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We discuss several key problems of conventional QCD glueball sum rules in the spin-0 channels and show
how they are overcome by nonperturbative Wilson coefficients. The nonperturbative contributions originate
from direct instantons and, in the pseudoscalar channel, additionally from topological charge screening. The
treatment of the direct-instanton sector is based on realistic instanton size distributions and renormalization
at the operator scale. The resulting predictions for spin-0 glueball properties as well as their implications for
experimental glueball searches are discussed.

1 Introduction defined as

The gluonium sector of QCD has remained complex and Ilg (z) = (0|T O¢ () O¢ (0) |0) (1)
intriguing for almost four decades [1]. Its “exotic” na- ) o
ture partially reflects itself in several longstanding prob- WhereOg with G € {S, P} are the standard gluonic inter-
lems which the QCD sum rule approach faces in the spin-Polating fields (with lowest mass dimension)

0 glueball channels [2]. In the scalarf(d) glueball cor-

relator, in particular, the departure from asymptotic free- Os (2) = asGy, (2) G (), (2)

dom sets in at surprisingly small distances [3]. Unusually Op (7) = a,G%, () Garv (7). (3)
. . . . uv

strong, nonperturbative contributions to the Wilson coef-

ficients are then required to provide stability for tbie™ The correponding Fourier transforms are

glueball sum rules (mainly the one including a large sub-

traction constant) and to reconcile them with an underlying  17.,(—¢?) = i/d% €' (0|T O¢ (z) Og (0)]0) . (4)
low-energy theorem (see below) [4]. While instantons [5]

seemed to be a likely candidate for such contributions early
on [6], their implementation into the short-distance expan-
sion (i.e. the OPE) had to await better knowledge of the in-
stanton size distribution [5, 7]. The instanton-improved OPE 327

(IOPE) and the analysis of the corresponding Borel sum s (¢* = 0) = o (aG?) (5)
rules [4] then showed that direct (i.e. small-scale) instan- 0

tons solve two key problems in the scalar glueball channel:in the scalar channel [11] and (with three light flavors and
they render for the first time all Borel-moment sum rules m,, 4 < ms)

individually and mutually consistent. A subsequent analy-

sis of the related Gaussian sum rules [8] confirmed some Ip (¢> =0) = (87)> MuMd (qq) (6)

The zero-momentum limits of these correlators are governed
by low-energy theorems:

of these findings and investigated alternative parametriza- My, + Mg
tions of the phenomenological side. However, the previous

implementations of direct instanton contributions, including (which vanishes in the chiral limit) in the pseudoscalar one

those in the)*+ glueball channel, relied on approximations [12]. Con.sistency with the Iow-energy theorems is a strin-

which may cause artefacts in the sum-rule results. We will gent requirement for the sum rules which can be met only by
. o nonperturbative short-distance physics in the IOPE [4, 10].

therefore outline a more thorough and systematic treatment The direct-instanton contributions to the glueball corre-

here. Moreover, while direct-instanton contributions resolve
’ lators show a pronounced and robust channel dependence

longstanding shortcomings in the scalar glueball sum rules, . o ; . .
the?r straigh?forward implgmentation into tgheJr sum rules pattern which originates from the (Minkowski) (anti-) self-
duality of the (anti-) instanton’s field strength,

seems, at first, to create new problems [9]. These prob-
lems have an appealing solution, however, due to topolog- 1.7) - (1.7)

. 1 I
ical charge screening [10], as we will discuss below. G/(w = iZG;(L 5 (0

2 Euvpo Gpﬂ

(7
Self-duality implies that the direct-instanton contributions

2 Correlators and sum rules to the0~* glueball correlator are equal in size and opposite
in sign to those in th@*+ glueball correlator. Moreover,

Our discussion will be based on the correlations functions of the energy-momentum tensor of self-dual fields vanishes,
the scalaf0™*) and pseudoscal@®—") glueball channels, and consequently their contributions to the tensor glueball
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correlator (based on the interpolator- (v) = Oj,, (z)). exhibits the characteristic factorization into contributions
Since the instanton contributions to the scalar glueball cor-from “hard” field modes (with momentg:| > ) in the
relator turn out to be strongly attractive, they must be equally Wilson coefficients"p, (Q2) and contributions from “soft”

strongly repulsive in the pseudoscalar channel. field modes (withk| < ) in the vacuum expectation values
In order to make contact with the hadronic information (condensates”) of the operataps, of dimensionD.

contained in the glueball correlators, we now turn to the dis- e perturbative Wilson coefficients, which generate the

persive representation conventional OPE, can be found in Refs. [8, 10] for@He:
oo _ and in Refs. [9, 10, 13] for th6=* channel. In the fol-
2 1 ImIlg (—s) . . . L
Il (Q ) = STer 02 Q2 (8) lowing we will focus on the nonperturbative contributions
0

due to direct instantons and topological-charge screening.
where the necessary number of subtractions is implied butThe ynit-operator Coefﬁcier&'ég) of the IOPE receives the
not Written eXp||C|t|y The Standard Sum'rule deSCI’iption Of dominant direct-instanton contribution [10]’
the spectral functions contains one or two resonance poles
(in zero-width approximation) and the local-duality contin- (1+1)

283 1 9 2
. 2y _
uum, i.e. I, 7 (2%) = 7/61/)” (p) F2F1 (4,6,2,—4p2> .

(15)

(ph) [\ _ (pole) (cont)
mIIG™ (s) = Im g™ (s) + Im TG (s) - (9) From its Fourier transform one finds the corresponding

with Borel moments [4]4 = p?/27)
2 _
Im T1#°1) () = Z f&im&id (s —me;) , (10) E(,Ijl) (1) = —2872 / dpn (p) xe™™ (16)
i=1
I 115" () = 0(s — 50) I TGP (). (1) x [(1 + ) Ko () + (z ta+ 2) K m}

The continuum representation is obtained from the discon-
tinuities of the IOPE and covers the invariant-mass region (which, for  — oo, approaches the subtraction term
"dual” to higher-lying resonances and multi-hadron contin- _5 H(I+f) (0)) and
uum, starting at an effective threshaigl koG

In order to write down QCD sum rules, the correlators -

weighted with powers of-Q? - are Borel-transformed, L,(Cflf) ()= ;g,(f”) (1) (fork > -1). (A7)
ok
(x) — Bl(—on 1902 > 1
L6 (7) {( @) e (@ )} (r), k= ('12) From the imginary part [4]
The hadronic parametefsg;, fai, so are then determined (1+1) s 4 s
by matching the momentﬁg’? (1;mai, fai, So) in the Im ITg (=8)=—2'r /dﬁm (p) p*s* T2 (V'sp) Yz (Vsp)
fiducial -region to their counterparthﬁPE) which will o (18)
be determined below. The ensuing IOPE sum rules are con-at timelike momenta one then has
veniently written in terms of the continuum-subtracted Borel (141)
momentsk¢  as R, (1) = =277k 1 /dpn (p) — 2471'3/dp (29)
]' %0 —S8T 50
Rk (T580) = ;/ dss® Im HgOPE) (s)e (13) x n(p) p4/ dss"2Jy (V/sp) Ya (V/sp) e ™.
0 0
2
= Z féimg{%e*mé” — 65,1 TIEM (0) The only input for the evaluation of these contribution is
i=1 the (anti-) instanton distributions(p). The Wilson coeffi-

which isolates the pole contributions of interest (and the im- Ci€Nts are primarily sensitive to the qualitative behavior of
portant subtraction term fdr = —1) on the RHS. n (p) and two characteristic scales, the leading moments

3 I0OPE ﬁ:/dpn(/))a ﬁ=%/dppn(p)- (20)

Our theoretical framework for calculating the correlator am- All previous direct-instanton calculations have relied on the
plitudes at short distances is the instanton-improved oper-oversimplified “spike” approximatiom(p) = 76 (p — p).
ator product expansion (IOPE). The general IOPE expres-Additional features ot (p) (shape, small- and largebe-
sion for the glueball correlators at large, spacelike momentahavior) are by now well enough established, however, to

Q*=—¢*> > Agep, make more realistic parametrizations possible. Artefacts of
the spike approximation (e.g. oscillations in the time-like
e (Q?) = Z CYE)G) (@ 1) <()D> ’ (14) region) are thereby avoided. Hence we introduceitngs

D=0, ... " for n (p) which are uniquely determined by, p and their
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small- and largep behavior [10]. The most realistic one is this sort are created by the attractive (repulsiyejneson
the Gaussian-tail distribution (fa¥, = Ny = 3) exchange forces between opposite-sign (equal-sign) topo-

. logical charges in the QCD vacuum and lead to their De-
p 20 p? 21 bye screening [14]. The largg mass is the corresponding
K ox (_327Tp2> (21) “screening mass”, andp ~ m;,l ~ 0.2 fm the (small!)

screening length. Sinoe,, > p, the screening correlations
which starts agp? at small p, as required by instanton- contribute to the Wilson coefficients of the pseudoscalar
background perturbation theory. glueball correlator.

Realistic instanton size distributions have an additional The screening corrections can be obtained from the cou-
benefit: they allow to renormalize the direct-instanton con- pling of then, meson (the flavor-singlet part of thé) to the
tributions at the operator scaje Although the neglect  topological charge density in the vacuum medium (approxi-
of renormalization is common practice (“pragmatic OPE”) mated for simplicity as concentrated in pointlike instantons)
for the perturbative Wilson coefficients, it is completely which is dictated by the axial anomaly [15] and governed by
untested in the nonperturbative sector. Since instanton-the effective lagrangian [14]
associated flutuations carry a momentum sgalep ', we
implementy (gauge invariantly) by excluding contributions /ON -
from instantons with size > 1, i.e. by replacing L= % (On0)* + lmgng — & cos (9 (x) + 2Ny o (m)) .

2 fn/
n(p) = i (p) =05 (p— ") n(p) (22)

) Here ¢ is the overall topological charge density (= for
where the “soft” step functiorf; can be choosen, e.g. instantons) and (z) is a source for the topological charge
as a Fermi distribution with “diffuseness?. We find  densityQ (x). Taking two derivatives of the corresponding
the instanton-induced Wilson coefficients to be relatively generating functional with respect foleads (for Sma”no

218

"o (P) = 353

i S

weakly -dependent fop: < 5~ where the larger sup-  amplitudes) to the topological charge correlator
pression fromn (p) atp < p~! has already set in. This is

reassuring since the compensatingependence of the con- (z)Q(0)) =TIp (z)/ (877)2 (24)
densates is equally weak. The standard spike distribution 9

(with 5 < p~') misses the reduction of the total instanton ~ —2¢6% (z) — 8Nf£— (o () 10 (0))..
density active in the Wilson coefficients, fi,

_ [T R — The first term is just the pointlike-instanton approximation
= d — d = Ndirect- 23 i . JHIRE
" /o o () /o PPty (p) = direet (23) of the direct-instanton contribution evaluated above. The

. . . second one is the screening correction which, after correct-
Comparison of the imaginary part (18) from, (p) to ing for 17, — ns mixing, adds the contribution
that obtained from the spike distribution shows that the

finite-width distribution turns an oscillating rise at large 2 2
into a strong decayc s—%/2. Moreover, fors, > 2 — 4 RG) (1) = =6k 1 7 7
GeV? (andT > 0.2 GeV!) the finite-width distribution ’ o My

increasingly reduces the size of the instanton contributions.
Therefore, they will be smaller in the pseudoscalar sum rule
(wheresy is typically about a factor of two larger) than in
the scalar sum rule.

—m? 2
+F3,m727{“e mW’T—&-Fim%ke T (25)

to the pseudoscalar IOPE moments. The quantitative anal-
ysis of the associated sum rules reveals that the screening
contributions indeed resolve the detrimental problems men-

i i tioned above: positivity of the spectral function is restored,
4 TOpOIOglcaI Charge screening all sum rules (including an’ pole on the RHS) are stable,

Due to the sign change originating from (Minkowski) self- and they provide a clear signal for the pseudoscalar glueball

duality, the instanton-induced attraction in the+ glueball ~ (for more details see Ref. [10]).

correlator turns into repulsion for the+ correlator. The

strength of the direct-instanton contributions explains why L

their inclusion in the pseudoscalar IOPE makes the signal> ~ Glueball predictions

for the pseudoscalar glueball and the compulsory spectral

positivity disappear [9]. Additional and equally important On the basis of the improved and extended IOPE we have

contributions to the Wilson coefficients must therefore still performed a comprehensive numerical analysis of eight

be missing. These contributions must affect mostly the pseu-Borel sum rules in both spin-0 glueball channels. The

doscalar IOPE since the scalar sum rules are consistent ancesults reveal a rather diverse pattern of glueball prop-

stable without them. erties. In the scalar channel, the improved treatment
Such a strong channel selectivity is indeed possible sinceof the direct-instanton sector reduces our earlier (spike-

the pseudoscalar correlator is proportional to the topologi- distribution based) result for tle+ glueball mass by about

cal charge density correlator and thus maximally sensitive 20%, tomg = 1.25 + 0.2 GeV. This is somewhat smaller

to instanton - antiinstanton correlations. Correlations of than the quenched lattice results [16] which are, however,
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expected to be reduced by light-quark effects and quarko-RefeI‘enceS
nium admixtures.

Our mass prediction is consistent with the broad glue- [1] M. Gell-Mann, Acta Phys. Aust. Supp®, 733 (1972); H.
ball state found in a recenk-matrix analysis which in- Fritzsch and M. Gell-Mann, 16th Int. Conf. High-Energy
cludes the new states recently identified in the Crystal Bar-  Phys., Chicago, Vol. 2, 135 (1972).
rel data [17]. The systemf_;\tic_s in our results from dif_‘ferent 2] S. Narison, Nucl. Phys. 809, 312 (1998) and references
Borel-moment sum rules indicates a rather large width of ~ herein.
the scalar glueballl’s = 0.3 GeV. Our prediction for the ) ) ) )
glueball decay constantfs = 1.05 & 0.1 GeV, is several [3] V.A. Novikov, M.A. Shifman, A.l. Vainsthein, and V.I. Za-
times larger than the value obtained when ignoring the non-  kharov, Nucl. Phys. 891, 301 (1981).
perturbative Wilson coefficients. This result implies an ex- [4] H. Forkel, Phys. Rev. 4, 34015 (2001); hep-ph/0005004.
ceptionally small _quebaII size and at !east partially explains £5] T. Schaefer and E.V. Shuryak, Rev. Mod. PHi8, 323 (1998).
_the strong_attractlon between gluons in the_sqalar channel a For an elementary introduction see H. ForléeRrimer on In-
m_stanton-lndu_ced. Furtherm_ore,_our predlcfuo_n farim- stantons in QCDhep-ph/0009136.
plies substantially larger partial widths of radiativéy and
T decays into scalar glueballs and is therefore important for [6] V-A. Novikov, M.A. Shifman, A.l. Vainsthein, and V.. Za-
experimental glueball searches, in particular for the interpre- ~ kharov, Nucl. Phys. B65 67 (1980).

:jation Ofrthe r?fcentdCLﬁo ([118] ant()j fortﬂcoming CLEO-IIl  [7] A. Ringwald and F. Schremmp, Phys. Letd8, 249 (1999).
ata onY — ~f, and other decay branches.

In the pszudoscalar glueball channel, the hard nonper-[s] D. Hamettand T.G. Steele, Nucl. Phys596, 205 (2001).
turbative contributions modify qualitative features of the [9] A. Zhang and T.G. Steele, hep-ph/0304208.

_+ - . . . _
0 Borel moments to which the matching analysis is par [10] H. Forkel, Direct instantons, topological charge screening

ti_cularly sensitive, and they are vital for achi_eving con- and QCD glueball sum rulesoreprint IFT-P.039/2003, hep-
sistency among all moment sum rules and with the axial /0312049

anomaly. Our mass predictiomp = 2.2 + 1.5 GeV . ) ) .
for the pseudoscalar glueball lies inside the range obtained1ll V.A. Novikov, M.A. Shifman, A.l. Vainshtein and V.I. Za-
from quenched and unquenched lattice data. The coupling ~ knharov Nucl. Phys. B91, 301 (1981).
fp =0.6 £0.2 GeV is again enhanced by the nonperturba- [12] H. Leutwyler and A. Smilga, Phys. Rev.45, 5607(1992).
tive Wilson coefficients, but less Strong.ly th.a” in the S.Ca.lar [13] V.A. Novikov, M.A. Shifman, A.l. Vainsthein, and V.I. Za-
channel. The consequently larger partial width of radiative

. ) kharov, Phys. Lett. B6, 347 (1979).
quarkonium decays into pseudoscalar glueballs and the en- .
hancedyy — G p7° cross section at high momentum trans- [14] N.J. Dowrick and N.A. McDougall, Phys. Lett. B85 269
fers will be relevant for the experimental identification of the (1992); H. Kikuchi and J. Wudka, Phys. Lett. 284, 111

lowest-lying0~* glueball and help in measuring its proper- (1992).
ties. [15] P. Di Vecchia and G. Veneziano, Nucl. Phys. B71, 253
Our nonperturbative IOPE, including the topological (1980).

short-distance physics described above, should also be us
ful for the calculation of other spin-0 glueball properties.
Quantitative estimates of the already mentioned production
rates in gluon-rich channels (includinfyy andY decays)

and characteristic glueball decay properties and signatures[17] V.V. Anisovich, hep-ph/0310165.

including ~~ couplings, OZI suppression and branching 18] CLEO Collaboration, A. Anastassov et al., Phys. Rev. Lett.
fractions incompatible witlhyg decay, would be particularly 82, 286 (1999); S. Richichi et al., ibi87, 141801 (2001); G.
Interesting. Masek et al., Phys. Rev. 65, 072002 (2002).

This work was supported by FAPESP.

E‘[-16] W. Lee and D. Weingarten, Phys. Rev.8D, 014015 (2000)
and references therein; C. Morningstar and M. Peardon, Phys.
Rev. D60, 034509 (1999).



