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We study the viscoelastic properties and the relaxation process in a gelling system by means of a minimal
statistical mechanics model. The model is based on percolation and bond-fluctuation dynamics. By opportunely
varying some model parameter we are able to describe a crossover from the chemical gelation behaviour to
dynamics more typical of colloidal systems. The results suggest a novel connection linking classical gelation,

as originally described by Flory, to more recent results on colloidal systems.

| Introduction where the onset of a power law decay is typically observed.

This complex relaxation somehow resembles what is
The gelation transition transforms a solution of polymeric typically observed in a supercooled liquid approaching the
molecules, the sol, which is essentially a viscous fluid, into glass transition [8] and in general this form is interpreted
an elastic solid. This happens when the bond formation be-in terms of many decay processes, occurring over different
tween different molecules is induced and it is phenomeno-time scales. One has to recognize that here the relaxatior
logically characterized by the divergence of the viscosity process is actually controlled by the growth of the connec-
coefficient in the sol and by the appearence of an elastictivity. At the gelation threshold, — oo and the relaxation
response in the gel phase. This corresponds to the constifunctions decay as a power law [4, 5]. In the gel phase the re-
tution inside the sol of a macroscopic polymeric structure laxation behaviour displays a variety of complex behaviours
[1], which characterizes the gel phase. This polymeriza- depending on the system.
tion process Ieading to the formation of an interconnected These features are actua”y common to all ge|||ng sys-
stress-bearing network in the system is then responsible oilems and to some extent unify their phenomenology. As
one hand for the divergence of the viscosity coefficignt  |ong as this dynamic behaviour is controlled by the onset of
and on the other hand for the growing of a non-zero elas- 3 percolation transition in the system one could expect that
tic modulusY’. The critical growth of the connectivity can  the critical exponents and f are univocally determined in
be straightforwardly interpreted by means of a percolation some way in terms of the percolation transition critical ex-
transition, which starting from the work of Flory and Stock- ponents and are the same for all the gelling systems. On
mayer [1, 2, 3] is practically considered as the basic model the whole the experimental data collected in many accurate
for gelation transition. Depending on the particular system experiments performed on a wide variety of systems in the
the gelation can be observed by lowering the temperature, Ofjatest decades do not support this picture [9]-[20]. In fact
as function of time or else of the monomer concentration in different exponents are actua”y measured in different sys-
the sol. In any case close to the gelation transition the ViS'tems_ In genera' the experimenta' data have been consid-
cosity coefficient grows with a power law behaviour charac- ered as just scattered probably because of the experimenta
terized by a critical exponerit The onset of the elastic re-  problems of reproducibility, showing apparently lack of uni-
sponse in the system corresponds to a power law increasingersality in the gelation phenomena.

of the elastic modulus described by a critical exponfnt With a more accurate analysis we have noticed that the

Approaching the gelation threshold complex polymeric gifferent data are not uniformly spread, but result to be close
structures are formed, characterized by different relaxationtg certain values. Essentially the data come close to the crit-
processes over many different lenght scales. Infact the re5ca| exponentg ~ 0.7 andf ~ 2. ([9]-[12]) or elsek ~ 1.3
laxation functions in most of the experiments display a long andf ~ 3. ([13]-[20]) are observed in the experiments. On
time stretched exponential deca‘ye_(%)[3 in the critical the theoretical sidé ~ 0.7 and f ~ 2. correspond to the
solution approaching the gelation threshold [4, 5, 6, 7]. The predictions due to the analogy between the gelation transi-
relaxation process becomes critically slow at the gel point, tion and the electric percolation network problemgia- 3
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[21, 22, 23]. On the other hand a critical exponent 1.3 || The percolation dynamic model

is obtained within a Rouse model approach using the scaling

predictions of percolation model [22], whereas by evaluat-

ing the entropic contribution of the percolating cluster to the Our model introduces within the random percolation the
gel elasticity in3d a valuef ~ 3. is found [24]. Within this  bond-fluctuation BF) dynamics, which is able to take into
intriguing picture new guestions are opened: our analysisaccount the polymer conformational changes [33] and it has
suggests the possibility of two universality classes or else ofbeen successfully used to study the static and dynamic prop-
one universality class, the other corresponding to an appar-erties of polymer solutions at high concentrations. We study
ent critical behaviour characterizing a crossover to the reala solution of tetrafunctional monomers at concentration
one. and with a probabilityp;, of bonds formation. In terms of

Gelation phenomena are also observed in colloidal sys-these two parameters one has different cluster size distri-
tems, that are suspensions of mesoscopic particles interbutions and eventually a percolation transition. Monomers
acting via short range attraction: due to aggregation phe-free or linked in clusters interact via excluded volume in-
nomena at low density (colloidal gelation) these systemsteractions and diffuse via random local movements. Ac-
display gel states with a power law behaviour of the vis- cording to theBF' dynamics, bond vectors may vary due to
cosity coefficient and of the elastic modulus [25], as in the monomers displacements, with the constraints imposed
chemical gelation. Yet the aggregation process gives riseby the excluded volume interaction amongst monomers and
to cluster-cluster aggregation producing a spanning clusterself-avoiding walk § AW) condition for the bonds. Here
with a fractal dimensionality smaller than the random per- the constraints produce a maximum allowed value for the
colation case [26, 27]. On the other hand with a weaker bond length,but still correspond to a high variety of allowed
attraction at higher density a gelation characterized by aconfigurations for the polymer clusters [33]. On a cubic lat-
glass-like kinetic arrest [28] may be observed. The relax- tice it can be shown that the bond lengths which guaran-
ation patterns closely recall the ones observed in glassy systee theSAW condition ard = 2, /5, /6, 3,1/10 in lattice
tems and are well fitted by the mode-coupling theory [29] spacing units. It is very important to notice that there is no
predictions for supercooled liquids approaching the glassinternal energy difference associated to the different bond
transition [28]. On the theoretical side the application of vectors: the changes in the polymer molecules configura-
the mode-coupling theory to systems with short range at-tions correspond to negligible energy variation, which is a
tractive interaction [30, 31Jdttractive glasséshas beenre-  typical feature of polymeric systems [34, 35]. In the first
cently considered and the connection with the colloidal glassversion of the model once the bonds are formed between
transition has been proposed. two monomers, hey are permanent in time and can only vary

Our approach to the problem is to develope a minimal their length.
statistical mechanics model to be able to directly link the
dynamical behaviours to the fundamental elements of the
model and to provide a unifying description for gelling phe-
nomena.

The model is based on percolation clusters and on a
suited dynamics [32]. Infact the percolation model has been
successfully used for the description of the gelation transi-
tion [2, 3] in terms of the geometrical properties but as for
itself it does not give account for the dynamics. We have
used the bond-fluctuation dynamics [33], which effectively
takes into account the possibility of conformational changes

With this model we are able to directly study the dy-
namic properties of the system in the sol phase as the per-
colation threshold is approached and in the gel phase. The
gel phase and the corresponding dynamic transition corre-
spond to the constitution of a percolating network. Below
the percolation threshold the system is a sol of percolation
clusters and by means of the bond-fluctuation dynamics we
study their transport properties and the average relaxation
time behaviour in the critical region as the incipient percolat-
ing cluster is forming. The dynamic evolution of the system
above the percolation threshold gives us information on the

'nq p;olyrr:srrnmgleculels. szi"’rft t?::;{?'f::nffﬁt?rrsisf p?;é:[i gel phase dynamics: any elastic response in the system has
er systems does piay a - 0 N coelastiCion a purely entropic nature. We have performed numeri-

properties: the fact that the polymer molecules may changecal simulations of the model on the cubic lattice of different

their configuration corresponds to a relevant entropic term N\ ttice sizes with periodic boundary conditions. The sites

any free energy change and does affect the dynamics of SucK}vhich are the vertices of a lattice elementary cell are simul-

;ystgms. we hqve studied a SOIUI'OH.Of MONOMErs InteraCt'taneously occupied by a monomer, with the constraint that
ing via a repulsive excluded volume interaction and an at-

. o . . ._two nearest neighbounf) monomers are always separated
tractive bonding interaction creating clusters. The question 9 &) yS Sep

? . ) by an empty elementary cell, i.e. two occupied cells cannot
that we war_1t 10 |nve§t|gate IS Whe‘h‘?'f and to what gxtent COI'have common sites. The lattice of cells, with double lattice
loidal gelation, colloidal glass transition and chemical gela-

) . g L : spacing, has been occupied with probabifitywhich coin-
tion are re_lated and '_f a “”'fy'”g description is pos_S|bIe. _ cides with the monomer concentration on the main lattice in
In section | we briefly describe the model and in section

X . the thermodynamic limit [32].
Il and Il we present the results obtained for the relaxation
patterns in the case of permanent and non-permanent bond; Monomers are randomly distributed on the main lattice
section IV contains concluding remarks. via a diffusion process, and between twa or next near-
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est neighbour+{nn) monomers bonds are instantaneously
created with probability, along lattice directions. Since
most of the experimental data on the gelation transition re-
fer to polymers with monomer functionality = 4 we have
considered this case allowing the formation of at most four
bonds per monomer. We have considered lattices ofsize
ranging betweeri6 and32 and all the data have been av-
eraged over a sample ef 30 systems with different initial
site and bond configurations.

First, a qualitative phase diagram has been determined
studying the onset of the gel phase varyihgndp, [32].
Then we have fixed, 1 and let¢ vary in the in-
teresting range from the sol to the gel phase, determining
e ~ 0.718 +0.005 in d = 3 [32] and the critical exponents
v for the connectedness lengthand~ for the mean clus-
ter sizey in agreement with the random percolation model
[36].

In colloids the aggregation is due to a short range at-
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L = 16. The data have been averaged ovet0 up to10°

time intervals and ove20 different initial configurations of
the sample. As the monomer concentratibapproaches
the percolation threshold,, fz(t) displays a long time de-
cay well fitted by a stretched exponential law e~ (*/7)"

with a 8 ~ 0.30 & 0.05. At the percolation threshold the
onset of a power law decay is observed as it is shown by the
double logarithmic plot of Fig. 1 with an exponen{28].

As the monomer concentration is increased above the per-
colation threshold in the gel phase, the long time power law
decay of the relaxation functions can be fitted with a de-
creasing exponent varying frome ~ 1. at¢. to ¢ ~ 0.2

well aboveg.. This behaviour well agrees with the one ob-
served in gelling systems investigated in the experiments of
refs.[28]. It is interesting to notice that this kind of decay
with a stretched exponential and a power law reminds the re-
laxation behaviour found in spin-glasses [38]. In Fig. 2 the
mean square displacement of the partiglgt)) is plot-

traction and in general the monomers are not permanentlyted for different values of approachingp,. as function of

bonded. To take into account this feature we introduce a
novel ingredient in the model by considering a finite bond
lifetime 7, and study the effect on the dynamics. The fea-
tures of this model with finite;, can be realized in a mi-
croscopic model: a solution of monomers interacting via
an attraction of strength- £ and excluded volume repul-
sion. Due to monomers diffusion the aggregation process
eventually takes place. The finite bond lifetimg corre-
sponds to an attractive interaction of strength' that does

not produce permanent bonding between monomers, and

7, ~ eZ/KT Due to the finiter,, in the simulations dur-
ing the monomer diffusion the bonds between monomers
are broken with a frequendy/r,. Between monomers sep-
arated by a distance less thgna bond is formed with a
frequencyf,. For each value of, we fix f, so that the frac-
tion of present bonds is always the same [37]. We study
the relaxation properties of the system in the sol and in the

gel phase for the case of permanent bonds and bonds with a

finite lifetime.

[l Relaxation properties:

nent bond case

perma-

To investigate the nature of the dynamic transition at the
chemical gelation here we study the equilibrium density
fluctuation autocorrelation functiorfg(t) given by:

< palt+ )palt) >
< Jpalt)] >2

fa(t) 1)

wherepz(t) = SN | e~ 71 7 (¢) is the position of the
1 — th monomer at time, N is the number of monomer-

sand the averageé..) is performed over the timé. We

the time. At long times a diffusive behaviour is displayed
and the diffusion coefficient decreases but remains finite also
above¢.. However the diffusion coefficient of clusters of
size comparable with the connectedness length goes to zer
with the same exponent as the relaxation time [32].
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Figure 1. Double logarithmic plot of the intermediate scattering
functions fz(t) as function of the time fog = (7, n,7) and

¢ = 0.6,0.718,0.8,0.85. For¢ < ¢. the long time decay is well
fitted by a function (full line)~ e~*/™" with 3 ~ 0.3. At the
percolation threshold and in the gel phase in the long time decay
the data are well fitted by a functien (1 + %)~

These results very well reproduce the relaxation patterns
in the experiments as reported in ref.[4, 5, 6]. The relaxation

also study the mean square displacement of the particledsime diverges at the percolation threshold due to the diver-

2

7 1

(1) = & L (F(E+1) — F(t))?).

(
In Fig. 1 we present these time autocorrelation functions
as function of the time calculated on a cubic lattice of size

gence of the connectivity and this correponds to the occur-
rence of the power law behaviour, also observed in the gel
phase in TMOS silica gels [4] and NI P A gel [5].
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Figure 2. The mean-square displacem@fi(t)) of the particles
as function of the time: the different curves refer to monomer con-
centrationg = 0.4, 0.5, 0.6, 0.7 (from top to bottom) approaching

Figure 3. The average relaxation time as function of the
density; from top to bottom: the data for the permanent
bonds case diverge at the percolation threshold with a power
Pe- law (the full line); the other data refer to finite, =
3000, 1000, 400, 100M C'step/particle decreasing from left to
right (the dotted lines are a guide to the eye).

IV Relaxation properties: non- To compare the dynamics with the chemical gelation

permanent bond case case, we have calculatgg(t) as defined in eq.(1). As the
monomer concentration increases the system displays relax-
We study now the relaxation properties of our model in the &tion patterns that are typical of glassy dynamics. In Fig. 4

case when the bonds have a finite lifetimeAt the equilib- ~ the relaxation funtionsfz(¢) as function of time are plot-
rium we have evaluated the relaxation timéy which the ~ t€d in the casey, = 1000M Cstep/particle. The different
relaxation functionf,(t) has become- 0.1. In Fig. 37 is curves refer to different values of the monomer concentra-

plotted as function of the monomer concentratiofor dif- tion (¢ varies from below to well above.). If for small
ferentr,. For comparison we have also shown the behaviour concentrations the behaviour of the autocorrelation function

of 7 in the case of permanent bonds, which displays a poweris_ well fitted_ by a stretched exponen?ial deca)_/, _the curves in
law divergence at the percolation thresheld We notice Fig. 4 for h.|gh monomer concentrat|ons_exh|b|t a two ;tep
that for finite bond lifetimer, the relaxation time increases decay thatis closely related to the behaviour observed in su-
following the permanent bonds case (chemical gelation), uppercooled .|IC1UIdS characterizing the structural arrest due to
to some valuey* and then deviates from it. The longer the the formatlon of blocked' structures (cages). Therefore we
bond lifetime the higher* is. In the high monomer con- have fitted the curves using the mode-couplﬂqgorrela_tgr
centration region, well above the percolation threshold, the [29], corresponding to a short time power lawf + (%)
relaxation time in the finite bond lifetime case again dis- b
plays a steep increase and a power law divergence at somand a long time von Schweidler law f — (%,) , giving
higher value. This truncated critical behaviour followed by the exponents ~ 0.33 + 0.01 andb ~ 0.65 + 0.01. At
a glassy-like transition has been actually detected in somelong times the different curves obtained for differentol-
colloidal systems in the viscosity behaviour [39, 40]. lapse into a unique master curve by opportunely rescaling
These results can be explained by considering that onlythe time via a factor (¢). The master curve is well fitted by
clusters whose diffusion relaxation time is smaller than  a stretched exponential decay with~ 0.50 4+ 0.06 (inset
will behave as in the case of permanent bonds. Larger clus-of Fig. 4). The characteristic time(¢) diverges at a value
ters will not persist and therefore will not be relevant in the ¢, ~ 0.963 & 0.005 with the exponenty ~ 2.33 & 0.06.
dynamics: the finite bond lifetime introduces an effective This value well agrees with the mode-coupling prediction
cut-off on the size of relevant clusters and keeps the macro-y = 1/2a + 1/2b [29]. Finally, in Fig. 5(i2(t)) is plotted
scopic viscosity finite [41]. As the concentration increases for the different values of displaying the typical plateau
the final growth of the relaxation time is due to the crowding pattern, with the diffusion coefficient going to zerod@ap-
of the particles. proachesp,.
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Figure 4. The intermediate scattering functiofy$t) as function
of the time forg = (w, 7, w) calculated on a cubic lattice of size
L = 16 for , = 1000M C'step/particle. (from left to right
¢ = 0.5,0.6,0.8,0.85,0.87,0.9). The full lines correspond to
the fit with the mode-coupling theobeta-correlator. In the inset,
the data collapse of the curvesgat= 0.85 — 0.92 as function of
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Flgure 5. The mean-squarg?(t)) displacement of the par-
ticles as function of the time in a double logarithmic plot for
75 = 1000M C'step/particle: from top to bottom the different
curves refer to increasing values of the monomer concentratio
(¢ = 0.8,0.82,0.85,0.9) approaching, .

By comparing these results with Figs. 1 and 2 we no-

tice that when bonds are permanent (chemical gelation) the

cluster effect dominates and the jamming is negligible. In
the case of finitey, the divergence of the relaxation time is
due to the contribution of both the cluster formation and the
jamming of the particles, and we find the two step relax-
ation which is the signature of the cage effect. Whgiis

large enough (that corresponds to strong attraction) the clus

ter effect will dominate and the slow dynamics will exhibit

o 171
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features more closely related to chemical gelation (Figs. 1
and 2). The only difference is that in the limif — oo

we expect that the spanning cluster will have the structure
of the cluster-cluster aggregation model instead of random
percolation.

V Conclusions

Our model reproduces many relevant aspects of the gela-
tion transition. In particular it has allowed to determine the
viscoelastic properties critical exponents in a case of strong
gelation, and shows a stretched exponential decay as the ge
point is approached and a power law decay at the transition
and in the gel phase. In the case of bonds with a finite life-
time, the relaxation properties show a behaviour similar to
what found in glassy systems, with a two step decay in the
relaxation functions. In conclusion, these results suggest a
unifying approach for chemical gelation, colloidal gelation
and colloidal glass transition. In chemical gelation and col-
loidal gelation the cluster formation is the main responsible
for the slow dynamics that is expected to be of the same type
of Figs. 1 and 2. In colloidal systems for weak attraction
and high concentration the system crosses over from col-
loidal gelation to colloidal glass due to the combined effects
of clusters and particle jamming.

All the simulations have been performed on the IBM
Linux Cluster at CINECA. This work has been partially
supported by MURST-PRIN-2000 and 2002, MIUR-FIRB-
2002 and by the INFM Parallel Computing Initiative.
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