Brazilian Journal of Physics, vol. 35. no. 2A, June, 2005

359

Emerging Gravity from Defectsin World Crystal

H. Kleinert
Institut flir Theoretische Physik, Freie UnivemtBerlin, Arnimallee 14, D14195 Berlin
Received on 25 January, 2005

| show that Einstein Gravity can be thought of as arising from the defects in a world crystal whose lattice
spacing is of the order of the Planck length Ip ~ 10-33cm, and whose elastic energy is of the second-gradient
type (floppy crystal). No physical experiment so far would be able to detect the lattice structure.

I. INTRODUCTION

One of the most important features of string theoriesis that
they assumehe validity of Lorentz invariancefor al energies
in the trans-Planckian regime [1]. In this lecture we would
like to point out that an entirely different scenario is possi-
ble. It could be that we live in aworld crystal with a lattice
constant of the order of the Planck length, without being able
to notice this. None of the present-day relativistic physical
laws would have to be observably violated. The gravitational
forces could arise from variants of ordinary elastic forces in
thisworld crystal and the observed curvature in gravitational
spacetime could be just a signal of the presence of disclina
tions in the world crystal. Matter would be sources of discli-
nations.

II. PURE GRAVITY

For simplicity, we shall present such a construction only for
asystemwithout torsion [2]. Theideagoesback to a1987 lec-
ture of mine held in the Einstein housein Caputh [3]. Present
interest in Emerging Gravity [4—7] instigated me to revitalize
it.

If theworld crystal is distorted by an infinitesimal displace-
ment field

X XM = x4 1), @

it has a strain energy
A= %‘ / d* (3L + duUy)2, @)

where [ is some elastic constant. If part of the distortions are
of the plastic type, the world crystal contains defects defined
by Volterra surfaces, where crystalline sections have been cut
out. The displacement field is multivalued, and the action (2)
is the analog of the magnetic action in the presence of a cur-
rent loop [8]. In order to do field theory with this action, we
have to make the displacement field single-valued with the
help of &-functions describing the jumps across the Volterra
surfaces, by complete analogy with the gradient representa-
tion of the magnetic energy [8]:

A =i [ dx (U~ )2, 3

Where Uw = (Oply + 0yuy)/2 is the elastic strain tensor, and
uuv the gauge field of plastic deformations describing the

Volterra surfaces via d-functions on these surfaces [9-11].
The energy density isinvariant under the single-valued defect
gauge transformations
Uw” — U P+ Ay +0uAL) /2, Up— Up+ A (4)

Physically, they express the fact that defects are not affected
by elastic distortions of the crystal. Only multivalued gauge
functions A, would change the defect content in uﬁv.

We now rewrite the action (5) in a canonical form introduc-
ing an auxiliary symmetric stress tensor field o, as

A= [d*
After apartial integration and extremization in uy, the middle
termsyield the equation

0 o +io% (U —uf)) | - (5)

dyo¥ = 0. (6)

This may be guaranteed identically, as a Bianchi identity, by
an ansatz

O = 798, 10,9 Xor. (7)
The field ¢ plays the role of an elastic gauge field. It is

the analog of the vector potential A(x) in magnetism.
Inserting (7) into (5), we obtain

2
A — /d4 { Epu()\o VKA Ta)\a)\’Xor}
+ig" M AT, 0 Xty } (8)
A further partial integration brings this to the form
AG (VKA 2
A= /d4 { S“K 0 gk Ta)\a)\/xo{|
Fixore N %A Mg, 0y uf, } 9)

Thisisadouble-gaugetheory invariant under the defect gauge
transformation (4) and under stress gauge transformations

Xot = Xot + 0/\r + 01/\g. (10)

This can be rewritten as

A= /d“x{%cwo‘“’ﬂan“"}, (12)
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where ny is the four-dimensional defect density
Nw = £/, 19,0, US:. (12)

Itisinvariant under defect gauge transformations (4), and sat-
isfies the conservation law

n* =0. (13)

We may now replace uf; by half the metric field gy, and
the tensor n v becomes the Einstein tensor associated with the
metric tensor gy .

Let us eliminate the stress gauge field from the action (11).
For this we rewrite the stressfield (7) as

Ow = SuK)\USVKNTa)\aN Xot
_(OZXW + apavX)\}\ - aua)\Xu)\ - ava)\Xu)\)
Ny (07X — 0r0kX™). (14)
Introducing the field @,¥ = x.’ — 28,."x,*, and going to the
Hilbert gauge 0%@,” = O, the stress tensor reducesto
Ow = —0°Qu, (15)

and the action of an arbitrary distribution of defects would
become

_ 4 iz v 32 i Va1 sH WA
A*/d X{4u0(ﬂ46%\,+|(ﬂ1 (nv 30N )\)} (16)

Eliminating the field ¢* yields the interaction of an arbitrary
distribution of defects

A:“/d4x(n ( 2)2

This is not the Einstein action for a Riemann spacetime. It
would be so if the derivatives 92 in (16) would be replaced by
a. Then the Green function of (9%)2 would be replaced by the
Green function of —02. An index rearrangement would lead
to the interaction

A= u/d"’x(n“\, —

The defect tensor )y is composed of the plastic gauge fields
ufy inthe sameway asthe stresstensor isin terms of the stress
gaugefield in Eq. (14):

M, —18%nM)) (Ne’ =180, (17)

1
%&lvn)\)\) jaznu“- (18)

nu\) - guK)\o K)\lTa)\a)\/ UgT
—(azuw+apavu — 0,0\ u* — 80 ul)

If we introduce the auxiliary field wf¥ = uf’ — $8,"up* and

chose the Hilbert gaugea“ww 0, the defect density reduces
to
—-%uly.  (20)

N = —Ozwﬁv, Ny — 19, ﬂ A=
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and the interaction (18) of an arbitrary distribution of defects
would become

A= p/d“xupw(x)n“"(x). (21)
This coincides with the linearized Einstein action

A= *z_lK / d*x/—gR 22)
where K is the gravitational constant. Indeed, in the linear

approximation g, = &’ + hy’ with |h,¥| < 1, where the
Christoffel symbols can be approximated as

— 1
M ~ > (Ouhur +dvh — drhw ) , (23)
the Riemann curvature tensor becomes

— 1
Rk ~ > [Oua)\h\,K —0yokhp — (L v)} . (24)

This givesthe Ricci tensor
— 1
Rk ~ > (0u0x i + 0kOxhy — 00— azhw(), (25)

wherehis defined to bethetrace of thetensor hyy, i.e. h=hy .
The ensuing scalar curvature reads

~ —(0%h—9,0,h") (26)

s0 that the Einstein tensor becomes

1 _
G = Ru—50kR (27

OOy

Q

—%(azhw + 00k — 0,9\ —
1
+§nw(62h—avam“).

This can be written as a four-dimensional version of a double
curl

~ 1
G = Espév"sfmavaohm. (28)

Thus the Einstein-Hilbert action has the linear approxima-
tion

4—1K / d*xhy G, (29)

Recalling the previously established identifications of plastic
field and defect density with metric and Einstein tensor, re-
spectively, the interaction between defects (21) is indeed the
linearized version of the Einstein-Hilbert action (22), if we
identify the constant p with 1/4k.

The world crystal with the elastic energy (5) does not lead
to this action. It must be modified to do so. A first modifi-
cation is to introduce two more derivatives and assign to the
crystal the higher-gradient elastic energy

A =p / A*X DUy — U2 (30)
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This removes one power of —d2 from the denominator in the
interaction (17).

In order to obtain the correct contractionsin (18), we must
replace the action (16) by

1 \V) 1 \Y
A/ﬁ{zdffmﬁﬁﬁﬁ
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by all particlesin the world crystal which are tightly bound to
the atoms, and move from site to site only by small tunneling
amplitudes. Such particles see precisely the geometry gener-
ated by the defects.

IV. SUMMARY
+ig"(hy — 130t | (31)
We have successfully recovered Einstein gravity from ade-
This, in turn, follows from an interaction energy fect model of a crystal in which the leading elastic terms van-
ish. For simplicity, this has been done in linearized approxi-
. 4 P2 W pvyi2 mation only, but the generalization to a full nonlinear theory
A= M/ A% {[0(t — Uw))* — 2O(UH — ws™)I} (32) presents no fundamental problem. We do not claim the model

to really represent reality but view it only as an illustration
of possible short-distance physicsin the Planck regime which
is completely different from what presently fashionable string
models suggest. Both scenarios have in common that there
is no danger of contradicting experimentsin that regime for a
long time to come.

1. MATTER

So far, the world crystal contains only the analog of the
gravitational field. What is matter in thismodel ? It is supplied
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