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We study the viscoelastic properties and the relaxation process in a gelling system by means of a minimal
statistical mechanics model. The model is based on percolation and bond-fluctuation dynamics. By opportunely
varying some model parameter we are able to describe a crossover from the chemical gelation behaviour to
dynamics more typical of colloidal systems. The results suggest a novel connection linking classical gelation,
as originally described by Flory, to more recent results on colloidal systems.

I Introduction

The gelation transition transforms a solution of polymeric
molecules, the sol, which is essentially a viscous fluid, into
an elastic solid. This happens when the bond formation be-
tween different molecules is induced and it is phenomeno-
logically characterized by the divergence of the viscosity
coefficient in the sol and by the appearence of an elastic
response in the gel phase. This corresponds to the consti-
tution inside the sol of a macroscopic polymeric structure
[1], which characterizes the gel phase. This polymeriza-
tion process leading to the formation of an interconnected
stress-bearing network in the system is then responsible on
one hand for the divergence of the viscosity coefficientη
and on the other hand for the growing of a non-zero elas-
tic modulusY . The critical growth of the connectivity can
be straightforwardly interpreted by means of a percolation
transition, which starting from the work of Flory and Stock-
mayer [1, 2, 3] is practically considered as the basic model
for gelation transition. Depending on the particular system
the gelation can be observed by lowering the temperature, or
as function of time or else of the monomer concentration in
the sol. In any case close to the gelation transition the vis-
cosity coefficient grows with a power law behaviour charac-
terized by a critical exponentk. The onset of the elastic re-
sponse in the system corresponds to a power law increasing
of the elastic modulus described by a critical exponentf .

Approaching the gelation threshold complex polymeric
structures are formed, characterized by different relaxation
processes over many different lenght scales. Infact the re-
laxation functions in most of the experiments display a long

time stretched exponential decay∼ e−( t
τ0

)β

in the critical
solution approaching the gelation threshold [4, 5, 6, 7]. The
relaxation process becomes critically slow at the gel point,

where the onset of a power law decay is typically observed.

This complex relaxation somehow resembles what is
typically observed in a supercooled liquid approaching the
glass transition [8] and in general this form is interpreted
in terms of many decay processes, occurring over different
time scales. One has to recognize that here the relaxation
process is actually controlled by the growth of the connec-
tivity. At the gelation thresholdτ0 → ∞ and the relaxation
functions decay as a power law [4, 5]. In the gel phase the re-
laxation behaviour displays a variety of complex behaviours
depending on the system.

These features are actually common to all gelling sys-
tems and to some extent unify their phenomenology. As
long as this dynamic behaviour is controlled by the onset of
a percolation transition in the system one could expect that
the critical exponentsk andf are univocally determined in
some way in terms of the percolation transition critical ex-
ponents and are the same for all the gelling systems. On
the whole the experimental data collected in many accurate
experiments performed on a wide variety of systems in the
latest decades do not support this picture [9]-[20]. In fact
different exponents are actually measured in different sys-
tems. In general the experimental data have been consid-
ered as just scattered probably because of the experimental
problems of reproducibility, showing apparently lack of uni-
versality in the gelation phenomena.

With a more accurate analysis we have noticed that the
different data are not uniformly spread, but result to be close
to certain values. Essentially the data come close to the crit-
ical exponentsk ∼ 0.7 andf ∼ 2. ([9]-[12]) or elsek ∼ 1.3
andf ∼ 3. ([13]-[20]) are observed in the experiments. On
the theoretical sidek ∼ 0.7 andf ∼ 2. correspond to the
predictions due to the analogy between the gelation transi-
tion and the electric percolation network problems ind = 3
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[21, 22, 23]. On the other hand a critical exponentk ∼ 1.3
is obtained within a Rouse model approach using the scaling
predictions of percolation model [22], whereas by evaluat-
ing the entropic contribution of the percolating cluster to the
gel elasticity in3d a valuef ∼ 3. is found [24]. Within this
intriguing picture new questions are opened: our analysis
suggests the possibility of two universality classes or else of
one universality class, the other corresponding to an appar-
ent critical behaviour characterizing a crossover to the real
one.

Gelation phenomena are also observed in colloidal sys-
tems, that are suspensions of mesoscopic particles inter-
acting via short range attraction: due to aggregation phe-
nomena at low density (colloidal gelation) these systems
display gel states with a power law behaviour of the vis-
cosity coefficient and of the elastic modulus [25], as in
chemical gelation. Yet the aggregation process gives rise
to cluster-cluster aggregation producing a spanning cluster
with a fractal dimensionality smaller than the random per-
colation case [26, 27]. On the other hand with a weaker
attraction at higher density a gelation characterized by a
glass-like kinetic arrest [28] may be observed. The relax-
ation patterns closely recall the ones observed in glassy sys-
tems and are well fitted by the mode-coupling theory [29]
predictions for supercooled liquids approaching the glass
transition [28]. On the theoretical side the application of
the mode-coupling theory to systems with short range at-
tractive interaction [30, 31] (attractive glasses) has been re-
cently considered and the connection with the colloidal glass
transition has been proposed.

Our approach to the problem is to develope a minimal
statistical mechanics model to be able to directly link the
dynamical behaviours to the fundamental elements of the
model and to provide a unifying description for gelling phe-
nomena.

The model is based on percolation clusters and on a
suited dynamics [32]. Infact the percolation model has been
successfully used for the description of the gelation transi-
tion [2, 3] in terms of the geometrical properties but as for
itself it does not give account for the dynamics. We have
used the bond-fluctuation dynamics [33], which effectively
takes into account the possibility of conformational changes
in polymer molecules. Infact this typical feature of poly-
mer systems does play an important role in their viscoelastic
properties: the fact that the polymer molecules may change
their configuration corresponds to a relevant entropic term in
any free energy change and does affect the dynamics of such
systems. We have studied a solution of monomers interact-
ing via a repulsive excluded volume interaction and an at-
tractive bonding interaction creating clusters. The question
that we want to investigate is whether and to what extent col-
loidal gelation, colloidal glass transition and chemical gela-
tion are related and if a unifying description is possible.

In section I we briefly describe the model and in section
II and III we present the results obtained for the relaxation
patterns in the case of permanent and non-permanent bond;
section IV contains concluding remarks.

II The percolation dynamic model

Our model introduces within the random percolation the
bond-fluctuation (BF ) dynamics, which is able to take into
account the polymer conformational changes [33] and it has
been successfully used to study the static and dynamic prop-
erties of polymer solutions at high concentrations. We study
a solution of tetrafunctional monomers at concentrationφ
and with a probabilitypb of bonds formation. In terms of
these two parameters one has different cluster size distri-
butions and eventually a percolation transition. Monomers
free or linked in clusters interact via excluded volume in-
teractions and diffuse via random local movements. Ac-
cording to theBF dynamics, bond vectors may vary due to
the monomers displacements, with the constraints imposed
by the excluded volume interaction amongst monomers and
self-avoiding walk (SAW ) condition for the bonds. Here
the constraints produce a maximum allowed value for the
bond length,but still correspond to a high variety of allowed
configurations for the polymer clusters [33]. On a cubic lat-
tice it can be shown that the bond lengths which guaran-
tee theSAW condition arel = 2,

√
5,
√

6, 3,
√

10 in lattice
spacing units. It is very important to notice that there is no
internal energy difference associated to the different bond
vectors: the changes in the polymer molecules configura-
tions correspond to negligible energy variation, which is a
typical feature of polymeric systems [34, 35]. In the first
version of the model once the bonds are formed between
two monomers, hey are permanent in time and can only vary
their length.

With this model we are able to directly study the dy-
namic properties of the system in the sol phase as the per-
colation threshold is approached and in the gel phase. The
gel phase and the corresponding dynamic transition corre-
spond to the constitution of a percolating network. Below
the percolation threshold the system is a sol of percolation
clusters and by means of the bond-fluctuation dynamics we
study their transport properties and the average relaxation
time behaviour in the critical region as the incipient percolat-
ing cluster is forming. The dynamic evolution of the system
above the percolation threshold gives us information on the
gel phase dynamics: any elastic response in the system has
then a purely entropic nature. We have performed numeri-
cal simulations of the model on the cubic lattice of different
lattice sizes with periodic boundary conditions. The sites
which are the vertices of a lattice elementary cell are simul-
taneously occupied by a monomer, with the constraint that
two nearest neighbour (nn) monomers are always separated
by an empty elementary cell, i.e. two occupied cells cannot
have common sites. The lattice of cells, with double lattice
spacing, has been occupied with probabilityφ, which coin-
cides with the monomer concentration on the main lattice in
the thermodynamic limit [32].

Monomers are randomly distributed on the main lattice
via a diffusion process, and between twonn or next near-
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est neighbour (nnn) monomers bonds are instantaneously
created with probabilitypb along lattice directions. Since
most of the experimental data on the gelation transition re-
fer to polymers with monomer functionalityf = 4 we have
considered this case allowing the formation of at most four
bonds per monomer. We have considered lattices of sizeL
ranging between16 and32 and all the data have been av-
eraged over a sample of∼ 30 systems with different initial
site and bond configurations.

First, a qualitative phase diagram has been determined,
studying the onset of the gel phase varyingφ andpb [32].
Then we have fixedpb = 1 and let φ vary in the in-
teresting range from the sol to the gel phase, determining
φc ∼ 0.718± 0.005 in d = 3 [32] and the critical exponents
ν for the connectedness lengthξ andγ for the mean clus-
ter sizeχ in agreement with the random percolation model
[36].

In colloids the aggregation is due to a short range at-
traction and in general the monomers are not permanently
bonded. To take into account this feature we introduce a
novel ingredient in the model by considering a finite bond
lifetime τb and study the effect on the dynamics. The fea-
tures of this model with finiteτb can be realized in a mi-
croscopic model: a solution of monomers interacting via
an attraction of strength−E and excluded volume repul-
sion. Due to monomers diffusion the aggregation process
eventually takes place. The finite bond lifetimeτb corre-
sponds to an attractive interaction of strength−E that does
not produce permanent bonding between monomers, and
τb ∼ eE/KT . Due to the finiteτb, in the simulations dur-
ing the monomer diffusion the bonds between monomers
are broken with a frequency1/τb. Between monomers sep-
arated by a distance less thanl0 a bond is formed with a
frequencyfb. For each value ofτb we fix fb so that the frac-
tion of present bonds is always the same [37]. We study
the relaxation properties of the system in the sol and in the
gel phase for the case of permanent bonds and bonds with a
finite lifetime.

III Relaxation properties: perma-
nent bond case

To investigate the nature of the dynamic transition at the
chemical gelation here we study the equilibrium density
fluctuation autocorrelation functionsf~q(t) given by:

f~q(t) =
< ρ~q(t + t′)ρ~q(t′) >

< |ρ~q(t′)| >2
(1)

whereρ~q(t) =
∑N

i=1 e−i~q·~ri(t), ~ri(t) is the position of the
i − th monomer at timet, N is the number of monomer-
sand the average〈...〉 is performed over the timet′. We
also study the mean square displacement of the particles
〈~r2(t)〉 = 1

N

∑N
i=1〈(~ri(t + t′)− ~ri(t′))2〉.

In Fig. 1 we present these time autocorrelation functions
as function of the time calculated on a cubic lattice of size

L = 16. The data have been averaged over∼ 10 up to105

time intervals and over20 different initial configurations of
the sample. As the monomer concentrationφ approaches
the percolation thresholdφc, f~q(t) displays a long time de-

cay well fitted by a stretched exponential law∼ e−(t/τ)β

with a β ∼ 0.30 ± 0.05. At the percolation threshold the
onset of a power law decay is observed as it is shown by the
double logarithmic plot of Fig. 1 with an exponentc [28].
As the monomer concentration is increased above the per-
colation threshold in the gel phase, the long time power law
decay of the relaxation functions can be fitted with a de-
creasing exponentc, varying fromc ∼ 1. at φc to c ∼ 0.2
well aboveφc. This behaviour well agrees with the one ob-
served in gelling systems investigated in the experiments of
refs.[28]. It is interesting to notice that this kind of decay
with a stretched exponential and a power law reminds the re-
laxation behaviour found in spin-glasses [38]. In Fig. 2 the
mean square displacement of the particles〈~r2(t)〉 is plot-
ted for different values ofφ approachingφc as function of
the time. At long times a diffusive behaviour is displayed
and the diffusion coefficient decreases but remains finite also
aboveφc. However the diffusion coefficient of clusters of
size comparable with the connectedness length goes to zero
with the same exponent as the relaxation time [32].

Figure 1. Double logarithmic plot of the intermediate scattering
functions f~q(t) as function of the time for~q = (π, π, π) and
φ = 0.6, 0.718, 0.8, 0.85. Forφ < φc the long time decay is well

fitted by a function (full line)∼ e−(t/τ)β

with β ∼ 0.3. At the
percolation threshold and in the gel phase in the long time decay
the data are well fitted by a function∼ (1 + t

τ ′ )
−c.

These results very well reproduce the relaxation patterns
in the experiments as reported in ref.[4, 5, 6]. The relaxation
time diverges at the percolation threshold due to the diver-
gence of the connectivity and this correponds to the occur-
rence of the power law behaviour, also observed in the gel
phase in TMOS silica gels [4] and inNIPA gel [5].
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Figure 2. The mean-square displacement〈~r2(t)〉 of the particles
as function of the time: the different curves refer to monomer con-
centrationφ = 0.4, 0.5, 0.6, 0.7 (from top to bottom) approaching
φc.

IV Relaxation properties: non-
permanent bond case

We study now the relaxation properties of our model in the
case when the bonds have a finite lifetimeτb. At the equilib-
rium we have evaluated the relaxation timeτ by which the
relaxation functionf~q(t) has become∼ 0.1. In Fig. 3 τ is
plotted as function of the monomer concentrationφ for dif-
ferentτb. For comparison we have also shown the behaviour
of τ in the case of permanent bonds, which displays a power
law divergence at the percolation thresholdφc. We notice
that for finite bond lifetimeτb the relaxation time increases
following the permanent bonds case (chemical gelation), up
to some valueφ∗ and then deviates from it. The longer the
bond lifetime the higherφ∗ is. In the high monomer con-
centration region, well above the percolation threshold, the
relaxation time in the finite bond lifetime case again dis-
plays a steep increase and a power law divergence at some
higher value. This truncated critical behaviour followed by
a glassy-like transition has been actually detected in some
colloidal systems in the viscosity behaviour [39, 40].

These results can be explained by considering that only
clusters whose diffusion relaxation time is smaller thanτb

will behave as in the case of permanent bonds. Larger clus-
ters will not persist and therefore will not be relevant in the
dynamics: the finite bond lifetime introduces an effective
cut-off on the size of relevant clusters and keeps the macro-
scopic viscosity finite [41]. As the concentration increases
the final growth of the relaxation time is due to the crowding
of the particles.

Figure 3. The average relaxation time as function of the
density; from top to bottom: the data for the permanent
bonds case diverge at the percolation threshold with a power
law (the full line); the other data refer to finiteτb =
3000, 1000, 400, 100MCstep/particle decreasing from left to
right (the dotted lines are a guide to the eye).

To compare the dynamics with the chemical gelation
case, we have calculatedf~q(t) as defined in eq.(1). As the
monomer concentration increases the system displays relax-
ation patterns that are typical of glassy dynamics. In Fig. 4
the relaxation funtionsf~q(t) as function of time are plot-
ted in the caseτb = 1000MCstep/particle. The different
curves refer to different values of the monomer concentra-
tion (φ varies from below to well aboveφc). If for small
concentrations the behaviour of the autocorrelation function
is well fitted by a stretched exponential decay, the curves in
Fig. 4 for high monomer concentrations exhibit a two step
decay that is closely related to the behaviour observed in su-
percooled liquids characterizing the structural arrest due to
the formation of blocked structures (cages). Therefore we
have fitted the curves using the mode-couplingβ-correlator

[29], corresponding to a short time power law∼ f+
(

t
τs

)−a

and a long time von Schweidler law∼ f −
(

t
τl

)b

, giving

the exponentsa ∼ 0.33 ± 0.01 andb ∼ 0.65 ± 0.01. At
long times the different curves obtained for differentφ col-
lapse into a unique master curve by opportunely rescaling
the time via a factorτ(φ). The master curve is well fitted by
a stretched exponential decay withβ ∼ 0.50 ± 0.06 (inset
of Fig. 4). The characteristic timeτ(φ) diverges at a value
φg ∼ 0.963 ± 0.005 with the exponentγ ∼ 2.33 ± 0.06.
This value well agrees with the mode-coupling prediction
γ = 1/2a + 1/2b [29]. Finally, in Fig. 5〈~r2(t)〉 is plotted
for the different values ofφ displaying the typical plateau
pattern, with the diffusion coefficient going to zero asφ ap-
proachesφg.
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Figure 4. The intermediate scattering functionsf~q(t) as function
of the time for~q = (π, π, π) calculated on a cubic lattice of size
L = 16 for τb = 1000MCstep/particle. (from left to right
φ = 0.5, 0.6, 0.8, 0.85, 0.87, 0.9). The full lines correspond to
the fit with the mode-coupling theorybeta-correlator. In the inset,
the data collapse of the curves atφ = 0.85 − 0.92 as function of
t/τ(φ).

FIgure 5. The mean-square〈~r2(t)〉 displacement of the par-
ticles as function of the time in a double logarithmic plot for
τb = 1000MCstep/particle: from top to bottom the different
curves refer to increasing values of the monomer concentration
(φ = 0.8, 0.82, 0.85, 0.9) approachingφg.

By comparing these results with Figs. 1 and 2 we no-
tice that when bonds are permanent (chemical gelation) the
cluster effect dominates and the jamming is negligible. In
the case of finiteτb the divergence of the relaxation time is
due to the contribution of both the cluster formation and the
jamming of the particles, and we find the two step relax-
ation which is the signature of the cage effect. Whenτb is
large enough (that corresponds to strong attraction) the clus-
ter effect will dominate and the slow dynamics will exhibit

features more closely related to chemical gelation (Figs. 1
and 2). The only difference is that in the limitτb → ∞
we expect that the spanning cluster will have the structure
of the cluster-cluster aggregation model instead of random
percolation.

V Conclusions

Our model reproduces many relevant aspects of the gela-
tion transition. In particular it has allowed to determine the
viscoelastic properties critical exponents in a case of strong
gelation, and shows a stretched exponential decay as the gel
point is approached and a power law decay at the transition
and in the gel phase. In the case of bonds with a finite life-
time, the relaxation properties show a behaviour similar to
what found in glassy systems, with a two step decay in the
relaxation functions. In conclusion, these results suggest a
unifying approach for chemical gelation, colloidal gelation
and colloidal glass transition. In chemical gelation and col-
loidal gelation the cluster formation is the main responsible
for the slow dynamics that is expected to be of the same type
of Figs. 1 and 2. In colloidal systems for weak attraction
and high concentration the system crosses over from col-
loidal gelation to colloidal glass due to the combined effects
of clusters and particle jamming.

All the simulations have been performed on the IBM
Linux Cluster at CINECA. This work has been partially
supported by MURST-PRIN-2000 and 2002, MIUR-FIRB-
2002 and by the INFM Parallel Computing Initiative.
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