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Emerging Gravity from Defects in World Crystal
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I show that Einstein Gravity can be thought of as arising from the defects in a world crystal whose lattice
spacing is of the order of the Planck length lP ≈ 10−33cm, and whose elastic energy is of the second-gradient
type (floppy crystal). No physical experiment so far would be able to detect the lattice structure.

I. INTRODUCTION

One of the most important features of string theories is that
they assumethe validity of Lorentz invariance for all energies
in the trans-Planckian regime [1]. In this lecture we would
like to point out that an entirely different scenario is possi-
ble. It could be that we live in a world crystal with a lattice
constant of the order of the Planck length, without being able
to notice this. None of the present-day relativistic physical
laws would have to be observably violated. The gravitational
forces could arise from variants of ordinary elastic forces in
this world crystal, and the observed curvature in gravitational
spacetime could be just a signal of the presence of disclina-
tions in the world crystal. Matter would be sources of discli-
nations.

II. PURE GRAVITY

For simplicity, we shall present such a construction only for
a system without torsion [2]. The idea goes back to a 1987 lec-
ture of mine held in the Einstein house in Caputh [3]. Present
interest in Emerging Gravity [4–7] instigated me to revitalize
it.

If the world crystal is distorted by an infinitesimal displace-
ment field

xµ → x′µ = xµ +uµ(x), (1)

it has a strain energy

A =
µ
4

Z
d4x(∂µuν + ∂νuµ)2, (2)

where µ is some elastic constant. If part of the distortions are
of the plastic type, the world crystal contains defects defined
by Volterra surfaces, where crystalline sections have been cut
out. The displacement field is multivalued, and the action (2)
is the analog of the magnetic action in the presence of a cur-
rent loop [8]. In order to do field theory with this action, we
have to make the displacement field single-valued with the
help of δ-functions describing the jumps across the Volterra
surfaces, by complete analogy with the gradient representa-
tion of the magnetic energy [8]:

A = µ
Z

d4x(uµν −up
µν)2, (3)

where uµν ≡ (∂µuν + ∂νuµ)/2 is the elastic strain tensor, and
up

µν the gauge field of plastic deformations describing the

Volterra surfaces via δ-functions on these surfaces [9–11].
The energy density is invariant under the single-valued defect
gauge transformations

uµν
p → uµν

p +(∂µλν + ∂νλµ)/2, uµ → uµ+λµ. (4)

Physically, they express the fact that defects are not affected
by elastic distortions of the crystal. Only multivalued gauge
functions λµ would change the defect content in up

µν.
We now rewrite the action (5) in a canonical form introduc-

ing an auxiliary symmetric stress tensor field σµν as

A =
Z

d4x

[
1

4µ
σµνσµν + iσµν(uµν −up

µν)
]
. (5)

After a partial integration and extremization in uµ, the middle
terms yield the equation

∂νσµν = 0. (6)

This may be guaranteed identically, as a Bianchi identity, by
an ansatz

σµν = εµ
κλσεν

κλ ′τ∂λ∂λ′χστ. (7)

The field χστ plays the role of an elastic gauge field. It is
the analog of the vector potential A(x) in magnetism.

Inserting (7) into (5), we obtain

A =
Z

d4x

{
1

4µ

[
εµκλσενκλ ′τ∂λ∂λ′χστ

]2

+iενκλσ εµκλ ′τ∂λ∂λ′χστu
p
µν

}
. (8)

A further partial integration brings this to the form

A =
Z

d4x

{
1

4µ

[
εµκλσενκλ ′τ∂λ∂λ′χστ

]2

+iχστεσκλν ετκλ ′µ∂λ∂λ′u
p
µν

}
. (9)

This is a double-gauge theory invariant under the defect gauge
transformation (4) and under stress gauge transformations

χστ → χστ + ∂σΛτ + ∂τΛσ. (10)

This can be rewritten as

A =
Z

d4x

{
1

4µ
σµνσµν + iχµνηµν

}
, (11)
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where ηµν is the four-dimensional defect density

ηµν = εµ
κλσεν

κλ ′τ∂λ∂λ′u
p
στ. (12)

It is invariant under defect gauge transformations (4), and sat-
isfies the conservation law

∂νηµν = 0. (13)

We may now replace up
στ by half the metric field gµν, and

the tensor ηµν becomes the Einstein tensor associated with the
metric tensor gµν.

Let us eliminate the stress gauge field from the action (11).
For this we rewrite the stress field (7) as

σµν = εµ
κλσεν

κλ ′τ∂λ∂λ′ χστ

= −(∂2χµν + ∂µ∂νχλ
λ − ∂µ∂λχµ

λ − ∂ν∂λχµ
λ)

+ηµν(∂2χλ
λ − ∂λ∂κχλκ ). (14)

Introducing the field φµ
ν ≡ χµ

ν − 1
2 δµ

νχλ
λ , and going to the

Hilbert gauge ∂µφµ
ν = 0, the stress tensor reduces to

σµν = −∂2φµν, (15)

and the action of an arbitrary distribution of defects would
become

A =
Z

d4x

{
1
4µ

∂2φµν∂2φµν + iφµ
ν(ηµ

ν − 1
2 δµ

νηλ
λ)

}
. (16)

Eliminating the field φµν yields the interaction of an arbitrary
distribution of defects

A = µ
Z

d4x(ηµ
ν − 1

2 δµ
νηλ

λ)
1

(∂2)2 (ηµ
ν − 1

2 δµ
νηλ

λ). (17)

This is not the Einstein action for a Riemann spacetime. It
would be so if the derivatives ∂2 in (16) would be replaced by
∂. Then the Green function of (∂2)2 would be replaced by the
Green function of −∂2. An index rearrangement would lead
to the interaction

A = µ
Z

d4x(ηµ
ν − 1

2 δµ
νηλ

λ)
1

−∂2 ηµ
ν. (18)

The defect tensor ηµν is composed of the plastic gauge fields
up

µν in the same way as the stress tensor is in terms of the stress
gauge field in Eq. (14):

ηµν = εµ
κλσεν

κλ ′τ∂λ∂λ′ u
p
στ.

= −(∂2up
µν + ∂µ∂νup

λ
λ − ∂µ∂λup

µ
λ − ∂ν∂λup

µ
λ)

+ηµν(∂2up
λ

λ − ∂λ∂κupλκ). (19)

If we introduce the auxiliary field wp
µ

ν ≡ up
µ

ν − 1
2δµ

νup
λ

λ and
chose the Hilbert gauge ∂µwp

µν = 0, the defect density reduces
to

ηµν = −∂2wp
µν, ηµ

ν − 1
2 δµ

νηλ
λ = −∂2up

µν. (20)

and the interaction (18) of an arbitrary distribution of defects
would become

A = µ
Z

d4xup
µν(x)ηµν(x). (21)

This coincides with the linearized Einstein action

A = − 1
2κ

Z
d4x

√−gR̄ (22)

where κ is the gravitational constant. Indeed, in the linear
approximation gµ

ν = δµ
ν + hµ

ν with |hµ
ν| � 1, where the

Christoffel symbols can be approximated as

Γ̄µν
λ ≈ 1

2

(
∂µhνλ + ∂νhµλ − ∂λhµν

)
, (23)

the Riemann curvature tensor becomes

R̄µνλκ ≈ 1
2

[
∂µ∂λhνκ − ∂ν∂κhµλ − (µ↔ ν)

]
. (24)

This gives the Ricci tensor

R̄µκ ≈ 1
2
(∂µ∂λhλκ + ∂κ∂λhλµ− ∂µ∂κh− ∂2hµκ), (25)

where h is defined to be the trace of the tensor hµν, i.e. h≡ hλ
λ .

The ensuing scalar curvature reads

R̄≈−(∂2h− ∂µ∂νhµν) (26)

so that the Einstein tensor becomes

Ḡµκ = R̄µκ − 1
2

gµκR̄ (27)

≈ −1
2
(∂2hµκ + ∂µ∂κh− ∂µ∂λhλ

κ − ∂κ∂λhλ
µ)

+
1
2

ηµκ(∂2h− ∂ν∂λhνλ).

This can be written as a four-dimensional version of a double
curl

Ḡµκ =
1
2

εµδ
νλεκ

δστ∂ν∂σhλτ . (28)

Thus the Einstein-Hilbert action has the linear approxima-
tion

1
4κ

Z
d4xhµνGµν. (29)

Recalling the previously established identifications of plastic
field and defect density with metric and Einstein tensor, re-
spectively, the interaction between defects (21) is indeed the
linearized version of the Einstein-Hilbert action (22), if we
identify the constant µ with 1/4κ.

The world crystal with the elastic energy (5) does not lead
to this action. It must be modified to do so. A first modifi-
cation is to introduce two more derivatives and assign to the
crystal the higher-gradient elastic energy

A ′ = µ
Z

d4x[∂(uµν −up
µν)]2. (30)
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This removes one power of −∂2 from the denominator in the
interaction (17).

In order to obtain the correct contractions in (18), we must
replace the action (16) by

A =
Z

d4x

[
− 1

4µ

(
φµν∂2φµν − 1

2 φµ
µ∂2φµ

ν)

+ iφν
ν(ηµ

ν − 1
2 δµ

νηλ
λ)

]
. (31)

This, in turn, follows from an interaction energy

A = µ
Z

d4x
{
[∂(uµν −up

µν)]2 − 1
2 [∂(uµ

µ−uµ
pν)]2

}
. (32)

III. MATTER

So far, the world crystal contains only the analog of the
gravitational field. What is matter in this model? It is supplied

by all particles in the world crystal which are tightly bound to
the atoms, and move from site to site only by small tunneling
amplitudes. Such particles see precisely the geometry gener-
ated by the defects.

IV. SUMMARY

We have successfully recovered Einstein gravity from a de-
fect model of a crystal in which the leading elastic terms van-
ish. For simplicity, this has been done in linearized approxi-
mation only, but the generalization to a full nonlinear theory
presents no fundamental problem. We do not claim the model
to really represent reality but view it only as an illustration
of possible short-distance physics in the Planck regime which
is completely different from what presently fashionable string
models suggest. Both scenarios have in common that there
is no danger of contradicting experiments in that regime for a
long time to come.
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