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The Broad Histogram Method (BHM) allows one to determine the energy degeneracy g(E), i.e. the
energy spectrum of a given system, from the knowledge of the microcanonical averages < Nup(E) >
and < Ndn(E) > of two macroscopic quantities Nup and Ndn de�ned within the method. The
fundamental BHM equation relating g(E) to the quoted averages is exact and completely general
for any conceivable system. Thus, the only possible source of numerical inaccuracies resides on the
measurement of the averages themselves. In this text, we introduce a Monte Carlo recipe to measure
microcanonical averages. In order to test its performance, we applied it to the Ising ferromagnet on
a 32�32 square lattice. The exact values of g(E) are known up to this lattice size, thus it is a good
standard to compare our numerical results with. Measuring the deviations relative to the exactly
known values, we veri�ed a decay proportional to 1=

p
counts, by increasing the counter (counts)

of averaged samples over at least 6 decades. That is why we believe this microcanonical simulator
presents no bias besides the normal statistical 
uctuations. For counts � 1010, we measured relative
deviations near 10�5 for both g(E) and the speci�c heat peak, obtained through BHM relation.

Monte Carlo methods are applied to statistical

physics in order to measure the thermal average

< Q >T =

P
S
QS exp(�ES=T )P
S
exp(�ES=T )

(1)

of some macroscopic quantity Q (magnetisation, den-

sity, etc). The temperature T is �xed, and the Boltz-

mann constant is set to unity. Both sums run over all

possible microstates S available for the system. The

energy (quantity Q) corresponding to S is denoted by

ES (QS). Within traditional computer simulations, in-

stead of taking all possible states, one takes only a �nite

set of them, i.e. a Markovian chain of states randomly

tossed according to probabilities dictated by the Boltz-

mann exponential factors exp(�ES=T ), the so-called

importance sampling. Thus, one needs to �x a partic-

ular value for the temperature T , before running the

computer job. In order to determine the full depen-

dence of < Q >T upon T , one needs to run the job

again and again, for di�erent values of T .

An alternative is to re-write the same average as

< Q >T =

P
E
< Q(E) > g(E) exp(�E=T )
P

E
g(E) exp(�E=T ) ; (2)

where the degeneracy g(E) counts the number of states

with energy E, and both sums run over all possible

energies. The microcanonical average

< Q(E) > =

P
S[E]QS

g(E)
(3)

of the same quantity Q corresponds to a �xed energy,

i.e. the sum in (3) runs only over the states S[E] be-

longing to energy level E. This microcanonical aver-

age (3) is simpler than the canonical counterpart (1) or

(2), prescribing exactly the same weight to all averag-

ing states, i.e. it is a uniform averaging process within

each energy level separately.

Only the Boltzmann factor exp(�E=T ) appearing
in equation (2) depends on the temperatute, carry-

ing all thermodynamic information about the environ-

ment which continuously exchanges energy with the

system under study. Contrary to this, both g(E) and

< Q(E) > are independent of the particular way this

energy exchange occurs, independent of the environ-

ment: they are more fundamental properties of the sys-

tem alone, de�ned only by its energy spectrum. They

are not thermodynamic quantities, and do not depend

upon thermodynamic concerns like temperature, equi-

librium, etc. In practical terms, equation (2) allows

one to determine < Q >T for any value of T , from the

knowledge of the energy functions g(E) and < Q(E) >.
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The Broad Histogram Method (BHM) [1] relates

g(E) with the microcanonical averages of two macro-

scopic quantities Nup and Ndn, measured at the cur-

rent state S. First, one needs to adopt some proto-

col of allowed movements which could be performed

on S, leading to another possible state S0. One can

adopt any such a protocol, the only restriction being

its reversibility (if S ! S0 is allowed, so is S0 ! S).

Considering the Ising model, for instance, the proto-

col could be chosen to be the whole set of single-spin


ips (among many other alternative choices). Given

such a protocol, Nup(S) counts the number of allowed

movements which could be performed on S, leading to

a �xed energy increment �E (which must be chosen

a priori, although the method is also independent of

this choice). Analogously, Ndn(S) counts the number

of allowed movements decreasing the energy of S by

the same �xed amount �E. The fundamental BHM

relation [1] is

g(E) < Nup(E) > = g(E +�E) < Ndn(E +�E) > ;

(4)

where the microcanonical averages of Nup and Ndn are

de�ned by equation (3). By knowing these energy func-

tions, equation (4) allows one to determine g(E) along

all the energy axis, in steps of �E | a constant, unim-

portant pre-factor is cancelled out by performing the

average in equation (2). Relation (4) is shown to be

valid for any energy spectrum, under completely gen-

eral grounds [2]. Also, the same reasoning could be

applied for another basic quantity q, instead of the en-

ergy, by considering the degeneracies g(q) instead of

g(E). For simplicity, we will restrict ourselves to the

case of the energy.

Thus, the Broad Histogram Method consists in: i)

to choose some protocol of allowed movements, as well

as an energy jump �E; ii) to measure, by any means,

the microcanonical average < Q(E) > as a function of

the energy, as well as < Nup(E) > and < Ndn(E) >

which determine g(E) through equation (4); iii) to ob-

tain the desired thermal average through equation (2).

There is no approximation at all, and the �nal numeri-

cal accuracy depends exclusively upon the microcanon-

ical measuring strategy adopted in step ii. The method

is reviewed in [3]. Some references where it is used are

[4-16].

Let's brie
y analyse hereafter some possible com-

puter strategies one can adopt in order to measure the

microcanonical averages < Q(E) >, < Nup(E) > and

< Ndn(E) >, as functions of the energy. A Marko-

vian chain of states is obtained by performing random

movements transforming the current state into another.

These movements are tossed among some previously

de�ned set of possibilities, another protocol which has

nothing to do with the BHM protocol of virtual move-

ments. Both protocols could even be chosen to be the

same, but not necessarily.

The �rst direct strategy is to keep always the same

�xed value E: by starting from some state correspond-

ing to the desired energy, one simply rejects any tossed

movement which changes the current energy. After one

has already a large enough number of visited states in-

side this particular energy level, the same process is re-

peated for other levels. Depending on the adopted pro-

tocol of (real) movements, this strategy could lead to

ergodicity problems: due to its high rejection rate, one

risks to sample only a biased sub-set of states belong-

ing to energy level E, violating the required uniform

visitation. Moreover, it is also an ineÆcient strategy,

in what concerns the computer time, again due to its

high rejection rate.

The opposed alternative is to accept also movements

leading to energy jumps, storing separated averages for

each energy level, in parallel. Obviously, this option

is much more eÆcient in what concerns the computer

time. However, one cannot simply accept any tossed

movement: energy increments would occur more often

than decrements, because g(E) is normally a fast in-

creasing function of the energy. As a result, at the

end, only states corresponding to the region near the

maximum of g(E) would be sampled. Thus, some

movement-rejection prescription must be adopted, and

we get back to the uniformity violation problem. One

can adopt some already well established movement-

rejection prescription based on detailed balance argu-

ments. For instance, canonical, �xed-temperature dy-

namics could be adopted [4,6], sampling states inside

the narrow energy window corresponding to the �xed

value of T . In order to get results on a broader energy

window, one can simply superimpose the histograms

obtained for di�erent computer runs corresponding to

di�erent values of T .

Another possibility is to adopt one of the many

multicanonical dynamics [7,9,11,13,14]. Within this ap-

proach, one tunes the E-dependent rejection rate dur-

ing the computer run, in order to obtain the same

visit probability for all energy levels, i.e. a 
at dis-

tribution along the energy axis, at the end. In this

case, the visitation probability to each particular state

would be proportional to 1=g(E). The so-called multi-

canonical methods [17-19] are based just on this feature:

by recording the acceptance probability for energy-

increasing movements E ! E0, accumulated during

the run and which must be equal to g(E)=g(E0) at the

end, one gets the function g(E) except for an unimpor-
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tant global factor which cancels in equation (2). BHM

is completely distinct from multicanonical approaches

in many features. In particular, the infomations ex-

tracted from each E-state S belonging to the averag-

ing Markovian chain are the macroscopic values of

Nup(S) and Ndn(S), not the mere one-more-visit up-

grade V (E) ! V (E) + 1. That is why BHM gives

more accurate results than multicanonical approaches,

even taking into account the same Markovian chain

of averaging states, as shown in [15] where the multi-

canonical dynamics [18] is adopted in order to measure

< Nup(E) > and < Ndn(E) >. At the end, g(E) is

determined twice, by following the multicanonical tra-

ditional way or, alternatively, by the BHM equation (4),

both using data taken from the same set of averaging

states. A clear accuracy advantage for BHM is reported

[15]. Moreover, due to the macroscopic character of the

BHM quantities Nup and Ndn this advantage still in-

creases for larger and larger systems.

Another crucial di�erence relative to multicanoni-

cal approaches is that BHM requires only the unifor-

mity of visits among the states inside each energy

level, separately, in order to get the correct micro-

canonical averages. BHM does not need any detailed

balance between visits to di�erent levels E and E0, nor

the multicanonical 
at distribution along the energy

axis. Any dynamic strategy which is good for multi-

canonical methods will be also good for BHM (besides

the accuracy advantage quoted in the last paragraph),

but the reverse is not true. Thus, within BHM, other

not-so-restricted dynamic strategies could be used.

Pro�ting from this feature, we decided to test a very

simple dynamic strategy inspired by reference [20] (al-

though within a di�erent method, the dynamic rule in-

troduced in [20] is essentially the same as presented

hereafter). The idea is to avoid movement rejections

at all, within the energy level currently being sampled

for averaging purposes. Rejections will be restricted to

other energies, whose states are never included into the

averaging statistics. Let's consider that the maximum

energy jump allowed by the adopted protocol of (real)

movements corresponds to n levels above or below the

current energy E. Then, let's take an energy window

of 2n + 1 adjacent levels, starting from some state in-

side it. Any movement which keeps the system still in-

side this window will be accepted. This is the dynamic

strategy we propose here. Averages are taken only for

the central level E inside the chosen energy window:

the system is allowed to visit the other n levels above

it, as well as the n levels below it, nevertheless with-

out measuring anything during these side visits. Note

that no tossed movement will be rejected, if the cur-

rent energy is just E. Thus, the averaging process is

completely rejection-free, avoiding any systematic bias

due to arti�cial rejections rules. The same strategy can

be easily applied also for continuous energy spectra, by

taking averages only within a narrow, rejection-free en-

ergy window centered inside another broader, free-visit

window: any movement to outside this latter would be

rejected.

In what follows, we consider a L� L square lattice

Ising ferromagnet, with L = 32 for which the exact

function g(E) is known [21]. The energy of the current

state S is counted as the total number of its unsatis�ed

bonds, i.e. the total number of neighbouring pairs of

spins pointing one up and the other down. The energy

spectrum corresponds to all even numbers between 0

and 2; 048, i.e. E = 0, 2, 4, 6, 8 : : : 2,048, which can also

be represented by energy densities e = E=(2L2). The

degeneracies are g(E) = 2, 0, 2,048, 4,096, 1,057,792

: : : 2, respectively. This spectrum is symmetric in rela-

tion to its center at Emax = 1; 024 (or e = 0:5), where

g(Emax) � 6:3�10306. We need only its �rst half, corre-

sponding to positive temperatures. The critical energy

(at the thermodynamic limit) corresponds to ec � 0:147

(Ec � 300, for L = 32).

We will adopt single-spin 
ips as the protocol of

movements (both for the real movements tossed during

the computer run, as well as for the virtual ones we con-

sider in order to countNup andNdn). Starting from the

current state S with energy E, 1; 024 movements would

be available, by tossing one random spin to 
ip. They

can be classi�ed according to the possible energy jumps,

E ! E ��E, where �E could be 0; 2 or 4. Thus, our

energy window will have 5 adjacent levels, the central

one, E, where the averages will be measured, which

is rejection-free, plus two neighbouring levels above it,

and two others below it. During the random walk per-

formed inside this window, we measure the values of

Nup and Ndn for the current state, every time its en-

ergy is E, and accumulate them into two E-histograms

Hup(E) and Hdn(E). Also a visit counter V (E) is up-

graded to V (E)+1. If the energy of the current state is

not E, nothing is measured or accumulated. At the end,

we take the averages< Nup(E) >= Hup(E)=V (E) and

< Ndn(E) >= Hdn(E)=V (E). Note that this is the

only role played by the �nal V (E): no comparison with

the neighbouring values V (E ��E) is needed, no fur-

ther information is extracted from these values. They

must only be large enough in order to provide a good

statistics. For each new E, a new 5-levels energy win-

dow centered on it is sampled, and the whole process is

repeated.

By following this dynamic rule and by using the

BHM relation (4), we measured the quantity ln[g(E +
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�E)=g(E)] for 15 adjacent levels E = 300, 302 : : : 328,

at the critical region. The deviations from the exact

values were averaged (root mean square) over these 15

levels, and are shown as a function of the number of av-

eraging states sampled inside each energy level (counts),

in Fig. 1. The squares corresponds to �E = 4, while

the diamonds represent �E = 2. The dashed straight

line (1=
p
counts) indicates that no systematic errors

besides the normal statistical 
uctuations occur, giving

credit to our simple dynamic rule. According to these

results, to improve the numerical accuracy is a simple

matter of taking more and more averaging states inside

each energy level, up to the computer time available.

Figure 1. Deviations between measured g(E) and the exact
values, as a function of the number (counts) of sampled av-

eraging states. The dashed line corresponds to 1=
p
counts.

Data for 32 � 32 Ising ferromagnet.

In order to perform thermal averages, one does not

need the same accuracy along the whole energy axis.

The function [g(E) exp (�E=Tc)]2 is displayed by the

dotted line in Fig. 2, where Tc = 2:293930 is the exact

location of the speci�c heat peak. This curve displays

the (squared) relative contribution of each energy to

the partition function. As the number of sampled aver-

aging states inside each energy level is proportional to

the squared numerical accuracy, the dotted line in �g-

ure 2 shows the ideal pro�le of visits one needs in order

to have equally accurate contributions from each energy

level. It is a sharp peaked curve, according to which the

computational e�ort can be concentrated only inside a

narrow energy window. Pro�ting from this feature, we

have shaped the pro�le of visits displayed by the solid

line, in �gure 2. The possibility of designing this pro�le

of visits, sampling di�erent numbers of averaging states

for di�erent energies, according to the relative contri-

bution of each energy region, is a further big advantage

of BHM over multicanonical methods. Almost all the

computational e�ort is concentrated near the peak.

Figure 2. Pro�le of visits along the energy axis, which could
be shaped according to the importance of each energy con-
tribution to the partition function (dotted line).

Fig. 3 shows a detailed comparison of our simula-

tional results with the exact speci�c heat curve, near

its peak. Being a derivative, which corresponds to a

mathematical procedure in which numerical accuracy is

strongly compromised, this quantity is a good standard

for worst-case comparisons, moreover near its peak.

Nevertheless, the relative deviations we obtained are

compatible with the number (counts = 8� 109) of av-

eraged states per energy level, at the peak. Moreover,

better yet accuracies were obtained along all the tem-

perature range from 0 to1, always by using the same

simulational data, i.e. the same averaged values for the

BHM quantities Nup and Ndn measured during a sin-

gle computer run.
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Figure 3. Detail of the speci�c heat peak, a worst-case
comparison.

In short, we have tested a simple dynamics which

is very eÆcient in measuring microcanonical averages.

It is essentially the same dynamics as introduced in

[20], for other purposes. Here, the aim is to measure

the microcanonical averages of some particular macro-

scopic quantities de�ned within the broad histogram

method [1-3]. Once one knows these averaged quan-

tities as functions of the energy, the method provides

the energy degeneracy function g(E) through an exact

relation. During the same computer run, the micro-

canonical average < Q(E) > of the quantity Q of inter-

est is also measured. Then, once one knows g(E) and

< Q(E) >, the canonical thermal average < Q >T can

be determined by equation (2), for any, continuously

varying temperature T , without resorting again to

further computer simulations. According to our

tests, the current dynamic rule does not introduce any

systematic averaging bias, besides the normal statistical


uctuations which decay proportionally to 1=
p
counts.

Thus, by applying this dynamic rule to BHM, to im-

prove more and more the numerical accuracy is a sim-

ple matter of increasing the computer time. Among

the further advantages of the microcanonical dynam-

ics tested here, we can quote: i) its implementation

simplicity, without detailed balance and other compli-

cations; ii) no movement-rejections at all, within the

averaging energy level; iii) the possibility to shape the

pro�le of visits along the energy axis, according to the

desired accuracy; iv) no randomness at all is used in

order to decide to perform or not the currently tossed

movement [22]; v) short and non-periodic waiting time

between consecutive averaging states [24].

I am indebted to Kim Doochul who warned me

about reference [20], reading which I have had the

idea to apply its dynamic rules to the broad histogram

method. D. Stau�er was kind enough to perform a

critical reading of the manuscript. This work is par-

tially supported by Brazilian agencies CAPES, CNPq

and FAPERJ.
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