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Using a formalism introduced by Feynman, Deser, Grishchuk, Petrov and Popova, the pseudoten-
sors, such as de�ned by Einstein, Tolman, Landau/Lifshitz and M�ller, are expessed as gauge
dependent tensors in a background space, as the gravitational energy-momentum tensor of Deser,
Grishchuk, Petrov and Popova. Using a result obtained by Virbhadra for the energy density in
the Reissner-Nordstr�om spacetime, it is shown that the action of these gauge transformations on
the above tensorial expressions is the same as the action of the coordinate transformations on the
equivalent pseudotensorial expressions, meaning that these tensors can be set to zero at a point by
a suitable choice of gauge transformation.

I Introduction

From the advent of General Relativity (GR) theory,
various methods have been proposed to deduce the con-
servation laws that characterize the gravitational sys-
tems. In an initial phase, which extended until the
middle of the 50's, predominated in the literature the so
called pseudotensorial formalism [1]. In this formalism,
the conservation laws are expressed, as usual, through
the continuity equations

T �
�;� = 0; (1)

where the conserved quantity T �
� refers to the local 
ux

and density of energy and momentum of gravitational
systems which may include, in general, both the mat-
ter contribution through its energy-momentum tensor
T �
� , and the gravitational �eld contribution, here rep-

resented by the term t��:

T �
� =

p�g(T �
� + t��): (2)

An essential property of this formalism is that,
contrary to the matter contribution, the gravitational
term is not a tensor and admits no homogeneous laws
of transformation under coordinate transformations,
which justi�es its designation, like T �

� itself, as the
energy-momentum pseudotensor.

In e�ect, according to a generally accepted interpre-
tation by the authors which built this formalism, the
conservation laws (1) represent a fundamental physical
process, whose dynamical description does not depend
on the choice of the coordinate system. However, the
invariance of the conservation laws (1) implies that the
transformation laws of T �

� must not be homogeneous

and this inhomogeneity is related to the gravitational
term, since the matter contribution is a true tensor den-
sity term.

On the other part, the presence of the inhomoge-
neous term in the transformation law of T �

� makes it
possible to annul the gravitational term locally, i.e., at
one given point. This property is consistent with the
Equivalence Principle according to which the gravita-
tional �eld can be locally eliminated if we adopt a co-
ordinate system adapted to an observer in free fall at
a point. Reciprocally, in 
at space-time, where there is
no gravitational �eld, the gravitational term will not be
zero when expressed in an arbitrary coordinate system
which is not cartesian. Hence, in the pseudotensorial
formalism it does not make sense to ask if the gravi-
tational energy density is zero or not at a single point,
since this concept depends on the coordinate system. In
other words, the pseudotensorial formalism cannot at-
tribute a meaning to the localization of the energy and
momentum of a gravitational system which is absent of
ambiguities.

Furthermore, the conservation laws (1) do not de-
termine the conserved quantity T �

� univocally. In e�ect,
the conservation condition (1) allows us to express T �

�

through a given anti-symmetric potential function, or

superpotential H
[��]
� , according to the following rela-

tion:

T �
� = H

[��]
�;� ; (3)

However, if U��
� is a new function (not necessar-

ily anti-symmetric), which di�ers from H
[��]
� by a term

	��
� , whose divergence or double divergence is identi-

cally zero, that is, such that
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	��
� ;� � 0 or 	��

� ;� ;� � 0 (4)

then, the quantity ��
� de�ned through this new super-

potential is also conserved:

��
� = U��

� ;� ) ��
� ;� = 0 (5)

Using this freedom on the choice of the superpoten-
tial, authors like Einstein, Tolman, Landau, Lifshitz
and M�ller arrived through di�erent methods at the
following superpotentials:

c

H [��]
� =

1

2�
~g��(~g

��~g�� � ~g��~g��);�(Einstein) (6)

T ��
� = H [��]

� +
1

2�
(Æ��~g

�� � Æ�� ~g
��);�(Tolman) (7)

L��� =
1

2�
[~g��~g�� � ~g��~g�� ];�(Landau=Lifshitz) (8)

M [��]
� =

1

�
~g��g��(g�� ;� � g�� ;�)(M�ller) (9)

d

where ~g�� =
p�gg�� is the inverse of ~g�� and � is the

Einstein constant. Because of the inherent ambiguities
of the pseudotensor approach, many other proposals for
the de�nition of the gravitational energy-momentum lo-
cal density have been made. Among them we can cite
the Komar de�nition [2], the Deser, Grishchuk, Petrov
and Popova(DGPP) de�nition [3] and the Brown-York
de�nition1[4]. The Komar de�nition seems to be more
adequately related to the notion of gravitational mass
then to the notion of energy (see Ref. [6]) The Brown-
York de�nition is not in fact a local but a quasi-local
de�nition. The DGPP de�nition succeeds to build a lo-
cal gravitational energy-momentum tensor by describ-
ing gravitation as a spin two �eld propagating in a
Ricci-
at �xed spacetime, but it su�ers from a gauge
ambiguity.

In this paper we will examine in more detail the
gauge ambiguity of the DGPP de�nition. We will show
that this ambiguity is nothing but the coordinate trans-
formation ambiguity of the pseudotensors translated
to the DGPP language. In fact, the DGPP energy-
momentum tensor itself is a new energy-momentum
pseudotensor if we write it in the geometrical language.
Reciprocally, we can write all pseudotensors as tensors
in the DGPP approach, all of them possessing the same
gauge ambiguity.

This paper is organized as follows: In section I the
DGPP theory is brie
y discussed and its expression for

the energy-momentum tensor is deduced. In section
II we show how the pseudotensors can be expressed
as tensor �elds, being however, like the DGPP energy-
momentum tensor, gauge dependent. In section III,
using a result obtained by Virbhadra, it is shown that
the gauge dependence of the pseudotensors is equiva-
lent to the dependence with respect to the choice of the
coordinate system in GR. We conclude in section IV,
with some comments and discussions.

II The DGPP formalism

In the DGPP formalism the gravitational �eld K�
�� and

the gravitational potential h�� can be treated as ten-
sor �elds de�ned in a certain Riemannian background
spacetime previously �xed, characterized by the back-
ground metric 
�� and by the background connections
C�
�� so that

p�gg�� = p�
(
�� + h��); (10)

and
���� = C�

�� +K�
�� : (11)

The background space must be Ricci-
at, i.e., R
(o)
�� = 0,

in order for the theory be equivalent to GR
In term of the tensor �elds de�ned on (10) and (11),

the Einstein/Hilbert action for the gravitational �eld
can be expressed as:

c

S = � 1

2�

Z
R
p�gd4x = � 1

2�

Z
~h��(K�

��;� �K�;�) + (~
�� + ~h��)(KK)�� ; (12)

1In this paper we are assuming torsion-free spacetimes, and that the gravitational potential is given by the metric, not by the
connection. For others approaches see, e. g., Ref.[5].



Brazilian Journal of Physics, vol. 30, no. 1, Mar�co, 2000 183

where
~
�� � p�

�� ; ~h�� � p�
h�� ; (13)

K� � K�
��; (14)

and
(KK)�� � K�

��K� �K�
��K

�
��: (15)

The semi-colon (;) represents the covariant derivative with respect to the background connections. We have omitted
in the lagrangian (12) the terms

L0 =
p�
R(o) ; L1 = ~h��R(o)

�� andL2 = [~
��K�
�� � ~
��K�];�; (16)

which do not contribute to the variation of the action: L0 and L1 because of Ricci-
atness, and L2 because it is a
total divergence.

The dynamical equations for the gravitational �eld can be obtained by varying the DGPP action (12) with
respect to the �elds ~h�� and K�

�� resulting in the following equations for ~h�� and K�
�� :

GL
�� = �(KK)�� +

1

2

��(KK)�� +Q�

��;�; (17)

and
� ~h��;� + (~
�� + ~h��)K� � (~
�� + ~h��)K�

�� � (~
�� + ~h��)K�
�� = 0; (18)

where
2GL

�� = [
��h
�� + 
��h�� � Æ��h

�
� � Æ�� h

�
�];�;� ; (19)

and
2Q�

�� = �
��h��K�
�� + h��K

� � h��K� � h��K�+
+ h��(K

�
�� �K�

��

��
��) + h��(K

�
�� �K�

��

��
��)+

+ h��(K�
��
�� +K�

��
��):
(20)

The energy-momentum tensor of the gravitational �eld described by the action (12) can be calculated as usual,
by varying the DGPP lagrangian with respect to the background metric, yielding

�t�� = � 1p�

ÆL

Æ
��
= �(KK)�� +

1

2

��(KK)�� +Q�

��;�; (21)

d

which is just the right-hand-side term of equation (17)
for the gravitational �eld. Combining the above equa-
tions, it is possible to write the energy-momentum of
the gravitational �eld as:

2�t�� = [
��h
�� + 
��h�� � Æ��h

�
� � Æ�� h

�
�];�;�: (22)

Hence, in the DGPP prescription, the gravitational
term can be expressed as a tensor with respect to the
coordinate transformations on the background space.

The theory can be extended to include the matter
contribution. If L(m) is the Lagrangian associated with
the matter �elds the corresponding energy-momentum
tensor will be de�ned, in analogy with (21) as:

�T�� =
1p�


ÆL(m)

Æ
��
: (23)

Admitting the hypothesis of minimal coupling between
the matter and the gravitational �eld, the free �eld
equation (17) can be generalized to the form:

GL
�� = �(t�� + T��): (24)

with GL
�� and t�� de�ned by (19) and (21).

The symmetry properties of GL
�� imply in the iden-

tity
GL;�
�� � 0; (25)

which results, according to (24), in the covariant
energy-momentum conservation laws for the matter
plus the gravitational �eld:

T ;�
�� = 0) T�� = t�� + T�� : (26)

Hence, in the DGPP formalism the invariance of the
conservations laws with respect to coordinate transfor-
mations is compatible with the tensor nature of the con-
served quantities, unlike the pseudotensorial formalism.

III The pseudotensors in the

DGPP formalism

It will be shown in this section how the pseudotensors,
de�ned originally in term of the Einsten metric g�� and
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its derivatives may be fully expressed in term of the ele-
mentary tensor �elds h�� andK�

�� de�ned in the DGPP
formalism.

Consider �rst the original expressions of the pseu-
dotensors in term of the metric g�� :

c

E�
� =

1

2�
[~g��(~g

��~g�� � ~g��~g��);�];� (Einstein=Tolman); (27)

L�� =
1

2�
[~g��~g�� � ~g��~g�� ];�;�(Landau=Lifshitz); (28)

M�
� =

1

�
[~g��g��(g��;� � g��;�)];�(M�ller): (29)

d

De�ned as �elds on the DGPP background space the
pseudotensors, at each point, can be written in a local
inertial coordinate system in which the connections are
zero at a point and where the covariant derivatives are
ordinary derivatives. To express the pseudotensors in
an arbitrary coordinate system we can use the back-
ground connection C�

��(see eq. (11)) to replace ordi-
nary derivatives by covariant derivatives.

For the Landau/Lifshitz pseudotensor one obtains,
in an arbitrary coordinate system, the covariant form:

L�� =
1

2�
[~g��~g�� � ~g��~g�� ];�;� (30)

Replacing in the above expression the de�nition (10),
it results that

L�� = (�
)fT �� +
1

2�
[h��h�� � h��h��];�;�g; (31)

where

T �� =
1

2�
[
��h�� + 
��h�� � 
��h�� � 
��h�� ];�;� :

(32)
is the DGPP energy-momentum tensor of matter plus
the gravitational �eld (see equations (19), (24) and
(26)). Hence, in the DGPP formalism, the Lan-
dau/Lifshitz pseudotensor can be written in tensorial
form as was already recognized in reference [3].

For the pseudotensors of Einstein/Tolman and
M�ller, some diÆculties can appear due to the presence
of the covariant metric density ~g�� , which can only be
expressed in term of the DGPP �eld h�� = 
��
��h

��

by means of an in�nite series

c

~g�� =
1p�gg�� =

1p�
 f
�� � h�� + h��h
�
� � h��h

�
�h

�
� + ::::g: (33)

d

Such a diÆculty can be overcome by using the relation:

~g��;� = K�
��~g�� +K�

��~g�� �K�~g��: (34)

Then, we obtain for the Einstein/Tolman pseudotensor
the expression:

E�
� =

p�

2�

[A���
� ;� �K�

��A
���
� +K�A

���
� ];� ; (35)

where A���
� is given by

A���
� = Æ��(


�� + h��)� Æ��(

�� + h��): (36)

The Einstein/Tolman pseudotensor becomes a tensor
density of weight 1 in the DGPP formalism. Similarly,
for the M�ller pseudotensor we get

M�
� = �

p�

�

[K�
��A

���
� ];� ; (37)

which is also a tensor density.

Hence, all the pseudotensors admit a purely tenso-
rial representation in the DGPP formalism. We would
like to remark that the procedure of replacing the or-
dinary derivative by the covariant one yields nontrivial
results (non null tensors) only in the DGPP framework,
where the background connection C�

�� , instead of ����
is used, so that in this case the covariant derivative of
g�� is not zero.

IV Gauge dependence in the

DGPP formalism

If the gravitational energy-momentum pseudotensors
can be written as tensors in the DGPP formalism, like
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the DGPP energy-momentum tensor itself, where do
reside the ambiguities in the de�nition of localized en-
ergy in GR in the DGPP approach? We must remember
that the DGPP framework is just an alternative view of
the same theory, i.e., GR. The answer comes if we note
that the coordinate transformation invariance of GR is
translated to invariance under gauge transformations
on h�� and K�

�� in the DGPP formalism.

In e�ect, consider the in�nitesimal coordinate trans-
formation x0� = x� + ��(x), which changes the func-
tional form of ~g�� as

~g0��(x) = ~g��(x) +$
(1)
� ~g��(x); (38)

where the Lie derivative $
(1)
� ~g�� is given by

$
(1)
� ~g��(x) = �~g��;� ��+ ~g����;� + ~g����;� � ~g����;�: (39)

In the case of a �nite transformation, the change in ~g��

is given by

~g0��(x) = ~g��(x) +

1X
k=1

1

k!
$

(k)
� ~g�� ; (40)

where $
(k)
� is the Lie derivative of order k de�ned as

$
(k)
� = $

(1)
� [$

(k�1)
� ]: (41)

Substituting in (40) the de�nition (10) we get

c

~g0��(x) = ~
��(x) + ~h��(x) +

1X
k=1

1

k!
$

(k)
� (~
�� + ~h��): (42)

d
The transformed metric density can be decomposed in
two distinct ways:

~g0��(x) = ~
��(x) + ~h0��(x) (43)

and

~g0��(x) = ~
���(x) + ~h���(x); (44)

where, by comparison with (42) one gets

~h0��(x) = ~h��(x) +

1X
k=1

1

k!
$

(k)
� (~
�� + ~h��); (45)

~h���(x) = ~h��(x) +

1X
k=1

1

k!
$

(k)
�

~h�� ; (46)

and

~
���(x) = ~
��(x) +

1X
k=1

1

k!
$

(k)
� ~
�� : (47)

On the form (43) the transformation acts only in
the �eld ~h�� , letting invariant the background metric

��(x). In this sense, one can interpret the transforma-
tion (45) as a pure gauge transformation.

Analogously the pure gauge transformation for the
�eld K�

��(x) is

K 0�
��(x) = K�

��(x) +

1X
k=1

1

k!
$

(k)
� (C�

�� +K�
��); (48)

while for the case which correspond to the transforma-
tion (46) we have

K��
�� (x) = K�

��(x) +

1X
k=1

1

k!
$

(k)
� K�

�� : (49)

It is possible to show that the dynamical equations
for the gravitational �eld (17) are invariant under the
transformations (45) and (48) supposing that the back-
ground space is Ricci-
at. [3]

On the form (44), (46),(47) and (49) however, the
transformation is not a pure gauge transformation ,
since it acts on the �eld as well as on the background
metric. In fact, these are the usual transformations on
tensorial �elds resulting from a general mapping of the
manifold on which they are de�ned. Hence, all tensors
in the manifold, in particular the energy-momentum
tensors de�ned in the last section, will transform in the
usual homogeneous way:

T 0��(x) = T ��(x) +

1X
k=1

1

k!
$

(k)
� T ��(x) (50)

However, the situation is completely di�erent for the
case of transformations (45) and (48). The tensors do
not transform in the usual way (50) but contains ex-
tra inhomogeneous terms which brings the possibility
of annulling them. The DGPP energy-momentum ten-
sor, for example, transform in this case according to:

c

T��(h0;K 0) = T��(h;K) +
1

�
ĜL
��

"
1p�


1X
k=1

1

k!
$

(k)
� (~
�� + ~h��)

#
; (51)
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where ĜL
�� is the operator which when acting on h��

yields expression (19). Hence, it is always possible to
�nd gauge transformations (45) and (48) which makes
the energy-momentum tensors de�ned previously to be
null. This is the analogue in the DGPP approach to
what happens with the pseudotensors in GR.

To illustrate in more detail what happens in the
DGPP approach, we will investigate a speci�c exam-

ple, taking the DGPP and Landau/Lifshitz energy-
momentum tensors, and comparing their transforma-
tions under gauge and coordinate transformations in
the �eld and geometrical frameworks, respectively. Ini-
tially, let us express the Reissner-Nordstr�om solution
in the asymptotically Minkowiskian coordinate system
(T; x; y; z) as:

c

ds2 = �dT 2 + dx2 + dy2 + dz2 + (1�B)(dT + dr)2 (52)

d

where B = 1� 2m
r
+ Q2

r2
and r2 = x2+y2+z2 > r20 , with

r0 representing the Reissner-Nordstr�om event horizon.
Using this coordinate system, the pseudotensors are cal-
culed in Ref. [9] giving the result

E0
0 = L00 = 1=2M0

0 =
Q2

8�r4
; (53)

where the originals expressions (27), (28) and (29) for
the pseudotensors were used. Performing the coordi-
nate transformation on the time variable

T = t+

Z
(B�1 � 1)dr; (54)

the Reissner-Nordstr�om solution can be expressed in
the new coordinate system (t; x; y; z) in the form

ds2 = �Bdt2 + dx2 + dy2 + dz2 + (B�1 � 1)dr2: (55)

In this coordinate system the prescriptions of Ein-
stein/Tolman and M�ller furnish the same previous re-
sults, while the Landau/Lifshitz pseudotensor is given
by

L00 =
�Q4 +Q2r(r + 4m)� 4m2r2

8�r4[Q2 + r(r � 2m)]2
; (56)

revealing, on this form, the ambiguities that character-
ize the pseudotensorial formalism with regard to the
physical meaning of the energy density in gravitational
systems.

We can write the two asymptotically 
at line ele-
ment used above in spherical coordinates (r; �; �). For
the line element (52) we obtain

c

ds2 = �dT 2 + dr2 + r2(d�2 + sen2�d�2) + (1�B)(dT + dr)2; (57)

d

whereas for the second line element (55) is given by

ds2 = �Bdt2 +B�1dr2 + r2(d�2 + sen2�d�2): (58)

One observes that, as before, the metrics (57) and (58)
are related by the coordinate transformation (54).

Let us now calculate how the energy-momentum
tensors changes in the DGPP formalism. The metric
of the background, which is 
at spacetime, is given by

ds2 = �dT 2 + dr2 + r2(d�2 + sen2�d�2): (59)

From equations (10) and (57) we obtain the following
non-null components of the gravitational �eld:

h00 = h11 = �h01 = �h10 = B � 1: (60)

Considering now the transformed metric (58), and
maintaining the line element (59) for the background

metric, the new no null potentials h0��(x) will be given
by:

h000 = 1�B�1; h011 = B � 1: (61)

It must be stressed that the same background 
at met-
ric (59) was used to determine the new potential, in
agreement with the form (43) where the background
metric is not changed. In this form, the coordinate
transformation (54) correspond, in the DGPP language,
to a gauge change in h��(x) given by (60) to h0��(x) de-
�ned in (61) where, by hypothesis, h��(x) and h0��(x)
are related by the transformation (45).

Completing the calculations by Virbhadra, we
now determine the energy density of the Reissner-
Nordstr�om solution in the DGPP prescription de�ned
in (22) by

t00(
; h) =
1

2�
[
00h�� + 
��h00 � 2
0�h0� ];�;�: (62)
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Using �rst the potential (60) and the background met-
ric (59) one obtain for this prescription

t00(
; h) =
Q2

8�r4
; (63)

in agreement with the results obtained by Virbhadra
using the pseudotensorial formalism. For the gravita-
tional �eld (61) we get

t00(
; h0) =
Q2r2 � 4m2r2 + 6mQ2r � 3Q4

8�(r2 � 2mr +Q2)3
: (64)

Hence, just as the Landau/Lifshitz pseudotensor,
the DGPP energy-momentum tensor is strongly af-
fected by the transformation. Performing the same
calculations for the Landau/Lifshitz energy density in
DGPP form (see eq. (31)), we get

L00(
; h) = t00(
; h) =
Q2

8�r4
(65)

for h�� and

L00(
; h) =
�Q4 +Q2r(r + 4m)� 4m2r2

8�r4[Q2 + r(r � 2m)]2
(66)

for h0�� . These expressions are identical to the ex-
pressions obtained by Virbhadra for the Reissner-
Nordstr�om energy density in the Landau/Lifshitz pre-
scription, before and after the aplication of the coordi-
nate transformation (54).

Thus, under the action of the gauge transformation
h��(x) ! h0��(x), with h��(x) and h0��(x) given by
( 60 ) and (61), the pseudotensor of Landau/Lifshitz
transforms itself exactly as if it have su�ered the ac-
tion of the coordinate transformation (54) revealing, in
that form, an equivalence between the coordinate trans-
formations in the GR spacetime and this pure gauge
transformation de�ned on the DGPP formalism.

We would like to emphasize that the change in L00

from equation (65) to equation (66) is not due to the
fact that we are dealing with a component of a tensor.
This change can be calculated by using the transforma-
tions (46) and (47) yielding

c

L00(
�; h�) = t00(
�; h�) =
2Q4 +Q2r2 � 4mQ2r

8�r2(r2 � 2mr +Q2)2
; (67)

d

which is di�erent from equation (66).

V Conclusion

In this last section we summarize the conclusions about
the pseudotensorial and DGPP formalisms based on the
results we have obtained in the previous sections.

First, from the relations obtained in section II,
and from the de�nition (32) of the DGPP energy-
momentum tensor one conclude that, although hav-
ing exhibited a gravitational energy-momentum tensor,
which is a necessary condition to express a local quan-
tity of energy in a form independent of the coordinate

system, the DGPP formalism does not solve, at last,
the problem of the localization of the gravitational en-
ergy because the DGPP energy-momentum tensor is
not invariant under the pure gauge transformation (45),
and it can be put to zero under a suitable choice of
this kind of transformation. In fact, in the DGPP for-
malism both the pseudotensors and the DGPP energy-
momentum tensor can be de�ned from tensorial super-
potentials U��

� , which are gauge dependent and di�er
between them by certain anti-symmetric tensorial term
	��
� so that the conservation laws are not violated.

The expressions below show the tensorial superpo-
tentials in the various prescriptions as well as the rela-
tions that can be established between them:

c

U��� =
1

2�
[
��h�� + 
��h�� � 
��h�� � 
��h�� ];� (DGPP); (68)

L��� = (�
)U��� +
1

2�
[~h��~h�� � ~h��~h�� ];� (Landau=Lifshitz); (69)

E��
� =

p�
U��
� +

p�

2�

[K�A
���
� �K�

��A
���
� �

�(
��h�� � 
��h��);�](Einstein); (70)

M��
� = 2E��

� + Æ��E
��
� � Æ��E

��
� (M�ller): (71)
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Hence, the fact that the DGPP energy-momentum
is a real tensor is not important, since the pseudoten-
sors can also be written as tensors in this formalism.
What is crucial is the dependence of all these quantities
under the pure gauge transformations (45), (48). Fur-
thermore, according to the results of section IV, these
gauge transformations are equivalent to the general
coordinate transformations de�ned on the GR space-
time. Hence, one conclude that in spite of their in-
trinsic conceptuals di�erences, the pseudotensorial and
DGPP formalisms have analogous properties and there-
fore constitute essentially equivalent forms to represent
the conservation laws of gravitational systems. This
does not mean that the DGPP formalism is useless.
Note that the manifold mapping group (MMG) is, at
the same time, the covariant group and the symmetry
group of GR [10]. In this sense, the role of the DGPP
formalism is to split these two distinct aspects of the
MMG by de�ning a background metric over which the
�elds propagate. The covariance role of the MMG man-
ifests itself in the tensorial nature of �elds and equations
of motion in the DGPP formalism, which is trivial since
any theory can be set covariant. The symmetry role of
the MMG, which is one of the most important features
of GR, appears in the DGPP formalism as the symme-
try of the equations of motion under the pure gauge
transformation (45). One should also note that if the
�eld h�� does not always appear together with 
�� (and
also K�

�� with C�
��) in their self-coupling and coupling

with matter, the theory looses its gauge symmetry, and
there is no sense in nullifying the energy-momentum
tensor by means of a gauge transformation: the grav-
itational energy turns out to be localizable. This is
because the background metric 
�� is now observable,

not only its combination ~g�� = ~
�� + ~h�� , and hence
the symmetry group of the theory will no longer be
the MMG but the symmetry group of 
�� (e.g., the
Poincar�e group if it is the 
at metric). The theory can
not be formulated in geometrical terms, a preferred ref-
erence frame is present (the one adapted to 
��), and

the Equivalence Principle is not satis�ed (there is at
least one type of particle which follows the geodesics of

�� , not of g�� as the others). This is the only way to
have a notion of localizable gravitational energy in some
alternative theory of gravity which necessarily will not
satisfy the Covariance Principle (in the sense that the
MMG is no more the symmetry group of the theory[10])
and the Equivalence Principle. For an example of a the-
ory constructed on these lines see Ref.[11].

Hence, the DGPP formalism, although equivalent to
GR, not only clarify some important aspects of it but
also helps us to envisage alternative routes to describe
the gravitational �eld.
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