Acessibilidade / Reportar erro

Tunneling and the Vacuum Zero-Point Radiation

We make a brief review of the Kramers escape rate theory for the probabilistic motion of a particle in a potential well U(x), and under the influence of classical fluctuation forces. The Kramers theory is extended in order to take into account the action of the thermal and zero-point random electromagnetic fields on a charged particle. The result is physically relevant because we get a non null escape rate over the potential barrier at low temperatures (T -> 0). It is found that, even if the mean energy is much smaller than the barrier height, the classical particle can escape from the potential well due to the action of the zero-point fluctuating fields. These stochastic effects can be used to give a classical interpretation to some quantum tunneling phenomena. Relevant experimental data are used to illustrate the theoretical results.

Zero-point fluctuations; Tunneling; Foundations of quantum mechanics


Sociedade Brasileira de Física Caixa Postal 66328, 05315-970 São Paulo SP - Brazil, Tel.: +55 11 3091-6922, Fax: (55 11) 3816-2063 - São Paulo - SP - Brazil
E-mail: sbfisica@sbfisica.org.br