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We have simulated a continuous time version of the Nagel-Schreckenberger model of vehicular traffic on high-
ways and calculated the flux as a function of vehicle density. In the low density regime the flux increases
linearly with density but becomes a power law when velocities are allowed to increase without bounds. We
have simulated also a modified version in which the state of a vehicle depends on the velocity of the vehicle
moving ahead. This model displays a phase transition from a state with nonzero flux to a jammed state at a
critical density which is strictly less than the closed-packed density. We also study the relationship of this model
with self-organized criticality.

1 Introduction

Vehicular traffic flow is a subject, outside of the traditional
areas of physics, that has been the object of investigation by
the methods of statistical physics [1-7]. Stochastic nonequi-
librium models defined on lattices are useful tools on the
study of vehicular traffic from the microcopic point of view
[6, 7]. In this approach, the traffic of vehicles is modeled
by a system of interacting particles, each particle represent-
ing an individual vehicle. The evolution of the system is
defined by dynamical irreversible rules implying that these
systems should be studied within the framework of nonequi-
librium statistical mechanics [8-13]. We will be concerned
here with the so called ”particle-hoping” models. Originally,
these models were defined as cellular automata, with de-
terministic rules, or as probabilistic cellular automata, with
stochastic rules. In both cases the updating is synchronous.
In this paper, however, we will examine the continuous time
version of such models, with sequential updating or, more
precisely, random sequential updating and whose time evo-
lution of the probability distribution is governed by a master
equation.

The stochastic microscopic models which we investigate
here are defined by stochastic rules that are suitable for com-
puter simulation. Numerical simulations are useful since
anlytical approaches for nonequilibrium systems are very
difficult to implement. Even though, we will present here
some analytical results coming from mean-field approxima-
tions and compare them with numerical results. We will fo-
cus our attention on a continuous time version of the Nagel-
Schreckenberger cellular automata model [14] of vehicular
traffic on highways (model A) and a modification of it that
takes into account the velocity of the vehicle moving ahead
of another one (model B).

The main property we want to find is the relation be-
tween the flux and density, usually called the fundamental

diagram of road traffic. For low densities, empiral data [15]
shows a linear dependence of the flux on density. Increasing
the density, the flux reachs a maximum (maximum capacity)
and then drops. These properties are found for both models
studied here. For model A, the flux vanishes when the den-
sity is the closed-packed density. However, for model B, the
flux vanishes at a critical density which is strictly less than
the closed-packed density.

2 Model A

Let us consider a system of N particles moving in a one
dimensional lattice with L sites and periodic boudary condi-
tions. Each site can be either empty or ocupied by a particle
(vehicle). The particles move forwardly and may have any
velocity up to a maximum velocity. The position and the ve-
locity of the j particle are denoted by xj and vj , respectively.
The distance between two consecutive sites is a so that
xj = anj where nj can take the values 0, 1, ..., L − 1. The
velocities of the particles take on discrete values vj = uνj

where νj = 0, 1, ..., νm, so that the maximum velocity is
vm = uνm. For simplicity we assume a = 1 and u = 1.

The state of the system is defined by the collection of the
positions {xj} and velocites {vj} of the N particles. The
time evolution of the system is defined as follows. At each
time interval τ/L one particle is chosen at random and its
velocity and position are changed according to the follow-
ing rules. The velocity is increased by one unity except if it
has already the maximum velocity in which case it remains
with the maximum velocity. The position of the particle is
increased by an amount equal to the new velocity. In this
model, however, there is no overtaking and two particles
cannot occupy the same site. Therefore, one has to check
whether there is enough space between the chosen particle
and the particle moving ahead. If not, the new velocity will
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then be equal to the number of empty sites between the par-
ticle and the one ahead of it. Let j be the chosen particle and
let us denote the new velocity by v′j and the new position by
x′

j . The rules are then

v′j = min{�j, vj + 1, vm}, (1)

where �i is the number of empty sites between the particle
and the one that is moving ahead. The new position is

x′
j = xj + v′j . (2)

We define the interval of time τ as the time it takes to
make N movements of particles or trials (a Monte Carlo
step). The time step between two successive movement tri-
als will be τ/N . Since there are N particles the average time
between two movements of the same particle will be just τ .
Therefore, we must have the following relation u = aτ .

The density of particles ρ = N/(aL) is the number of
particle per unit length. Since we are assuming a = 1 then
ρ = N/L. The fundamental property we want to analyze is
the flux φ of particles as a function of the density ρ. The
flux is the average number of particles crossing a certain
point per unit time. If M is the number of particle cross-
ing a specified point of the lattice in the time interval τ then
φ = M/τ . If we denote by v the average velocity of parti-
cles given by

v =
1
N

∑

j

〈vj〉. (3)

then the flux is given by

φ = ρv. (4)
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Figure 1. Flux φ versus density of vehicles ρ for model A for sev-
eral values of the maximum velocity vm obtained from simulation
of system with lattice size L = 1000.
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Figure 2. Log-log plot of the flux φ versus density of particles ρ
for vm = ∞ for model A obtained from simulation for a system
with size L = 105 A straight line fitted to the data points at small
densities has slope 0.42.

Using rules (1) and (2) we have simulated a system of
N particles with periodic boundary conditions with lattices
with L sites. Fig. 1 shows the flux of particles as a function
of the density for L = 1000 and for several values of the
maximum velocity vm. The flux increases linearly at small
densities, reaches a maximum and then decreases at high
densities. For small densities the flux increases linearly ac-
cording to

φ = vmρ, (5)

as long as vm is finite. If the maximum velocity is infinite,
that is, if the velocity of a particle may increase without
bounds, the behavior (5) is no longer valid. We assume then
the following power law behavior for small densities

φ ∼ ρα. (6)

The double-log plot of φ versus ρ, shown in Fig. 2, gives
the result α = 0.42(1). In the high density regime, the flux
becomes independent of the maximum velocity. For ρ near
1 the flux behaves as

φ = 1 − ρ. (7)

To set up a mean-field approximation we assume that the
stationary state is a non-correlated state. This means that,
the probability that there is a gap of size � between a given
vehicle and the vehicle moving ahead is

P� = (1 − ρ)�ρ. (8)

We assume further that the velocity of the vehicle is v� =
min{v, �}. The average velocity will be then

v =
∞∑

�=0

v�P� =
1 − ρ

ρ
{1 − (1 − ρ)vm}, (9)

which gives the flux

φ = ρv = (1 − ρ){1 − (1 − ρ)vm}. (10)

The mean-field approximantion given by (10) gives the gen-
eral behavior expected for the flux and is correct at low and
high densities as can be seen in Fig. 3.
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Figure 3. Flux φ versus density of vehicles ρ for model A obtained
from a mean-field approximation. The curves correspond, from
botton to top, to vm = 1, 2, 3, and 7, respectively.

3 Model B

In this section we set up a model to describe more precisely
the interaction between a vehicle, say vehicle i, and the ve-
hicle which is moving ahead, vehicle i + 1. In model A the
velocity of the former does not depend on the velocity of the
latter. In model B, if the velocity of the vehicle i + 1 is zero
and the gap between vehicles i and i+1 is 1 then the vehicle
i is not alowed to occupy the gap and it remains in its place
with zero velocity. Therefore the rules are the same as those
given by equations (1) and (2) except when �i = 1 in which
case the new velocity is given by

v′j = 0 if vi+1 = 0, (11)

v′j = 1 if vi+1 �= 0. (12)

We have simulated model B for several values of the
maximum velocity. The flux as a function of the density
is shown in Fig. 4. At small densities the behavior is the
same as the model A. However, at high density the behavior
is entirely distinct from model A. As shown in Fig. 4, there
is a critical density ρc above which the flux vanishes. Table
I shows the values of the critical density for several values
of the maximum velosity vm. As one increases the density
of vehicles, model B displays, therefore, a nonequilibrium
phase transition from a state with nonzero flux to a jammed
state with zero flux. The critical behavior of the flux near
the transition is

φ ∼ (ρc − ρ)β , (13)

with β = 1.

TABLE 1: Critical density ρc for several values of the
maximum velocity of vehicles vm for model B.

vm ρc

1 0.582(1)
2 0.679(1)
3 0.768(1)
4 0.760(1)
7 0.768(1)
15 0.768(1)
∞ 0.768(1)
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Figure 4. Flux φ versus density of vehicles ρ for model B for sev-
eral values of the maximum velocity vm obtained from simulation
of system with lattice size L = 1000.

A jammed configuration is an absorbing state in which
all cars have zero velocity. From the time evolution rules
we see that any configuration of particles with zero velocity
such that the gaps between particles are at most of size one
is a jammed state. A jammed configuration may therefore
occur whenever half of the sites are occupied so that there
are infinitely many absorbing states. We expect then that the
phase transition to the jammed state fall within the univer-
sality class of systems with infinitely many abosrbing states
[16, 17]. Since, the particles are driven to move in a given
direction we expect a mean-field behavior and in particular
β = 1 which is the numerical result we have obtained here.

Another feature of the model B, and also of other mod-
els with infinitely many absorbing states, is its connection
with sef-organized criticality. According to Dickman and
collaborators [16] a system with infinitely many absorbing
states may be interpreted as a self-organized system. In the
present case of model B this relationship can be seen as fol-
lows. From a configuration with all sites occupied, we start
by taking out of the system vehicles, chosen at random, un-
til a configuration is reached such that the vehicles start to
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move. If after a certain number of Monte Carlo steps T , pre-
viously defined, the vehicles are still moving, we insert a ve-
hicle into the system. If, on the other hand, the flux vanishes,
before the maximum time T , we remove a vehicle, chosen at
random. In other words, we remove a vehicle whenever the
systems falls into a jammed state and insert one if the flux
is nonzero. At the begining the density of vehicles ρ in the
system decreases linearly from the maximum value ρ = 1
untill it reaches a value where it begins to fluctuates around
a certain value ρ∗ of the density as can be seen in Fig. 5 for
the case of system size L = 1000 and maximum number of
Monte Carlos steps T = 1000. The inset of Fig. 5 shows
that the density fluctuates around the value ρ∗ = 0.731.

The average density ρ∗ depends on the system size L
and on the maximum number of Monte Carlo steps T , and
is expected to approach ρc as L → ∞ and T → ∞.
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Figure 5. Density of particles for model B with infinity maximum
velocity as a function of t, a quantity that increases by one unit
whenever a particle is removed or added to the system. The inset
shows a histogram of the densities with average ρ∗ = 0.731. The
data are taken from a system with L = 1000 and T = 1000.

4 Conclusion

We have simulated two stochastic models for vehicular traf-
fic on highways. In our approach, the traffic of vehicles is
modeled by a system of interacting particles, each particle
representing an individual vehicle. The first model is a con-
tinuous time version of the Nagel-Schreckenberger model.
In the second we introduce an interaction between a vehicle
and the vehicle moving ahead. We found that this second
model has a phase transition from a state with nonzero flux
to a jammed state which occurs for a density of particles
wich is strictly less than the closed-packed density.
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