in Fig. 9
adapted from [53]. In the present case both directions are
symmetrical on both sides of the centre defined at each time
by the position occupied by the soliton. This may account
for the observed so-called X-waves [1, 56, 3]. In Fig. 12
is illustrated the cases of propagation of the normal sound
wave (upper figure) and of the, presumably, solitary wave-
packet selectively excited by the transducer (lower figure)
with velocity larger than the sound velocity in the medium.
The figure has appeared in [3]. Given the angle η~q (called the
axicon angle in [1]), then v is larger than s in the percentage
[(v/ cos η~q) − s]/v. Same arguments are valid for the case
of the optical soliton, when ∇~qω~q (the group velocity of the
normal mode) enters in place of s. In the case of Fig. 12,
a rough estimate gives η ∼ 13◦ and vs/s ∼ 1.02, that is,
the velocity of propagation of the soliton, v, is roughly 2%
larger than the velocity of sound in the medium.

3 Concluding remarks

We have considered the propagation of vibronic excitations
in nonlinear condensed matter media, like biological mate-
rial. Because of the nonlinearities in the kinetic equations
that describe the evolution of the macroscopic collective
modes (nonlinearities having their origin in the microscopic
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Figure 11. The direction of propagation of the waves of Cherenkov
radiation, when spatial dispersion is taken into account, for the or-
dinary wave (subscript 1) and the anomalous wave (subscript 2)
(Adapted from Ref. [53]).

Figure 12. Normal sound propagation (upper figure), and the exci-
tation interpreted as a supersonic soliton (lower figure); from ref-
erence [3] (We thank W. A. Rodrigues and J. E. Maiorino for pro-
viding us with a postscript file of this picture).

anharmonic interactions between the system and the sur-
roundings) it is expected that complex behavior shall arise.

Resorting to an appropriate thermo-mechanical statisti-
cal approach, we have shown that such complex behavior
consists of four particular phenomena. One is that the nor-
mal vibrational modes are accompanied by another type of
excitation, consisting in the propagation of solitary waves of
the Schrödinger-Davydov type. They are undeformed waves
composed by a coherent state of normal modes. Although
the wavepacket is spatially undeformed, it presents, as it
should, decay in time with a given lifetime resulting from the
dissipative effects that develop in the excited sample. The

Figure 16. Normal sound propagation (upper figure), and the exci-
tation interpreted as a supersonic soliton (lower figure); from Ref.
[88] (We thank W. A. Rodrigues and J. E. Maiorino for providing
us with a postscript file of this picture).

only on the modulus of~q, there follow two Cherenkov-like
privileged directions of emission of~q-mode phonons, one
forward and one backwards, like the normal and anoma-
lous Cherenkov cones in radiation theory as illustrated in
Fig. 15 adapted from [83]. In the present case both direc-
tions are symmetrical on both sides of the centre defined at
each time by the position occupied by the soliton. This may
account for the observed so-called X-waves [35, 87, 88]. In
Fig. 16 is illustrated the cases of propagation of the normal
sound wave (upper figure) and of the, presumably, solitary
wave-packet selectively excited by the transducer (lower
figure) with velocity larger than the sound velocity in the
medium. The figure has appeared in [88]. Given the angle
η~q (called the axicon angle in [35]), thenv is larger thans
in the percentage[(v/ cos η~q) − s]/v. Same arguments are
valid for the case of the optical soliton, when∇~qω~q (the
group velocity of the normal mode) enters in place ofs. In
the case of Fig. 16, a rough estimate givesη ∼ 13◦ and
vs/s ∼ 1.02, that is, the velocity of propagation of the soli-
ton,v, is roughly 2% larger than the velocity of sound in the
medium.

7 Evidencing Fröhlich’s Effect

In the Introduction we have already mentioned some in-
stances of experiments which could be indicative of the ex-
istence of Fr̈ohlich’s effect. We here suggest two others, one
of them in fact already performed, where the evidencing of
Fröhlich’s effect would be indirect, in the sense that what is
observed is the Shrödinger-Davydov soliton wich is propa-
gating in Fr̈ohlich’s condensate. In this case — as we have
discussed previously — the solitary wave largely enhances
its lifetime.

Consider the measurement of absorbance in acetanilide,
see Fig. 6, where it is evidenced the absorption band cor-
responding to the soliton. It has a certain bandwidth cor-
responding to the inverse of its lifetime in equilibrium at a
given temperatureT0. But according to the results already
presented, in the presence of an external pumping source the
lifetime of the soliton, propagating in Fröhlich’s condensate,
largely increases, and then, there would follow a stretching

of the band width in the absorption spectrum. The band
width would further and further decrease when the intensity

Figure 17. Modifications in the absorbance in acetanilide, with
pumping of electromagnetic radiation in the infrared region corre-
sponding to the vibrations of the CO-stretching mode.

of the pumping source is augmented beyond the threshold
for the onset of Fr̈ohlich’s effect.

If we consider the case of acetanilide excited by, for
example, the pumping of electromagnetic radiation in the
infrared region corresponding to the vibrations of the CO-
stretching mode, it would be expected modifications, with
increasing pumping intensity, as shown in Fig. 17.

But a case where this phenomenon seems to have already
been evidenced is in the already mentioned experiments as-
sociated to the so-called “excitoner” [36, 37, 38]. In this
case complex behavior occurs not in a system of vibrational
modes, but in a system of boson-like particles as are the ex-
citons in semiconductors.

Recently it has been evidenced the phenomenon of
stimulated amplification of low energy exciton populations
(SALEEP for short in what follows; the term ‘excitoner’ has
been coined for this phenomenon on the basis of the result-
ing amplification of a cloud of coherent excitons using ran-
dom excitons, much as a laser beam can be amplified with
incoherent photons) [36, 37]. The experiment consists in
that a laser beam pulse incident on the sample front pro-
duces a gas of excitons, a c.w. laser pumps energy on this
photoinjected excitons, and a packet of them is detected on
the other side of the platelet. We have presented [38] a theo-
retical analysis of the phenomenon on the basis of a nonequi-
librium ensemble formalism for statistical thermodynamics,
the one used in analyzing Fröhlich’s effect and Schrödinger-
Davydov soliton in previous sections. The equations of
evolution for the populations of excitons in the away-from-
equilibrium conditions are derived. They consist in a set of
coupled nonlinear integro-differential equations which show
that the phenomenonSALEEPis a particular manifestation of
Fröhlich effect.

We do not here go into the details of the formalism
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and the derivation of the kinetic equations, because there
is a complete equivalence with those presented in [29] —
to which we refer the reader —, here only specifying the
particular system under consideration. The Hamiltonian
which describes this system is composed of the energy op-
erator for the exciton gas, the lowest exciton state (n = 1)
is considered and the exciton energy dispersion relation is
E1~k = −Rx

y + ~2k2/2M , with Rx
y being the excitonic Ry-

dberg ('100 meV in Cu2O),~k runs over the Brillouin zone,
M is the mass of the exciton (' 3m0 in Cu2O) and zero of
energy is at the bottom of the conduction band. The exciton
gas produced by the exciting ultrashort beam interacts with
the lattice, and differently to the case of free carriers, the in-
teraction with optical phonons can be disconsidered in com-
parison with the one associated with the acoustical phonons
[89], the one we introduce: formally this contribution is the
same as given in [29] once excitons enter in place of the
polar vibrations. It is also included the interaction with the
electromagnetic field of the c.w. laser and the one associated
to spontaneous recombination effects (luminescense) [89].
Other interactions leading to relaxation effects are incorpo-
rated in the kinetic equations on a phenomenological basis.
Once the Hamiltonian has been defined we need to introduce
the statistical thermodynamic level of description, what we
do along the same line as used for the study of vibrational
modes in the previous sections. Hence, we introduce as ba-
sic variables the time-dependent exciton populations which
we callν~k(t), and the energy of the acoustic phononsEB(t)

(B for bath) with these phonons assumed to constantly re-
main in equilibrium with an external reservoir at tempera-
ture T0 (2 K in the experiment of Ref. [37]), and thenEB

is time independent. The accompanying intensive nonequi-
librium thermodynamic variables (Lagrange multipliers in
the variational approach to MaxEnt-NESOM) are designated
by F~k(t) andβ0 = (kBT0)−1 respectively, the latter being
the reciprocal of the reservoir temperature since the thermal
bath is described by a canonical distribution in equilibrium.
Variablesν andF are connected, once the corresponding
calculations in MaxEnt-NESOM are performed, by

ν~k(t) = [eFk̃(t) − 1]−1 , (35a)

and one can choose [cf. Eq. (11)] to write

F~k(t) = E1~k/kBT ∗~k (t) , (35b)

introducing the so-called quasi-temperatureT ∗~k per level, or,
other choice can be [cf. Eq. (16)]

F~k(t) = [E1~k − µ~k(t)]/kBT0 , (36)

introducing a quasi-chemical potentialµ~k(t) per level as
proposed, for example, by H. Fröhlich [90] and P. T. Lands-
berg [66], in a quite similar way to the one done in the case
of the lattice vibrations in the previous sections.

The equations of evolution for the mesoscopic variables
ν~k(t) are calculated in the MaxEnt-NESOM-based kinetic
theory. They are quite similar to those in [29], given by

c

dν~k(t)
dt

=I~k −
ν~k(t)
τ~kR

− ν~k(t)
τ~kD

− ν~k(t)
τ~k

+
8π

~2

∑

~k′

|V (2)
~k~k′
|2

[
νB
~k−~k′

(ν~k′ − ν~k)− ν~k(1 + ν~k′)
]
δ(Ω~k−~k′ + E1~k′ − E1~k)

+
8π

~2

∑

~k′

|V (2)
~k~k′
|2

[
νB
~k−~k′

(ν~k′ − ν~k) + ν~k′(1 + ν~k)
]
δ(Ω~k−~k′ − E1~k′ + E~k) . (37)

d

The several contributions on the right of this set of equa-
tions of evolution which couple the populations of all the
exciton states are: The first is the rate of production gen-
erated by the pumping c.w. laser; basically it consists of
an absorption coefficient times the power of the incident
radiation and we have called itI~k. The second term ac-
counts for recombination effects, with recombination time
τ~kR (of the order ofµs in Cu2O); the third accounts for dif-
fusion, with diffusion timeτ~kD, out of the initial volume
where the excitons were produced (the region of focaliza-
tion of the pumping-laser pulse [91]); the fourth incorpo-
rates scattering by impurities and all other mechanisms that
may be present. It can be noticed that the three terms can be
rewritten asν~k/τ̄~k, with τ̄~k then given by Mathiessen rule
(τ̄−1

k = τ−1
~kR

+ τ−1
~kD

+ τ−1
~k

) [92].

The fifth term is the contribution which is responsible for
Fröhlich’s effect [cf. Eq. (6)] in far-from-equilibrium boson
systems, in the present case forSALEEP: In fact, in Eq. (37)
after some calculus it can be evidenced that it contains a
nonlinear term of the form

(1− eβ0(E1~k
−E1~k′ ))ν~k(t)ν~k′(t) , (38)

which forE1~k < E1~k′ is a pumping term enhancing the pop-

ulation of state|1,~k〉 at the expenses of all others higher in
energy. Reciprocally, forE1~k > E1~k′ it is a relaxation term

implying in a transfer of energy from state|1,~k〉 to states
|1,~k′〉. Consequently, we must expect the emergence of
Fröhlich’s effect, through a cascading-down process, lead-
ing to the result that the energy pumped on the system is
concentrated in the modes lowest in energy, i.e. at the bot-
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tom of the exciton band.
We illustrate numerically these results using parameters

characteristic of Cu2O, and the conditions of the experiment

Figure 18. The populations in the steady state of a characteristic
mode in Fr̈ohlich condensate,ν1, and a “normal” mode,ν0, for
intensitiesS = Iτ̄ . In the inset is shown the quasi-chemical po-
tentialµx

1 = µ1−Rx
y of the mode in Fr̈ohlich condensate, in units

of Rx
y .

in Ref. [37]. Front sample is illuminated with a laser pulse
with λ = 532 nm, 10 ns duration, and intensity≈ 6.3
MW cm−2; it is imposed illumination by a c.w. laser with
λ = 605.4 nm, and4 W cm−2 of power flux (at this wave-
length the absorption coefficient is roughly30 cm−1). We
also use for the mass of the excitonM = 3m0, a static
dielectric constantε0 = 10 and the optical oneε∞ = 4.
Moreover, we consider a nearly wavevector-independent re-
laxation timeτ̄~k (≡ τ̄ ) in Eq. (37) which is used as a scal-
ing parameter defining a scaled timet̄ = t/τ̄ . Noting that
the set of equations of evolution for the populations cou-
ple all the exciton states over the Brillouin zone, they have
been solved computationally however introducing approx-
imations consisting in a partition of the Brillouin zone in a
finite and small number of spherical layers, and taking a sim-
ilar behavior of the population in each interval of involved
states. This is sufficient to characterize the results, intro-
ducing only eventual numerical deviations but this can be
improved when comparison with future detailed experimen-
tal data may be attempted. This done, we present the results
in Figs. 18 and 19. Figure 18 shows the evolution in time
of two characteristic populations in the steady state depend-
ing on the intensityS = Iτ̄ of the source, which we take as
the same for each exciton state. We recall thatI times the
excitonic Rydberg is a fraction — determined by the absorp-
tion coefficient — of the intensity4 W cm−2 of the pumping
c.w. laser. The mode labelled with index one corresponds to
a low-lying-in-energy exciton, and index zero for an exciton

Figure 19. The reciprocal of the lifetimes of the modes of Fig. 1,
whereΓ̄1(0) = τ̄ /τ1(0).

higher in energy. In the inset is described the evolution of
the quasi-chemical potential associated toν1 [cf. Eq. (16)
and (35b)], which we have written asµx

1 = µ1 −Rx
y .

We once again stress that the quasi-chemical potential
never coincides with the energy of the exciton state, i.e.µx

0

is always negative and different from zero, but tends asymp-
totically to this value as the pumping intensity tends to in-
finity; hence a, say, strict Bose-Einstein-like condensation
does not occur. What emerges is a large amplification of the
populations over a certain region of the exciton states low
in energy, constituting what we have already calledFröhlich
condensate. It is worth noticing that also in this case we can
see the presence of a kind of “two-fluid system”: excitons
in the Fr̈ohlich condensate (a “superphase”) and incoher-
ents excitons in a “normal phase”, similarly to the situation
shown by Fig. 3 in the case of optical vibrations.

Inamura and collaborators [93] developed a simplified
modelling of the system, keeping only the presence of what
we have called Fr̈ohlich term in the equation of evolution
for the populations of excitons. We can then say that this
phenomenon which is considered a kind of Bose-Einstein
condensation of excitons is, under a proper look, a particu-
lar manifestation of the decades-oldFröhlich’s effect,and
therefore to its stydy can be applied all the results valid
for the latter. In particular we call the attention to the two
important associated novel phenomena previouly described,
namely that the nonlinear terms present in the kinetic equa-
tions, Eq. (37), are responsible for a complex behavior in
far-from-equilibrium boson systems consisting, besides of
Fröhlich’s effect, in the propagation of nearly undamped
solitary waves of the Schrödinger-Davydov type.Here we
recall the form of the reciprocal of the lifetimeτp~k(t) of the
modes composing the spatially constrained packet which is
the soliton, namely, when given in units ofτ̄ ,
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τ̄

τpk(t)
=

1
2

+
4πτ̄

~2

∑

~k′

|V (2)
~k~k′
|2

[
1 + ν~k′ + νB

~k−~k′

]
δ(Ω~k−~k′ + E1~k′ − E1~k)+

− 4πτ̄

~2

∑

~k′

|V (2)
~k~k′
|2

[
ν~k′ − νB

~k−~k′

]
δ(Ω~k−~k′ − E1~k′ + E1~k) . (39)

d

whereΩ~k−~k′ = s|~k − ~k′| is the dispersion relation of the
acoustic phonons, andνB

~k−~k′
their distribution in equilibrium

at temperatureT0.
On the basis of these results, we can arrive to the conclu-

sion thatthe packet of excitons flowing ballistically from the
condensate(in Ref. [37] with a velocity of roughly4.5 ×
105 cm/s) is an exciton-composed Schrödinger-Davydov
soliton, something similar to what is the case in conduct-
ing polymers [48] when composed of carriers and in optical
fibers [94] when composed of photons. This is reinforced by
the fact that the amplitude of the signal, when the c.w. laser
is present, is larger when compared with the one in its ab-
sence as reported in Ref. [37], what is consistent with the re-
sult that the lifetime of the soliton is increased with increas-
ing levels of excitation as already discussed in connection
with vibrations. Moreover, it can be shown that the profile
of the signal in Ref. [37] is well fitted by a squared hyper-
bolic secant characteristic of Schrödinger-Davydov soliton
as the one in Eq. (16), as shown in Fig. 20.

Figure 20. Comparison of the shape of the voltaic signal in
Ref. [37] with the shape of the energy density of Schrödinger-
Davydov’s soliton [proportional to the squared modulus of the am-
plitude field of Eq. (22)] plus the contribution of the incoherent
excitons.

To draw the full line — the theoretical calculation — we
have taken into account that, within the two fluid model, the
registered signal is composed of the solitary wave formed
by the coherent excitons plus the contribution of an accom-
panying cloud of incoherent excitons. The former, as no-
ticed, consists of the squared modulus of the Schrödinger-

Davydov soliton-field amplitude of Eq. (40) below; the other
is composed by the travelling normal excitons produced in
the active region defined by the extinction length of the laser
field, of the order of 0.033 cm, and are decaying with a half-
time of the order of 0.5µs. These are the parameters used
in the calculation, while the amplitude and width of the soli-
tary wave have been fitted. The profile of the soliton field
is

ψ(x, t) = A exp{i[κx− (ωs − iγs)t]− θ/2}
sech[W (κx− vt)] , (40)

whereA is the amplitude;ωs = A2|Gs|/2 − κv/4 is the
frequency;v is the velocity of propagation;γs is the nearly
vanishing damping coefficient;κ = Mv/~ is the wavenum-
ber;W = [A2M |G|/~]1/2, andG = |G|eiθ is the nonlinear
coupling strength, in complete analogy with the acoustic-
phonon-composed solution discussed in the previous sec-
tion. A andv are determined by the energy and momentum
transferred by the impinging exciting photons.

Using Eq. (40), and thatWv is of the order of the width
of the signal which is roughly20.8 µs−1, andA ' 0.87,
the strength in the nonlinear terms responsible for Fröhlich
and Davydov phenomena can be estimated to be|G| ≈
2000 s−1. We stress that the just described behavior of the
system follows for a weak nonlinear kinetic term coupling
excitons and thermal bath; this coupling strength and the
amplitude of the signal are the only open parameters fixed
by best fitting.

In conclusion we may say that the so-called “excitoner”
can provide, in the way just described a verification of the
existence of Fr̈ohlich’s effect in boson systems governed by
nonlinear kinetic laws.

8 Informational and Thermodynamic
Properties of Fröhlich’s Effect

In the context of Informational-Statistical Thermodynam-
ics (IST) [25], the relevant nonequilibrium thermodynamic
state function is the quasientropy, or theinformational-
statistical entropyin Jaynes-Shannon sense, which more
properly should be called thequantity of uncertainty of in-
formation. It is given in terms of the nonequilibrium statis-
tical operator by

S̄(t) = −Tr
{
%ε(t)℘ε(t) ln %ε(t)

}
, (41)

where℘ε(t) is a time-dependent projection operator (it is
determined by the nonequilibrium state of the system at any
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time t), defined in Ref. [57], which has the property that

℘ε(t) ln %ε(t) = ln %̄(t, 0) , (42)

and we recall that%ε(t) is the systems’ nonequilibrium sta-
tistical operator in Zubarev’s approach, and%̄ is the auxiliary
(“instantaneously frozen”) statistical operator [57, 58]. The
projection operator above projects any dynamical quantity
on, at any timet, the subspace of informational variables (or
“relevant” subspace). Returning to the case of the system of
Section 3, once we disregard the amplitudes in Eq. (4) we
have that [65]

S̄(t) = −Tr {%ε(t) ln %̄(t, 0)} = φ(t)

+
∑

q

Fq(t)νq(t) + β0EB , (43)

where

φ(t) = ln Tr exp
{−

∑
q

Fq(t)ν̂q − β0Ĥ0B

} ≡ ln Z̄(t)

(44)
is the logarithm of a nonequilibrium partition function
which we have called̄Z(t).

It can be shown that this informational entropy has a par-
ticularly differentiated dependence onλ only after the onset
of Fröhlich effect, i.e. for, roughly,̄I ∼ 104, resulting [cf.
Fig. 2] in that the informational entropy decreases for in-
creasing values ofλ (which, we recall, measures the strength
of the nonlinear contribution responsible for the complex be-
havior of the system): this can be interpreted as some kind
of increase in order, or of increase of information as a result
of the formation of Fr̈ohlich condensate. To characterize this
point, we introduce the order parameter

∆(λ) =
S̄ss

0 − S̄ss
λ

S̄ss
0

, (45)

whereS̄ss
0 and S̄ss

λ are the entropies in the steady-state for
λ = 0 andλ 6= 0, which is shown in Fig. 21, where it is
evidenced the above mentioned characteristics.

Figure 21. The order parameter of Eq. (45) as a function of the
strength of the nonlinear coupling.

Next we consider the functioninformational-entropy
productiongiven by

σ̄(t) =
d

dt
S̄(t) =

∑
q

Fq(t)
dνq(t)

dt

=
∑

q

dνq(t)
dt

ln
νq(t) + 1

νq(t)
, (46)

where we have used Eq. (25) but forf~q = 0, and the fact
thatEB does not change in time.

The production of informational entropy of Eq. (46), or
IST-entropy production has two contributions:

σ̄(t) = σ̄i(t) + σ̄e(t) , (47)

consisting of the so-called internal one,σ̄i(t), which results
from the internal interactions in the system, and the exter-
nal one,σ̄e(t), due to interactions with the surroundings, in
this case with the source and the thermal reservoir. They are
given by

σ̄i(t) =
∑

q

[Fq(t)− β0~ωq]
5∑

j=1

J~q(j)(t) , (48)

σ̄e(t) =
∑

q

Fq(t)I
(2)
~q (t) + β0J

(2)
TD(t) , (49)

where use was made of Eq. (4) [withζ~q = 0]: In Eq. (48) are
present the contributions from the internal interactions of the
open system and the bath, and of the latter with the former;
we can see thatF~q(t) − β0 = [kBT~q(t)]−1 − [kBT0]−1,
which is zero only when allT~q are equal toT0, i.e. when
final equilibrium has been attained (the one that follows
asymptotically after the source is switched off, that is, for
I~q = 0). In Eq. (49) the first term on the right is the one
due to the coupling of the open system and the source, and
the second one accounts for the diffusion of heat from the
bath to the reservoir (the latter has been assumed to be suffi-
ciently rapid for keeping the thermal bath, which is receiving
energy from the open system of polar vibrations, constantly
in equilibrium with the reservoir at temperatureT0, as it has
been constantly used in our analysis).

We omit the corresponding figures, and suffice it to
say thatσ̄i(t) is definite positive, and at the steady state
σ̄e(t) = −σi(t) as it should since the totalσ̄(t) is null. The
positiveness ofσi(t) can be considered to be a manifesta-
tion of a kind ofH-theorem in MaxEnt-NESOM-basedIST

[25, 95]. Moreover, during their evolution in time the in-
ternal and externalIST-entropy production for non-null val-
ues ofλ (the nonlinear coupling strength) are, in modulus,
(σ̄i is positive butσ̄e is negative), larger than the one for
λ = 0 (absence of the nonlinear coupling). However, the
total σ̄(t) = σ̄i(t) + σ̄e(t) is smaller forλ 6= 0 than for
λ = 0, what is reflected in the fact that the informational
entropy for finiteλ is smaller than the one forλ = 0, what
is seen in Fig. 21 [cf. Eq. (45)], thus, as noticed, showing
the increase in information created by the onset of Fröhlich
condensation.
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We consider in continuation two additional important re-
sults in IST [25, 95], which are generalizations of those of
Generalized Irreversible Thermodynamics [6, 10]. One is
the criterion for evolution: the change in time ofIST-entropy
production can be separated out into two parts, namely

d

dt
σ̄(t) =

dF

dt
σ̄(t) +

dQ

dt
σ̄(t) , (50)

where

dF

dt
σ̄(t) =

∑
q

d

dt
Fq(t)

d

dt
νq(t) , (51)

dQ

dt
σ̄(t) =

∑
q

Fq(t)
d2

dt2
νq(t) , (52)

that is, the change in time of the informational-entropy pro-
duction due to the change in time of the Lagrange multi-
pliers, and the other due to the change in time of the basic
variables (the populations), and we recall thatdEB/dt = 0.
After a simple calculation of Eq. (51) using Eq. (25) (with
f~q = 0) we find that

dF

dt
σ̄(t) = −

∑
q

1
νq(t) (νq(t) + 1)

(
d

dt
νq(t)

)2

≤ 0 ,

(53)
verifying for this system the generalization [25, 95] of
Glansdorff-Prigogine’s thermodynamic (originally called
universal) criterion of evolution. That is, along the trajec-
tory of the macrostate of the system in the thermodynamic
(or Gibbs) space of states, the quantity of the Eq. (51) is
always non-negative, a quantity which in classical Onsage-
rian thermodynamics is the product of the change in time
of the thermodynamic forces times the fluxes of matter and
energy [6, 10, 95].

Finally, we look for the criterion for (in)stability, which
requires the analysis of the quantity called the excess of en-
tropy production. First we introduce the quantity

1
2
δ2S̄(t) =

1
2

∑

qq′

[
δ2S̄(t)

δνq(t)δνq′(t)

]ss

∆νq(t)∆νq′(t) ,

(54)
where∆νq(t) represents the value of an imposed arbitrary
deviation from the steady-state of the system (δ2S̄ is the sec-
ond functional differential of theIST entropy). A direct cal-
culation tells us that

δ2S̄(t)
δνq(t)δνq′(t)

= − δqq′

νq(t) (νq(t) + 1)
, (55)

and consequently

1
2
δ2S̄(t) = −1

2

∑
q

[
1

νss
q

(
νss

q + 1
)
]
|∆νq(t)|2 ≤ 0 , (56)

what is a manifestation of the convexity of the maximized
informational entropy. Differentiation in time of Eq. (56)
introduces the quantity called excess of entropy production
function, namely

δ2σ̄(t) =
1
2

d

dt
δ2S̄(t) = −

∑
q

∆νq(t)
νss

q

(
νss

q + 1
) d

dt
∆νq(t)

=
∑

q

∆Fq(t)∆νq(t) , (57)

a quantity shown in Fig. 22, where we can see that it is non-
negative, and therefore

1
2
δ2S̄(t) δ2σ̄(t) ≤ 0 (58)

is always non-positive and then, according to Lyapunov the-
orem in linear stability analysis (see for example [6]) the
macroscopic state of this system displaying Fröhlich effect,
is always stable. This is a manifestation of the generaliza-
tion in IST [25, 95] of Glansdorff-Progogine’s (in)stability
criterion [6, 10].

Figure 22. The excess entropy production around the steady state.

The stability of the macroscopic state of the system can
be characterized in an alternative way, consisting in that —
for the particular present case — it can be proved a general-
ization of Prigogine’s theorem of minimum entropy produc-
tion, which ensures the stability of any thermodynamic sys-
tem in the immediate neighborhood of the state of equilib-
rium, i. e. within a strictly linear (or Onsagerian) regime of
classical irreversible thermodynamics where Onsager’s reci-
procity relations are satisfied [6, 10]. The theorem proves
that in Onsager’s strictly-linear regime and in the general-
ization toIST [25, 95],σ̄i ≥ 0 anddσ̄i/dt ≤ 0 in the imme-
diate neighbourhood of the steady state are always satisfied
and ensure the stability of the macrostate. In the model we
are presenting it can be verified that in any condition, that
is, even far away from equilibrium and then in the nonlin-
ear regime outside Onsager’s domain, the condition above
is satisfied everywhere and thenσ̄i plays the role of a ther-
modynamic potential whose minimum defines an attractor
for the steady states of the system.
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Figure 23. The different contributions to the relaxation processes
for λ = 1 and in the absence of a nonlinear coupling (λ = 0).

We recall that of the contributionsJ (2)
qj in Eq. (4) the first

two are purely responsible for relaxation processes (decay
of energy from the polar system to the thermal bath through
the anharmonic processes). The other contributions are re-
sponsible, as we have seen, for the transfer of energy be-
tween the modes lower in energy and those higher in en-
ergy (cf. in Eq. (6). This is better visualized in Fig. 23,
whereJ

(2)
q1 [standing for the contributions of Eq. (5)] is ex-

clusively responsible for dissipation, while the other con-

tributions (proportional toλ and responsible for the emer-
gence of Fr̈ohlich’s effect) produce only redistribution of
energy among the modes: the lines with open circles, cor-
responding to the case withλ = 0 (i.e. absence of nonlin-
earities), and with triangles, forλ = 1, coincide. Moreover,
for q & 2.6 × 108 cm−1 or ω & 8.7 × 1012 Hz (cf. Fig. 3),
the contributions ofJq2 plus Jq3 are, forλ = 1, positive,
that is, they act as a source term, the one in fact responsible
for the “feeding” of the modes in the Fröhlich condensate,
resulting in the large increase of their populations.

Furthermore, we are dealing with a nonlinear dissipative
system and to it applies other relevant results in Nonlinear
Science [96]. As Nicolis and Daems noticed [97] the equa-
tions of evolution [Eqs. (4) withζ = 0] are nonlinear owing
to the cooperativity inherent in the interactions. Moreover,
the dissipative character of the set of equations is reflected
in that when embedding the equations of evolution into the
space of nonequilibrium thermodynamic states spawned by
the set of variables of Eq. (1) (but omittinga anda†) one has,
on average, a contraction of a volume element each point
of which follows the evolution laws. This very important
property is shown to be equivalent in the case of Fröhlich
condensation to

1
t− t0

∫ t

t0

dt′
∑

~q

∂

∂ν~q

5∑

j=1

Jq(j)(t
′) < 0 , (59)

where the sum is the so-called divergence of the evolution
operator of Eqs. (4)[96], and the contribution associated to
EB is absent because the assumption that the thermal bath
remains constantly in equilibrium; hence∂[dEB/dt]/∂EB

(the divergence of its evolution operator) is null.
We have that

c

∂

∂ν~q

5∑

j=1

J~qj
(t) = −1

2
τ−1
~q (t)− 4π

~2

∑

~q′
|V (2)

~q~q′ |2
[
1 + ν~q′(t) + νB

~q−~q′
]
δ(Ω~q−~q′ + ω~q′ − ω~q)

+
4π

~2

∑

~q′
|V (2)

~q~q′ |2
[
ν~q′(t)− νB

~q−~q′
]
δ(Ω~q−~q′ − ω~q′ + ω~q)

− 4π

~2

∑

~q′
|V (2)

~q~q′ |2
[
ν~q′(t)− νB

~q+~q′
]
δ(Ω~q+~q′ − ω~q′ − ω~q) ≡ Dq(t) . (60)

d

These quantitiesDq(t) are predominantly negative for
anyt (they are shown in Fig. 24 for a particular value of the
intensity) and then Eq. (59) is verified.

Let us consider the Lyapunov exponents,λj , of the dy-
namical system when it has achieved the steady state, that is
the eigenvalues of the linearized evolution operator, which
are given by Eq. (60) onceν~q is taken in the steady state.
They are shown in Fig. 25 for a range of values of the in-
tensity of the pumping source, once we use the results of
Fig. 2. Inspection of this Fig. 25 tells us that the Lyapunov

exponents are negative, what then ensures the stability of the
solution for any value of the intensity, a point we have previ-
ously demonstrated through an alternative treatment. Other
interesting point is that the modulus of the one correspond-
ing to the mode labelled 1 (the one in Fröhlich condensate) is
very small. This has the consequence that, since the popula-
tion ν1 in the steady state can be shown to be proportional to
the inverse of the modulus ofλ1, then it is the very large one
corresponding to the mode in Fröhlich condensate. It can be
noticed that the other quantitiesλ3 andλ5 also appear to be
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small, but whereasλ1 approaches zero, the other two have
values of hundred and thousand units since the scale is104.

Figure 24. QuantitiesDq(t) of Eq. 60 for the set of modes of Fig. 2.

Figure 25. Lyapunov exponents in the steady state for the set of
modes of Fig. 3.

Moreover, Fig. 26 shows the sum of the Lyapunov expo-
nents, namely the divergence of the supervector correspond-
ing to the different contributions of the evolution operator
[Cf. Eq. (69)], which is negative and increasing in modulus
with the pumping intensity. This points to the fact that the
trajectories are winding towards an attractor consisting in
the Fr̈ohlich-Bose-Einstein-like condensation. Hence, this
indicates an increasing contraction of the elementary vol-
umes in the space of thermodynamic states with increasing
intensity of the pumping source. This is related to the in-
teresting fact that the condensation becomes more and more
effective, in the sense that the ratio, for each intensity, be-
tween the number of excitations in the condensate and the
total number is increasing with̄I, what is shown in Fig. 27.

Again there is a similarity with a Bose-Einstein condensa-
tion of bosons in equilibrium where the number of particles
in the condensate increases in that case with decreasing tem-
perature.

Figure 26. Sum of Lyapunov exponents or divergence of the evo-
lution operator in the steady state for the set of modes of Fig. 2.

We notice that in Fr̈ohlich condensate, with all Lya-
punov exponents being negative, Kolmogorov entropy [96]
is null, and then, as noted before, this implies that the tra-
jectories are stable, the system does not produce informa-
tion by itself (no selforganization follows) as would be for
positiveness of some Lyapunov coefficient, but the system
shows loss of information as evidenced by the increase in
time of the informational entropy. However, as described by
the order parameter of Fig. 21, with increasing nonlinearity
(increasing values ofλ) the informational entropy, for a giv-
ing pumping intensity, diminishes implying in smaller loss
of information as ordering increases in the form of a more
“dense” Fr̈ohlich condensate, as already noticed.

Figure 27. Fraction of excitations in the steady state.
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9 On Biowater and Bioelectret Roles
in Microtubules

It has been said that water in nature has drawn artists for
millennia, and both its flow and its serenity have borne deep
meaning for philosophers. Thales — the sixth century BC
Helenistic philosopher — concluded that water is the ulti-
mate substance, the principle, or element, of all things. Later
on, the also Helenistic philosopher, Empedocles proposed
that the complexities of creation required four elements in-
stead of one, and the liquid state took its place among them
as the element water. Among earthly liquids, water is the
most prevalent, covering more than 70 percent of the plane-
tary surface, and it is by far the most important for the scien-
tific consensus is that life arises because water is a prime nat-
ural medium for chemical reactions. Its mobile molecules
act to diminish the electromagnetic forces that link atoms to-
gether, freeing the atoms to combine chemically with other
free-floating atoms. According to present thinking, only
a watery environment such the sea could have supported
the chain of chemical reactions that formed such elaborated
compounds as chlorophyll,DNA and hemoglobin, and the
presence of water is essential for all the ongoing chemical
processes of life [98].

There is no completely satisfactory theory of water, say,
a master equation allowing to describe all its properties. Re-
cently, as an alternative stategy, many investigators have
turned to computer models to sum up the actions of all the
molecules in a sample of water to arrive at their total ef-
fects. As already noticed above, water, with its character-
istic angular structure, is an extraordinary substance for a
variety of reasons, and, for example, its excellent proper-
ties as a solvent allowed for the possibility of life on Earth.
To understand how water affects the structures of biological
molecules, we must first appreciate the distinctive proper-
ties of water itself. These properties stem from the unique
structure of water and the way its structure allows water to
“manage” the electric charges of other molecules [99].

It can be recalled that, a single water molecule has an es-
ssentially tetrahedral geometry, with an oxygen atom at the
center of the tetrahedron, hydrogen atoms at two of the four
corners and clouds of negative charge at the other two cor-
ners. The clouds of negative charge result from the way in
which the atomic structures of oxygen and hydrogen com-
bines. The oxygen-hydrogen bond is roughly of10−8 cm,
and the angle close to 105 degrees. Moreover, it can be
characterized three “types” of water in biological systems,
namely: (1)ordered waterthat surrounds and strongly in-
teracts with biological macromolecules; (2)bulk waterbe-
yond; (3)buried waterthat can be found within the biologi-
cal macromolecules.

A single cell contains billions of water molecules, with
all the space not occupied by the biological macromolecules
being filled with water. Human cells are, in fact, mostly
water, with the human body composed by roughly 60 per-
cent of water by weight. The importance of water in living
processes derives not only from its ability to form hydrogen
bonds with other water molecules but also from its capacity
to interact with various types of biological macromolecules.

Because of its polar nature, water readily interacts with other
polar and charged molecules, such as acids, salts, sugars,
and the various regions of proteins andDNA.

On this, on the one side, the alpha helices found in most
proteins (as in Fig. 1) can unfold in water because water
molecules can replace the hydrogen bonds that normally
hold the helix together. Water molecules make a bridge
between an oxigen atom and a nitrogen-hydrogen group,
which would normally bond in the folded helix. On the
other hand, as has been noticed [99], water is integral to
the structure ofDNA. In the absence of water it appears
that DNA is unstable because of repulsive forces between
the negatively charged phosphate groups that make up the
backbone of theDNA double helix causing the molecule to
rapidly break up. The presence of water apparently stabi-
lizes the double-helical struture by forming hydrogen bonds
with the phosphate groups. Seemingly, water molecules are
able to interact with nearly every part ofDNA ’s double helix,
including the base pairs that constitute the genetic code.

Thus, it appears that water molecules can penetrate
deeply intoDNA ’s double helical structure and stabilize it.
However, in contrast, water is not able to penetrate deeply
into the structures of proteins, whose hydrophobic regions
are tucked on the inside into a close-fitting core. Accord-
ingly, the relation water-protein is centered on the protein
surface.

Now, what can be the role of “biowater” in micro-
tubules? As noted in the Introduction there exists a layer
(of roughly 3nm) of ordered water in contact with the tubu-
lin molecules in the interior of the microtubules, and along
the columns of tubulin dimers [26].

At present, in view of the previous discussion, we can
only conjecture that, on the one side the layer of ordered
water can give stability to the columns of tubulin dimers.
On the other side it may provide an appropriate environment
for acting on as “catalyst” for the emergence of Fröhlich’s
effect. We recall that, as shown in the previous sections,
it is fundamental for the quantum-coherent phenomenon of
Fröhlich-Bose-Einstein condensation to follow the presence
of a surrounding media, involved in the appearance of non-
linear quantum-kinetic equations as asine qua noncondi-
tion for such complex behavior to arise. Hence, if that is so,
biowater would be basic for providing a medium in which
quantum-coherent phenomena eventually associated to con-
scious processes in the brain — in Penrose’s sense — can
emerge.

Another relevant point is the possibility of formation of
abioelectret statein Fröhlich’s condensate.

Proteins are polymers of amino acids: the 20 natural
amino acids divide themselves in hydrophilic and hydropho-
bic classes. Thus, in general, naturally ocurring proteins
contain dipolar residues, and can in principle be induced
into the electret state. The electret effect has been found
in many proteins, fibrous and globular, for example collagen
and gelatin. Enzymes are also proteins, and important ones
such as trypsin and urease exhibit the electret state.

Besides proteins there are other classes of important
biopolymers for which the electret state has been found; it
can be mentioned polysaccharides and polynucleotides. In
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the case ofDNA there is indications of the existence of po-
larization storage sources.

In the case of enzymes water hydrates the protein in a
solid icelike phase, and this phase has different energy lev-
els depending on the orientation of the water dipole, leading
to an electret-like behavior. On this it may be noticed the
question of whether there is a form of normal ice in which
the molecular dipoles have a net orientation, that is, the de-
bate about whether such “ferroelectric” ice exists [100].

The question is now if systems displaying Fröhlich’s ef-
fect can exhibit an electret state. If so it needs be analyzed
the possible occurrence of ordered spatial states of dipoles
resembling either ferroelectric, antiferroelectric, or helielec-
tric states.

As we have seen in the previous sections the uniform in
space Fr̈ohlich’s condensate appears as a stable state. Insta-
bility towards the formation of the ordered charge-density
state would be indicated if the quasi-chemical potential of
the mode lowest in frequency acquires the value of this fre-
quency (and then the population of the mode diverges as in
the usual Bose-Einstein condensation). This indicates that
if the lowest frequency is at the zone center would follow
a ferroelectric-like order, and if it is at the zone boundary
would follow an antiferroelectric-like ordering.

More complex electret states can arise, once the case has
a certain similarity to the existence of steady state charge-
density waves in an electron fluid, as discussed in [101],
with a first bifurcation leading to the formation of the charge
density wave followed by an ever increasing space organiza-
tion leading to chaotic-like behavior (as in the case of chem-
ical reactions [102]).

To analyze this question it is necessary to go outside of
a thermodynamic description which is uniform in space, to
a one that incorporates, besides the quantities of Eq. (1),
nondiagonal quantities aŝn ~qQ = a†

~q+ 1
2

~Q
a~q− 1

2
~Q, whose av-

erage values over the nonequilibrium ensemble formalism
produce the basic variables for describing a nonlinear quan-
tum generalized thermo-hydrodynamics. One needs to ana-
lyze the normal modes and look for the possible “freezing”
of one or more of these modes corresponding to the forma-
tion of steady state charge-density waves, much in the way
as done in [101]. It may be the case that higher order non-
linear terms would need be included, which can give rise to
fourth-order terms in the polarization field. This study is in
the making [103].

10 Concluding Remarks

As it has been stressed in Section I, nowadays it is gaining
ground the idea that Biology, Physics, Chemistry, Informa-
tion Theory, and Complexity Theory need to joint forces to
deal with questions as the origin of life and its evolution ,
the problem of a science of consciousness, and others in the
life sciences.

Paul Davies [104] has maintained that solving the mys-
tery of biogenesis is not just another problem on a long list
of just-do scientific projects. Like the origin of the universe
and the origin of consciousness, it represents something al-

together deeper, because it tests the very foundations of our
science and our world-view.

Also, “even though life is a physico-chemical phe-
nomenon, its distinctiveness lies not in the strict physics
and chemistry. The secret of life comes instead from its
informational properties;a living organism is a complex
information-processing system[emphasis is ours]. Hence,
the ultimate problem of biogenesis is where biological in-
formation came from. Whatever remarkable the chemistry
that may have occurred on the primeval earth or some other
planet, life was sparked not by a molecular maelstrom as
such but — somehow! — by theorganization of informa-
tion”. [104].

In what refers to the processes governing consciousness
in the human brain, Roger Penrose seems to have argued
along a similar direction, as have been noticed in previous
sections, in a kind of, say, a large-scale quantum action in
brain functioning [26]. According to him one may expect a
kind of quantum coherence — we would say an organiza-
tion of information —, in the sense that we must not look
simply to the quantum effects of single particles, atoms, or
even small molecules, but to the effects of quantum systems
that retain their manifest nature at a much larger scale. We
must look for something different as the appropriate type of
controlling “mechanism” that might have relevance to ac-
tual conscious activity. Also, such processes must be the re-
sult of some reasonably large-scale quantum-coherent phe-
nomenon, but coupled in such subtle way to macroscopic
behavior, so that the system is able to take advantage of
whatever is this particular physical process — as we have
argued in the past sections involving a particular organiza-
tion of information in Davies’ sense.

At this point we reproduce Penrose’s statement that,
“Such a feat would be a remarkable one — almost an incred-
ible one — for Nature to achieve by biological means. Yet
I believe that the indications must be that she has done so,
the main evidence coming from the fact of our own mental-
ity. There is much to be understood about biological systems
and how they achieve their magic”.

This question of large-scale quantum coherence and
connection with macroscopic order has been, in some sense,
partially anticipated by Herbert Fröhlich in his “The Con-
nection between Macro- and Microphysics” [12], in rela-
tion with supercondutivity and superfluidity. He pointed
to the need to bridge the gap between the two levels in-
troducing appropriate concepts, bringing together the com-
pletely systematic microscopic theory with the apparently
somehow unsystematic macroscopic theory. Later on — or
almost contemporaneously — Fröhlich further applied the
ideas to the case of functioning of membranes, and giving
rise to the idea of what we have called in previous sections
of Fröhlich’s effect (also — not so correctly — referred to
as a nonequilibrium Bose-Einstein-like condensation).

This phenomenon has been called upon by Roger Pen-
rose and other people as possibly having a role in conscious-
ness, in connection with its eventual presence in micro-
tubules in neurons. The role of these microtubules in the cy-
toskeleton of neurons in that connection may be reinforced
by the fact that in patients with Alzheimer decease in whom
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ceases the flow of ideas, emotions, and memories, the dis-
ease — at least in one of the theories held — may be the re-
sult of the disruption of the microtubules as a consequence
of misshaps in the so-called tau molecules which hold the
microtubules in shape (Fig. 28).

Figure 28. Disruption of the microtubules as a consequence of mis-
shaps in the so-called tau molecules which hold the microtubules
in shape.

Assuming that the phenomenon could have such a role,
we have here reviewed in general terms, but in a certain
depth, Fr̈ohlich’s effect. Such review has covered aspects
of the phenomenon studied and discussed in terms of a,
say, macro/micro-description, that is, in terms of a statis-
tical thermo-mechanics for nonequilibrium systems. It is
clearly evidenced the organization of information called for
by Davies, and quite in accord with his statement that com-
plexity and information can be illuminated by the subject of
thermodynamics, a branch of science. In this case there is
an answer for Davies query, already stated before, of where
biological information comes from.

Also it makes contact with Davies’ statements that, of
couse, “organisms must comply with the laws of physics
and chemistry, but these laws are only incidental to biol-
ogy. Their main role is to permit an appropiate logical and
informational system to come into being. Where chemi-
cal reactions are easy and thermodynamically favored, life
will cheerfully make use of them, but if life needs to per-
form “unnatural” chemistry, it finds a way. The key step
that was taken on the road to biogenesis was the transi-
tion from a state in which molecules slavishly follow mun-
dane chemical pathways, to the one in which they organize
themselves to forge their own pathways. Life opt out of
the structures of chemistry by employing an information-
control channel, freeing it to soar above the clodlike thun-
derings of atomic interactions and create a new, emergent
world of autonomous agency” [104].

As we have seen in the case of Fröhlich’s effect, there
occurs the emergence of complex behavior of bosons, as a
result of exploring nonlinearities in the kinetic equations of
evolution. There is a kind of autocatalytic process leading
to synergetic ordering, and as a consequence a decreasing in
informational entropy (maybe, uncertainty of information),
following the fact of the consolidation of a long-range coher-
ent macrostate. We see here the working of the microphysics
— through the equations of quantum mechanics — with a
subtle coupling to macrophysics through the resulting non-
linear kinetic equations, which are the average of the former
over the nonequilibrium ensemble describing the expected
behavior of the whole assembly of degrees of freedom of

the system.
As closing remarks, we can now recall the sentence of

the great Ludwig Boltzmann: “Thus, the general struggle
for life is neither a fight for basic material . . . nor for en-
ergy . . . but for entropy [we say now information] becom-
ing available by the transition from the hot sun to the cold
earth” [105].
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