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We study the spin pair correlation function of the one-dimensional Ising model with competing
nearest and next-nearest neighbor interactions, or ANNNI chain, in the presence of an external
�eld. Of particular interest are the disorder lines where exponential decay of the spin pair correlation
changes from monotonic to oscillatory. We extend previous studies for higher �eld values and obtain
asymptotic expressions for disorder lines at low temperatures. We also observe reentrant disorder
lines.

I Introduction

The axial next-nearest neighbor Ising (ANNNI) model
is an example of a frustrated system [1] displaying mod-
ulated order at low temperatures in two and three di-
mensions [2, 3]. In one dimension the model is exactly
solvable and has been investigated in zero �eld [4-10], in
the presence of a �eld [11, 12] and at zero temperature
[13, 14]. Of particular interest is the exponential decay
of the spin pair correlation function which may be mod-
ulated by an oscillatory factor with a temperature- and
�eld-dependent wave number. The line in the phase
diagram that separates the region with zero wave num-
ber from non-zero wave number has been called the
disorder line [7, 8]. The main purpose of this paper is
to further investigate the ANNNI chain in a �eld and
examine some aspects of the spin pair correlation not
considered previously.

The energy of the model can be written

E = �

NX
i=1

(J1�i�i+1 + J2�i�i+2 +H�i) +E0; (1)

where �i = �1 and the periodic boundary condition
�i+N = �i is assumed. J1 and J2 are the near-
est and the next-nearest neighbor interactions, respec-
tively, and H is the magnetic �eld. For low tempera-
ture numerical calculations it is convenient to take E0

to be the ground state energy, since this choice avoids
the divergence of the eigenvalues of the transfer ma-
trix. We will restrict our discussion to ferromagnetic
nearest neighbor interaction (J1 > 0), antiferromag-
netic next-nearest neighbor interaction (J2 < 0) and
positive �eld (H > 0). The ratio �J2=J1 measures the
competition between nearest and next-nearest neigh-
bor interactions. The zero temperature phase diagram

in the plane H versus �J2=J1 is shown in Fig. 1. There
are only two phases: In the ferromagnetic phase all the
spins point up, whereas in the antiphase state two up
spins alternate with two down spins [13, 14]. We shall
principally consider parameter values yielding a ferro-
magnetic ground state with

E0 = �

NX
i=1

(J1 + J2 +H): (2)

The solution of this problem can be formulated in terms
of the transfer matrix V with elements [9, 12, 15]

h�1�2jVj�3�4i = Æ�2;�3x
1��1�2y1��1�4z1��1 ; (3)

where

x = e��J1 ; y = e��J2 ; z = e��H ; (4)

with � = 1=kBT , kB being Boltzmann's constant and
T the absolute temperature. The eigenvalues are given
by the secular equation

f(�) = a0�
4 + 4a1�

3 + 6a2�
2 + 4a3�+ a4 = 0; (5)

where

a0 = 1; a1 = �
1

4
(1 + z2); a2 =

1

6
(1� x4)z2;

a3 = �
1

4
x4z2(1 + z2)w; a4 = �x4z4w2; (6)

with
w = y4 � 1: (7)

The nature of these eigenvalues is determined by the
discriminant [16] of the quartic equation (5),

� = (a0a4 � 4a1a3 + 3a22)
3
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� 27(a0a2a4 � a0a
2
3 � a21a4 + 2a1a2a3 � a32)

2: (8)

The condition for two real and two complex roots is
� < 0, and that for four real or four complex roots is
� > 0 [16]. Since f(�1) =1 and f(0) < 0, there will
always be two real roots with the largest root being real
and positive. Moreover, since f 0(�) < 0 for � < 0, if
the second largest root in magnitude is real then it will
be positive. Let �1 denote the largest eigenvalue and
�2 the second largest eigenvalue in magnitude. In the
thermodynamic limit N !1 the spin pair correlation
at large distances r � 1 has the asymptotic form [12]

h�i�i+ri � m2 +Ae�r=� cos qr; (9)

where m = h�ii is the magnetization, A is the am-
plitude, � is the correlation length and q is the wave
number, where

� = ln
�1
j�2j

; q = arg�2: (10)

If �2 is real then q = 0 and the correlation will have
a monotonic exponential decay, whereas if �2 is com-
plex there will be an oscillatory decay with wave num-
ber q. The changeover from monotonic to oscillatory
decay de�nes the disorder line [7, 8] or Lifshitz condi-
tion [10]. Therefore the condition for the disorder line
is the vanishing of the discriminant � given by (8).

Figure 1. Zero temperature phase diagram of the ANNNI
chain in a magnetic �eld. The solid line �J2=J1 = 1=2 +
H=2J1 separates the ferromagnetic phase from the antiphase
(shaded region). The numbers indicate the limiting val-
ues taken by the wave number q=� as T ! 0 inside the
regions and over the lines separating them. The disor-
der lines intersect the T = 0 axis for H=J1 < 2 on the
dashed line �J2=J1 = 1=2 � H=4J1. The dot-dashed line
�J2=J1 = H=2J1 � 1 separates regions with di�erent limit-
ing wave number values for H=J1 > 2.

II Numerical Results

Let us �rst consider �eld values H=J1 < 2. Fig. 2
shows disorder lines in the plane of temperature T ver-
sus �J2=J1 for various �xed values of the magnetic �eld
H . The wave number of the spin pair correlation (9) is
zero to the left of the disorder line and non-zero to the
right. The behavior of the wave number q as a func-
tion of temperature T is illustrated in Fig. 3 for the
�eld H=J1 = 1:5 and various �xed values of �J2=J1.
An interesting aspect of these graphs [12] is that for
0:125 � �J2=J1 � 1:25 the limiting value of wave num-
ber q as T ! 0 is non-zero despite the ground state be-
ing ferromagnetic. There is no contradiction, however,
since in the ferromagnetic phase m ! 1 and � ! 0 as
T ! 0. Thus the second term in the right hand side of
Eq. (9) vanishes and the wave number is not relevant
as far as the ground state ordering is concerned. On
the other hand, in the antiphase m! 0 and � !1 as
T ! 0. Therefore it is the �rst term in the right hand
side of Eq. (9) that vanishes and the wave number
q = �=2 correctly describes the antiphase state [12]. In
the zero temperature phase diagram of Fig. 1 we have
indicated the limiting values taken by the wave number
q as T ! 0. Another interesting feature is the reen-
trant behavior exhibited by the disorder lines for large
enough �elds: As the temperature is lowered the wave
number �rst vanishes but at still lower temperatures it
becomes non-zero again, as shown in Fig. 3 for the case
�J2=J1 = 0:08. We found numerically that the reen-
trant behavior of disorder lines is present for all �elds
H=J1 > 1:333.

Figure 2. Disorder lines for various �xed values of the mag-
netic �eld H=J1 < 2. The wave number is zero to the left
and non-zero to the right of these lines. The straight dashed
lines correspond to the asymptotic results for T ! 0. For
H=J1 > 1:333 the disorder lines display reentrant behavior.
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Figure 3. Wave number q as a function of temperature T
for H=J1 = 1:5 and various �xed values of �J2=J1. The
graph for �J2=J1 = 0:08 shows the vanishing of the wave
number at intermediate temperatures corresponding to the
reentrant behavior of the disorder line.

We will now consider �eld values H=J1 � 2. Fig. 4
shows the disorder lines in the plane of temperature T
versus �J2=J1 for various �xed values of the �eld H .
The wave number of the spin pair correlation (9) is zero
to the left of the disorder line and non-zero to the right.
We observe that in contrast to the case H=J1 < 2, all
disorder lines tend to �J2=J1 = 0 as T ! 0. In Fig. 5
the graphs of the wave number q as a function of tem-
perature T are shown for the �eld H=J1 = 3 and several
values of �J2=J1. The limiting value of the wave num-
ber q as T ! 0 is always non-zero. Also, although it
is outside the range of temperatures shown, the wave
number for �J2=J1 = 0:01 vanishes only in some tem-
perature interval, re
ecting the reentrant behavior of
the disorder line. Finally we observe that, no matter
the �eld strength H , all the disorder lines tend to the
T axis as T !1.

Figure 4. Disorder lines for various �xed values of the mag-
netic �eld H=J1 � 2. The wave numbers are zero to the left
and non-zero to the right of these lines. The dashed lines
correspond to the asymptotic results for T ! 0. All the
disorder lines display reentrant behavior.

Figure 5. Wave number q as a function of temperature
T for H=J1 = 3 and various �xed values of �J2=J1. For
�J2=J1 = 0:01 the wave number vanishes at intermediate
temperatures corresponding to the reentrant behavior of the
disorder line, but the temperature value at which the wave
number assumes non-zero value again is o� the scale and
cannot be seen.

III Asymptotic Results

In this section we obtain asymptotic expressions for dis-
order lines at low temperatures. Since x! 0 and z ! 0
as T ! 0, the discriminant (8) is given to leading order
by

� �
z12

6912

"
4

�
1� 12x4w2 � 3

x4w

z2

�3

�

�
2� 27

x4w2

z2
� 9

x4w

z2

�2#
: (11)

We �rst assume that w ! 1 as T ! 0. Then the dis-
criminant (11) can vanish only if x4w2 = O(z2) and we
have

� �
z12

6912

"
4�

�
2� 27

x4w2

z2

�2#
: (12)

The disorder line condition � = 0 gives x4w2=z2 =
4=27 or

�
J2
J1
�

1

2
�

H

4J1
�
kBT

8J1
ln

�
27

4

�
: (13)

This result, valid only for H=J1 < 2, implies that the
disorder lines meet the T = 0 axis with �eld indepen-
dent slope � ln(27=4)=8 = �0:238 : : : at

�
J2
J1

=
1

2
�

H

4J1
; (14)

in good agreement with the numerical results of Fig.
2. The above equation also corresponds to the straight
line separating the region with q=� = 0 from the region
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with q=� = 1=3 in the zero temperature phase diagram
of Fig. 1. Let us next assume that w ! 0 as T ! 0.
We then have

� �
z12

6912

"
4

�
1� 3

x4w

z2

�3
�

�
2� 9

x4w

z2

�2#
: (15)

The disorder line condition � = 0 gives x4w=z2 = 1=4
or

�
J2
J1
�

kBT

16J1
exp

�
4J1 � 2H

kBT

�
: (16)

This result, valid for H=J1 > 2, implies exponential ap-
proach of the disorder lines to the temperature axis as
T ! 0, in good agreement with the numerical results
of Fig. 4. Finally, the case where w remains �nite as
T ! 0 should correspond toH=J1 = 2. Then x4=z2 = 1
and we have

� �
z12

6912

h
4 (1� 3w)3 �

�
2� 27w2 � 9w

�2i
: (17)

The disorder line condition � = 0 gives w = 5=27.
Therefore

�
J2
J1
�

1

4
ln

�
32

27

�
kBT

J1
: (18)

This result shows that the disorder line approaches the
origin as T ! 0 with slope ln(32=27)=4 = 0:04247 : : :,
in good agreement with the numerical result of Fig. 4.

IV Summary

We have extended previous work on the ANNNI chain
in a �eld [12] by considering the spin pair correlations
for all �eld values. We have shown that the disor-
der lines have di�erent low temperature behavior for
H=J1 < 2, H=J1 = 2 and H=J1 > 2. Numerical results
were con�rmed by asymptotic calculations for T ! 0.
We have also shown that the disorder lines have reen-
trant behavior for H=J1 > 1:333.
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