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Charret et al. applied the properties of Grassmann generators to develop a new method to calculate
the coe�cientes of the high temperature expansion
of the grand canonical partition function of self-interacting fermionic models on d-dimensions
(d � 1). The method explores the anti-commuting nature of fermionic �elds and avoids the calcula-
tion of the fermionic path integral. We apply this new method to the relativistic free Dirac fermions
and recover the known results in the literature without the �-independent and �-independent in-
�nities that plague the continuum path integral formulation.

I Introduction

The path integral approach has been extensively ap-

plied to the calculation of thermodynamic properties

of quantum �eld theories[1, 2, 3]. Through this ap-

proach, the leading contribution to the e�ective poten-

tial of these theories has been calculated in the high

temperature limit (� � 1, where � = 1
kT ) [2, 4].

We also have a standard high temperature pertur-

bation theory derived from the path integral expres-

sion of the partition function[5, 6]. In the calculation

of the Helmholtz free energy, via the path integral ap-

proach, we do not keep track of contributions that are

�-independent. In general these contributions are irrel-

evant to the thermodynamic properties of the model,

but even though we are not going to deal here with

supersymmetric models, we remember that these con-

tributions are crucial to verifying if the supersymmetry

is broken or not at �nite temperature[7, 8, 9], since for

a theory to be supersymmetric the value of its vacuum

energy must be zero.

For theories involving bosons, in the path inte-

gral we �rst integrate over the conjugate momenta.

Bernard[1] showed that in this case we have to be care-

ful in constructing the path integral to get the over-

all �-dependent constant of the grand canonical parti-

tion function. This constant does not appear in pure

fermionic models since in these cases the momentum

conjugate to a fermionic �eld is its own hermitian con-

jugate. Even for these fermionic models, along the cal-

culation of the partition function done via the path in-

tegral approach, we get �-independent terms that are

dropped out (see the free fermion case that is fully dis-

cussed in reference [3]).

The partition function of free fermion models is cal-

culated directly from its path integral expression, since

it is equal to the determinant of its dynamical opera-

tor [3, 10]. When the lagrangean density of the model

has self-interacting fermionic terms, it is not possible

any more to calculate exactly the non-gaussian non-

commutative path integral. One common approach is

to get the bosonized version of the model[11]. An-

other standard way to handle the path integral over

non-commutative functions is developing a perturba-

tion theory taking care of the signs coming from fermion

loops[1, 2, 3]. Besides the standard perturbation the-



S.M. de Souza et.al. 565

ory we have the lattice theory that is a non-perturbative

approximation approach. Such approach has been very

important in the study of QCD (for a review on the

subject, see reference [10]). In the lattice formulation

of a continuous model at �nite temperature, the path

integral of the partition function is replaced by a �nite

space and temperature lattice. Lattice theories have

two distinct limits: i) the temperature lattice parame-

ter � goes to zero (� ! 0) to get the path integral ex-

pression of the partition function; ii) the space distance

a between the nearest sites in each direction goes to zero

(a ! 0) to recover the continuum limit of the model.

For fermions on the lattice the naive formulation gives

the usual \fermion doubling problem". To get rid of this

problem, there are prescriptions in the literature con-

cerning modi�cations of the Dirac operator on the lat-

tice in such a way that these modi�cations disappear in

the continuous limit[10]. It has been an important test

for these prescriptions to be applied to the free fermion

model[12]. Not all symmetries of the continuous model

are preserved in the lattice prescription; for example,

the Wilson action for the free fermion on the lattice[13]

breaks the chiral symmetry[10]. Recently, L�uscher[14]

showed that this symmetry is exact for a lattice fermion

action where the fermion �elds satisfy the Ginsparg-

Wilson identity[15]. Many authors[16, 17, 18] showed

that the chemical potential can not be introduced in a

naive way in the fermionic lattice model, since even for

the free density energy it gives a divergent term pro-

portional to (�
a
)2. From the previous discussion, we see

that the study of free fermion on the lattice has been

an important lab to test the prescriptions of the lattice

formulation of models involving fermions.

The interesting properties of the non-commutative

Grassmann algebra has been applied to get the contri-

butions from spin con�gurations to the partition func-

tion of the classical bidimensional Ising model[19]. In

reference [20] Charret et al. proposed a new way to cal-

culate the coe�cients of the high temperature expan-

sion of the grand canonical partition function of self-

interacting fermionic models in d-dimensions (d � 1).

They applied the method to the Hatsugay-Kohmoto

model[20], that is an exactly solvable model. The ap-

proach was also applied to the unidimensional Gener-

alized Hubbard model to get the coe�cents up to or-

der �3 of the high temperature expansion of its grand

canonical partition function[21]. Di�erently from other

approaches, these coe�cients yielded by this method

are analytical and exact.

Up to now the approach of Charret et al. has only

been applied to fermionic models already regularized

on a lattice with space unit one[20, 21]. The aim of

the present paper is to use this method to calculate the

Helmholtz free energy of the free fermion Dirac, that

is, a continuous theory whose exact result is already

known in the literature[3]. It is also important to check

its application to fermionic lattice models[10].

In section 2 we summarize the results of the method

of Charret et al. fully described in reference [20]. In sec-

tion 3 we apply that approach to the free Dirac fermion

using two expansions: in subsection 3.1 we �rst expand

the fermionic �eld operators in the basis of the energy

eigenstates and in subsection 3.2 we consider the naive

fermion model on a three dimensional space lattice. In

both ways, we show that it is possible to re-sum the high

temperature expansion of the grand canonical partition

function of the model and compare our results to the

ones known in the literature[3, 12]. Certainly, the free

Dirac fermion is a good test to the method of Charret

et al.. In appendix A we present the formulae related

to the lagrangean density of the free Dirac fermion. In

appendix B we have a \dictionary" of some formulae

showing their continuum and discrete expressions.

II A Survey of the Approach of

Charret et al.

The grand canonical partition function of any quan-

tum system can be written as a trace over all quantum

physical states[3, 22]

Z(�) = Tr[e��K]; (1)

where � = 1
kT , k is the Boltzmann's constant and T is

the absolute temperature. The operator K is de�ned

as K = H � �N, H being the hamiltonian of the sys-

tem, � is the chemical potential and N is a conserved

operator. In the high temperature limit (� � 1), Z(�)
has the expansion

Z(�) = Tr[1l] +
1X
n=1

(��)n
n!

Tr[Kn]: (2)

The expectation value of any fermionic operator can

be written as a multivariable integral over Grassmann

variables[23, 24]. The mapping among the fermionic

operators that appear in the fermionic model and the

grassmannian generators is such that they satisfy the

same algebra. Let ayi and aj be the hermitian conjugate

fermionic operators that satisfy the anti-commutation

relations
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fai; ayjg = 1l �ij and fai; ajg = 0; (3)

where i = 1; ::;N . The generators of the associated

Grassmann algebra have dimension 22N , and can be

written explicitly as f��1; � � � ; ��N ; �1; � � � ; �Ng. They sat-
isfy the following anti{commutation relations:

f�i; �jg = 0; f��i; ��jg = 0 and f��i; �jg = 0: (4)

The mapping

a
y
i ! ��i and aj ! @

@��j
; (5)

preserves the algebra (3) due to the fact that the alge-

bra (4) is satis�ed by the grassmannian generators.

For any self-interacting fermionic model in a d-

dimension lattice (d � 1), the coe�cients of the high

temperature expansion (2) can be written as the mul-

tivariable Grassmann integral[20]

c

Tr[Kn] =

Z 2nNdY
I=1

d�Id��I e
P2nNd

I;J=1
��IAI;J�J �

�Kn(��; �; � = 0)Kn(��; �; � = 1) : : :Kn(��; �; � = n� 1); (6)

d

where Nd is the number of sites in the d-dimensional

lattice. We point out that, di�erently from the lattice

version of the path integral, our d-dimensional lattice

does not include the temperature lattice spacing. Ma-

trix A is independent of the operators H and N, and

is equal to

A =

�
A"" Ol
Ol A##

�
: (7)

Each element of A is, in its turn, a matrix of dimension

nNd � nNd, and Ol is the null matrix in that dimen-

sion. The indices I; J in matrix A vary in the interval

I; J = 1; 2; : : : ; 2nNd. The matrices A"" and A## are

equal,

c

A"" = A## =

0
BBB@

1lNd�Nd �1lNd�Nd OlNd�Nd : : : OlNd�Nd

OlNd�Nd 1lNd�Nd �1lNd�Nd : : : OlNd�Nd

...
...

1lNd�Nd OlNd�Nd OlNd�Nd : : : 1lNd�Nd

1
CCCA ; (8)

d

where 1lNd�Nd and OlNd�Nd are the identity and null

matrices of dimension Nd �Nd, respectively. Due to

the fact that the submatrices A"# and A#" are null, the

result of the multivariable integral (6) is equal to the

product of the independent contributions of the sectors

�� ="" and �� =##.
The grassmannian function Kn(��; �) in eq.(6) is ob-

tained from the normal ordered operatorK by perform-

ing the naive mapping: a
y
i;� ! ��I and ai;� ! �I , where

i = 1; 2; :::;Nd and � ="; #. The relation between the

indices (i, �) and I is given in reference [20].

Finally, the result of the integrals that contribute

to Tr[Kn] is independent of the �� sector, since A"" =

A##. We present here only the results of the integrals

of the sector �� ="". All those integrals are of the

following type:
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c

M (L;K) =

Z nNdY
i=1

d�id��i ��l1�k1 : : : ��lm�km e

P
nNd

i;j=1
��iA

""

ij
�j ; (9)

d

where L � fl1; : : : ; lmg and K � fk1; : : : ; kmg. We

should remember that the grassmannians functions Kn
are polynomials of the generators of the algebra. The

products ��� are ordered such that l1 < l2 < ::: < lm
and k1 < k2 < ::: < km. The results of the integrals of

type (9) are[25]

M (L;K) = (�1)
P

m

i=1
(li+ki)A(L;K); (10)

where A(L;K) is the determinant obtained frommatrix

A"" by cutting o� the lines l1; l2; :::; lm and the columns

k1; k2; :::; km. M (L;K) is a co-factor of matrixA"". For

�xed N , result (10) reduces the calculation of the multi-

variable integrals over anti-commuting variables to the

calculation of co-factors of a well de�ned matrix whose

elements are commuting numbers. It is important to

point out that eq.(10) is valid for any integer value of

N .

In general, it should not be easy to calculate the

co-factors of matrix A�� , since each of its elements is

a matrix of dimension Nd � Nd. However, due to the

block structure of matrixA�� Charret et al. showed in

reference [20] that it is possible to diagonalize A�� for

any value of n and N . The results derived by the ap-

plication of the method of Charret et al. are analytical

in N , allowing us to take the thermodynamic limit.

III Grand Canonical Partition

Function for Free

Relativistic Fermions

The lagrangean density of the free Dirac fermion is

L = �	(~x; t)(@=�m)	(~x; t); (11)

whose fermionic �eld operators satisfy the anti-

commutation relations

f	�(~x; t);��(~x
0; t)g = i����(~x� ~x0); �; � = 1; 2; 3; 4

(12)

and

f	�(~x; t);	�(~x
0; t)g = f��(~x; t);��(~x

0; t)g = 0; (13)

where ��(~x; t) is the canonical momentum of 	�(~x; t)

and ��(~x; t) = i	
y
�(~x; t).

From the lagrangean density (11) and the equation

of motion satis�ed by the fermionic �eld operators, the

total hamiltonian operator of the system can be written

as

H =

Z
V

d3~x i	y(~x; t)@0	(~x; t): (14)

We use the natural units where ~ = c = e = 1. Our

metric is diag(g��) = (1;�1;�1;�1).

III.1 Expansion in the Basis of Energy
Eigenstates

Let us consider a relativistic free fermionic gas at �-

nite temperature contained in a box of volume V . The

continuous limit is recovered when V !1.

The fermionic operator 	(~x; t) written in the basis

of eigenstates of energy of the free Dirac fermion is

c

	(~x; t) =
1

V 1=2

X
~k

2X
r=1

[ar(~k)ur(~k)e
�ik�x

�

+ byr (~k)vr(~k)eik�x
�

]; (15)

where k�x� = k0x0�~k:~x, and k0 =
q
j~kj2 +m2 > 0. The destruction fermionic operators ar, br and their respective

hermitian conjugates satisfy the anti-commutation relations

far(~k); ays(~k0)g = �rs�~k;~k0 and fbr(~k);bys(~k0)g = �rs�~k;~k0 : (16)
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All others anti-commutation relations of these operators are null. The spinor components ur(~k) and vr(~k) are given

by eqs.(49) and (50), respectively.

The hamiltonian operator written in terms of creation and destruction operators of the de�ned energy becomes

H = �1l
X
~k

2X
r=1

k0 +
X
~k

2X
r=1

k0[a
y
r (~k)ar(~k) + b

y
r (~k)br(~k)]; (17)

1l being the identity operator. We de�ne E0 as the vacuum energy, E0 � h0jHj0i = �2P~k
k0, j0i being the vacuum

state of the fermionic model.

Our aim is to calculate the grand canonical partition function of the free Dirac fermion in contact with some heat

and electric charge reservoir. Eqs. (6), (9) and (10) allow us to calculate the coe�cients of the high temperature

expansion of this function. For the present case, the operator K in expression (1) is: K =:H : +E01l� �Q, where

� is the chemical potential and Q is the total electric charge operator of the free relativistic fermions. The operator

Q can be written in terms of the creation and destruction operators as

Q = 2
X
~k

1l +
X
~k

2X
r=1

[ayr (~k)ar(~k)� byr (~k)br(~k)]: (18)

� Q01l+ : Q : :

In its turn, the K operator can be written as

K =
X
~k

2X
r=1

(k0 � �)ayr (~k)ar(~k) +
X
~k

2X
r=1

(k0 + �)byr (~k)br(~k) + 1l(E0� �Q0)

� Ka +Kb + 1l(E0 � �Q0): (19)

Due to the anti-commutation relations (16), we have [Ka;Kb] = 0, and therefore Z(�) can be written as

Z(�) = e��(E0��Q0)Za(�):Zb(�); (20)

where
Za(�) � Tra[e

��Ka ] and Zb(�) � Trb[e
��Kb ]: (21)

The calculation of Za(�) and Zb(�) functions are equivalent. We present here only the details of the calculation of

Za(�). For a free Dirac fermion, the traces for r = 1 and r = 2 are equal. Then,

Za(�) = Tra[e
��Ka ] = [Tr(1)a [e��K

(1)
a ]]2

=

2
4Y

~k

Tr(1)a [e��(k0��)n
(1)
a (~k)]

3
5
2

: (22)

In Tr
(1)
a the vector ~k is kept �xed. Since n

(1)
a (~k) is a commuting operator, we apply the Newton multinomial

expansion formula to write

Tr(1)a [e��(k0��)n
(1)
a (~k)] = Tr(1)a [1l] +

1X
n=1

(��)n
n!

(k0 � �)nTr(1)a [n(1)a (~k)n]: (23)

We should note that for �xed ~k, the anti-commutation relations (16) are identical to the relations (3); therefore,

Tr
(1)
a [n

(1)
a (~k)n] can be written as a Grassmann multivariable integral (6) with an equivalent mapping to eq.(5) for

the associated generators of the non-commutative algebra. The traces that contribute to eq.(23) are written as the

following Grassmann integrals:

Tr(1)a [1l] =

Z nY
I=1

d�~k(I)d��~k(I)e
P

n

I;J=1
��~k(I)A

(11)
IJ

�~k(J); (24)

and
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Tr(1)a [n(1)a (~k)n] =

Z nY
I=1

d�~k(I)d��~k(I)e
P

n

I;J=1
��~k(I)A

(11)
IJ

�~k(J) �

���~k(1)�~k(1) : : : ��~k(n)�~k(n); for (n > 0): (25)

The grassmannian expression for Tr(1)a [n(1)a (~k)n] is obtained from eq.(6) with N = 1 and d = 1. Therefore the

elements of matrix A(11) in eq.(8) are just numbers. From eqs.(9) and (10), we conclude that having the ��'s in the

integrand corresponds to deleting the �rst n lines in matrix A(11) and, in the same way, having the �'s corresponds

to deleting the �rst n columns of the same matrix. Therefore, from the expression of matrix A(11) (see eq.(8)), for

arbitrary n, we realize that the matrix A
(11)
n obtained after cutting o� the n-�rst lines and n-�rst columns is an

upper triangular matrix whose determinant is equal to 1. Besides, we have det[A(11)] = 2, for any value of n. In

summary, for arbitrary n,

Tr(1)a [1l] = 2 and Tr(1)a [n(1)a (~k)n] = 1: (26)

Substituting (26) into expression (25) and resumming it, we get

Tr(1)a [e��K
(1)
a ] =

Y
~k

(1 + e��(k0��)); (27)

that, returning to eq.(20), gives

Z(�) = [
Y
~k

e2�(k0+�)(1 + e��(k0��))(1 + e��(k0+�))]2: (28)

The relation between the Helmholtz free energy and the grand canonical partition function is[22]

W(�) = � 1

�
ln(Z(�)): (29)

Substituting result (28) in eq.(29), the expression derived for the Helmholtz free energy is

W(�) = � 2

�

X
~k

[�(k0 + �) + ln(1 + e��(k0��)) + ln(1 + e��(k0+�))]; (30)

d

that is equal to the result derived via the continuum

path integral formulation of the free Dirac model[3].

Even though our calculation is done in a box of volume

V , the contribution of the chemical potential derived

from expression (30) to the energy density in the zero

temperature limit is proportional to �4 for the mass-

less free fermion model. We remember that the lattice

action of the massless free �eld gives a quadratic diver-

gence if the chemical potencial is introduced in a naive

way[16, 17, 18]. For the massless free fermion model, we

also get from eq.(30) that the chiral symmetry is exact

in this formulation, since < �		 >= 0 for the fermion

condensate.

III.2 Free Dirac Fermions on the Lattice

The lattice calculation of models including fermions

has been an important tool in learning the properties

of these models. The aim of this subsection is to show

that the method of Charret et al. can be equally well

applied to the lattice version of fermionic models. To

do so, we consider the most naive lattice realization

of the free Dirac fermion[10]. We remember that the

crucial point to apply the method of Charret et al. is

working with fermionic �eld operators that satisfy the

anti-commutation relations (3).

The hamiltonian operator of the free Dirac fermion

is

H =

Z
V

d3~x i	y(~x; t)[0~ � ~r�m0]	(~x; t); (31)

where ~ = (1; 2; 3). From appendix B, we get that

the operator H written on the lattice becomes
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c

H =

N
2X

n1;n2;n3=�N
2

4X
�;�=1

3X
j=1

�
i
a2

2
	y�(~na; t)(0j )�� [	�(~na+ |̂a; t)� 	�(~na� |̂a; t)]�

� ia3m	y�(~na; t)(0)��	�(~na; t)
o
; (32)

d

where a is the distance between the nearest sites in

each space direction. The space point ~x on the lattice

is written as ~x = ~na. N is the total number of space

sites in each direction. For simplicity, we take N to be

even, although the method applies equally well when

N is odd. We only have to be more careful in de�ning

the limits of the sums.

Operator K in expression (1) is: K = H � �Q,

where � is the chemical potential and Q is the total

electric charge operator. The discrete expression of Q

is

Q = a3

N
2X

n1;n2;n3=�N
2

	y�(~na; t)	�(~na; t): (33)

Imposing periodic spatial boundary conditions on

the fermionic �eld operators, their Fourier decomposi-

tions are

	�(~na; t) =
1p
V

N
2 �1X

k1;k2;k3=�N
2

~ �(
�~k

L
; t)ei

�
L
~k�~na; (34)

where � = 1; 2; 3; 4 and L = Na
2 . The fermionic

�eld operators 	�(~x; t) and 	
y
�(~x; t) satisfy the anti-

commutation relations (12) and (13), implying that

the Fourier components of the fermionic �eld operators

must obey the relations:

c

(
~ �

 
�~l

L
; t

!
; ~ 
y
�

 
�~k

L
; t

!)
= ��� �

(3)

~l;~k
and

(
~ �

 
�~l

L
; t

!
; ~ �

 
�~k

L
; t

!)
= 0; (35)

d

that are identical to relations (3), the necessary algebra

to apply the method of Charret et al..

In momentum space, operator K is written as

K � 1

a

N
2 �1X

l1;l2;l3=�
N
2

K~l
; (36)

where

K~l � ~	y
��
L
~l; t
�
R
��
L
~l
�

~	
��
L
~l; t
�
; (37)

and

~	
��
L
~l; t
�
�

0
B@

~ 1
~ 2
~ 3
~ 4

1
CA : (38)

The matrix R
�
�
L
~l
�
is de�ned as

R
��
L
~l
�
=

�
a(m� �)1l sin

�
�
L lja

�
�j

sin
�
�
L lja

�
�j �a(m + �)1l

�
: (39)

We have an implicit sum over j in the o�-diagonal ele-

ments of matrixR and 1l is the identity matrix of dimen-

sion 2�2. Due to the anti-commutation relations (35),

we have [K~l;K~k] = 0. Therefore, the grand canonical

partition function of the model becomes

Z(�) =
N
2 �1Y

l1;l2;l3=�N
2

Tr~l

h
e�

�

a
K~l

i
; (40)

where Tr~l means that the trace is calculated for �xed ~l.

We should notice that the operator K~l is not diagonal
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in momentum space. We perform the similarity trans-

formation PRP�1 = D, where the diagonal matrix D

is

D =

�
�+1l Ol
Ol ��1l

�
; (41)

and �+ and �� are the eigenvalues of matrixR, namely,

�� = �a(� � ~!(~l)) (42)

so that

~!(~l ) �
q
m2 + ~p1

2 + ~p2
2 + ~p3

2; (43)

where ~l � (l1; l2; l3) and the of variables ~pi are de�ned

as

~pi =
1

a
sin(pia); i = 1; 2; 3; (44)

with pi = �
L li. The new fermionic �eld operators

	0 = P~	 and 	0
y
= ~	yP�1 also preserve the anti-

commutation relations (35).

The function Z(�) written in terms of the new

fermionic �eld operators has the same form as the

r.h.s. of eq.(22). Following similar steps, we get the

Helmholtz free energy for the model on the lattice, that

is,

c

W(�) = �2
N
2 �1X

l1 ;l2 ;l3=�N
2

�
�+ ~!(~l )

�
�

� 2

�

N
2 �1X

l1;l2;l3=�
N
2

h
ln
�
1 + e��(~!(

~l )+�)
�
+ ln

�
1 + e��(~!(

~l )��)
�i
: (45)

d

In the limit a ! 0 the function W(�) agrees with

eq.(2.4) of reference [12], after summing over Matsub-

ara frequencies, being equal to twice the result (30).

Here, as usual in lattice calculations with fermions, the

doubling problem is lifted by including the Wilson term

H(W ) = i
ra

2

Z
V

d3~x 	y(~x; t) 0r2	(~x; t); (46)

in hamiltonian (31), where r is Wilson's constant.

For models that are quadratic in the fermionic �elds,

the result of the partition function is the same for any

value of the temperature parameter � (� = �
N )[26]. That

is why our result (45) can be directly compared to the

one derived by the lattice calculation of hamiltonian

(32), even the Wilson term (46) is added to it, since

both expressions already give the exact results in the

respective method.

IV Conclusions

Recently, Charret et al. proposed a new way to cal-

culate the coe�cients of the high temperature expan-

sion of the grand canonical partition function Z(�)

of any self-interacting fermionic model in d-dimensions

(d � 1)[20]. In order to apply this method, it is enough

to write the second quantized expression of the hamil-

tonian and a given conserved operator in terms of oper-

ators satisfying the anti-commutation relations (3). In

this approach, at each order �n of the high tempera-

ture expansion of the function Z(�), the calculation of

the coe�cients is reduced to obtaining the co-factors of

a matrix with commuting entries | see matrix A in

eqs. (7) and (8). For a �xed number N of sites on the

lattice, all the mathematical objects in the calculation

are well-de�ned. The value of N can be even or odd.

This approach works with grassmannian functions, but

it avoids calculating the fermionic path integral of Z(�).
We applied the method of Charret et al. to the free

Dirac fermion by �rst expanding it in the basis of the

eigenstates of energy of the free fermions. The hamil-

tonian and the total electric charge operators (eqs.(14)

and (18) respectively) include their respective vacuum

contributions. Result (30) gives two divergent terms

to the Helmholtz free energy W(�): the vacuum en-

ergy and the electric charge of the vacuum. This last

divergent term does not appear when we perform cal-

culations via the usual path integral approach[3], while
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the �-dependent terms in W(�) are identical in both

methods. In the path integral calculation[3], divergent

terms that are � and �-independent are dropped out.

This does not happen in the present approach. The

calculation is carried out on a lattice model in the mo-

mentum space, but the contribution of the chemical po-

tential to the energy density of massless free fermions in

the zero temperature limit is proportional to �4 | as it

should be, since the continuum limit result is recovered

in this method. This approach also preserves the chiral

symmetry of the continuous massless Dirac fermion.

Since the calculation of fermionic lattice models is

an important tool, we also applied the approach of

Charret et al. to a naive version of the free Dirac

fermion on the lattice[10]. In this case we also get

the usual doubling problem as in fermion lattice cal-

culations; it can be lifted by the Wilson term. The

direct agreement between our results and the lattice

calculations comes from the fact that we are consid-

ering quadratic fermionic models and therefore we do

not need to take �! 0 in the lattice to get the correct

results.

In summary, we can a�rm that the method of Char-

retet al. can also be applied to continuous fermionic

models. It is an analytical approach that allows us to

calculate all terms of the function Z(�) for the free

Dirac fermion without ambiguity, including the diver-

gent terms coming from the vacuum contribution. The

momentum space lattice that we employed to perform

our calculations for the free Dirac fermion model gives

the correct continuum limit and preserves the quantum

symmetries of the model. This could be an indication

that it is a candidate for the fermionic lattice action

of interacting fermionic �elds that should be calculated

using the method of Charret et al.[20]. The next step

in this approach is that of studying the renormalization

scheme associated to physical quantities for fermionic

models with self-interacting terms.
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Appendix

A Useful Formulae

In the lagrangean density for the free Dirac fermion (see eq.(11)),

L = �	(~x; t)(@=�m)	(~x; t); (47)

the Dirac matrices �, � = 0; ::; 3, are:

0 = i

�
1l Ol
Ol �1l

�
and i = i

�
Ol �i
��i Ol

�
; i = 1; 2; 3: (48)

The matrices �i, i = 1; 2; 3 are the Pauli matrices, and 1l and Ol are the identity and null matrices of dimension

2� 2, respectively. We have �	(~x; t) = �i	y�(~x; t)0.
The spinors components ur(~k) and vr(~k) in eq.(15) are

u1(~k) =

r
m + k0
2k0

0
BB@

1
0
k3

m+k0
k1+ik2
m+k0

1
CCA ; u2(~k) =

r
m+ k0
2k0

0
BB@

0
1

k1�ik2
m+k0
�k3
m+k0

1
CCA ; (49)

v1(~k) =

r
m + k0
2k0

0
BB@

k1�ik2
m+k0
�k3
m+k0
0
1

1
CCA ; v2(~k) =

r
m + k0
2k0

0
BB@

k3
m+k0
k1+ik2
m+k0
1
0

1
CCA : (50)
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B Summary of Expressions on the Lattice

We assume that each direction in three dimensional space has N sites. For simplicity, N is assumed to be even.

The distance between nearest points along each direction is a. In the space lattice, each point is written as ~x = ~na,

where ~n = (n1; n2; n3), ni = �N
2 ;�N

2 + 1; � � � ; N2 , and i = 1; 2; 3.

We have the following \dictionary" between the continuous and discrete representations of the formulae:

Z
V

d3 ~x ! a3

N
2X

n1;n2;n3=�N
2

(51)

�(~x� ~x0) ! 1

a3
�
(3)

~n;~m � 1

a3
�n1;m1�n2;m2�n3;m3 ; (52)

where ~x = ~na, ~x0 = ~ma with ~n = (n1; n2; n3) and ~m = (m1;m2;m3), respectively.

Finally, the �rst derivative de�ned on the lattice is de�ned as[10]

@i	�(~x; t) ! 1

2a
[	�(~na+ {̂a; t)�	�(~na� {̂a; t)] ; (53)

where {̂ is the unit vector in the direction i.
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