
844 Brazilian Journal of Physics, vol. 36, no. 3B, September, 2006

Survival Probability of Surface Excitations in a 2d Lattice:
Non-Markovian Effects and Survival Collapse
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The evolution of a surface excitation in a two dimentional model is analyzed. I) It starts quadratically up
to a spreading time tS. II) It follows an exponential behavior governed by a self-consistent Fermi Golden Rule.
III) At longer times, the exponential is overrun by an inverse power law describing return processes governed
by quantum diffusion. At this last transition time tR a survival collapse becomes possible, bringing the sur-
vival probability down by several orders of magnitude. We identify this strongly destructive interference as an
antiresonance in the time domain.
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I. INTRODUCTION

We consider the dynamics of a charge excitation in a typi-
cal model for Tamm states [1]. Similar tight-binding models
[2] are used to describe a variety of situations: molecules ab-
sorbed in metallic substrates, decay of high-energy electron
excitations and the decoherence caused by a weak interaction
with an “environment” whose spectrum is dense. The decay of
the survival probability P00(t) of the resulting resonant state is
usually described, within a Markovian approximation, by the
Fermi Golden Rule (FGR). However, this description contains
approximations that leave aside some intrinsically quantum
behaviors. Various works on models for nuclei, composite
particles [3–5], excited atoms either in a free electromagnetic
field [6] or in photonic lattices [7], showed that the exponen-
tial decay has superimposed beats and does not hold for very
short and very long times, compared with the lifetime of the
system.

In Ref. [8] we presented a model describing the evolu-
tion of a surface excitation in a semi-infinite chain, a model
that is solved analytically and susceptible for an experimen-
tal test [9]. Here, we present a general analysis showing the
quantum nature of the deviations from the Fermi Golden Rule.
Then, we numerically solve a model consisting of an excited
add atom in a two dimensional lattice. We identify three time
regimes in the decay of the survival probability P00(t): 1) For
short times the decay is quadratic, as is expected when the
coupling of the local state with the continuum is perturba-
tive. 2) An intermediate regime characterized by an exponen-
tial behavior, the self-consistent Fermi Golden Rule (SC-FGR)
where the rate, the pre-exponential factor and the character-
istic frecuency are found self-consistently. 3) A long-time
regime in which the exponential decay of the pure survival
probability is overrun by an inverse power law, which is iden-
tified with the return probability enabled by the slow quantum
diffusion in the substrate. At this last cross-over, the oscilla-
tions could lead to a dip in P00(t) of several orders of mag-
nitude. This survival collapse is identified with a destructive
interference between the pure survival amplitude, i.e., the SC-
FGR component, and the return amplitude, associated with
high orders in a perturbation theory.

II. SURVIVAL PROBABILITY OF A SURFACE
EXCITATION

We consider the evolution of a surface excitation, prepared
in the state |0〉 in a Hamiltonian with finite spectrum as is the
case of most excitations in a lattice. The survival probability
is

P00 (t) =
∣∣〈0|exp[−iĤt/~] |0〉θ(t)

∣∣2 (1)

≡ ~2 ∣∣GR
00 (t)

∣∣2
, (2)

where

GR
00 (t) =

Z dε
2π~

GR
00(ε)exp[−iεt/~], (3)

is the retarded Green’s function for a single fermion. Expand-
ing the initial condition in the eigenstates of Ĥ yields [3, 10]

P00(t) =
∣∣∣∣θ(t)

Z ∞

−∞
dε N0 (ε)exp[−iεt/~]

∣∣∣∣
2

, (4)

where N0 (ε) is the Local Density of States (LDoS) at site 0th
which, in terms of the retarded Green´s function is N0 (ε) =
−1/π ImGR

00(ε). Hence, we can evaluate the survival prob-
ability using the Fourier transform of the LDoS, which can
be accurately calculated in the energy representation where
the integral is limited to the spectral support. Besides, a clear
identification of quantum interferences will be obtained by an-
alyzing the argument of the square modulus.

In order to evaluate the local dynamics, we perform the
integral in Eq.(4) using the residue theorem and following
the path shown in the Fig. 1. In the analytical continuation
N0(z) ≡ N0(ε + iε′), resonances appear as poles in the com-
plex plane. We will consider Hamiltonians where an initially
unperturbed state of energy ε0 =

〈
0|Ĥ|0〉

interacting with a
continuum is a well defined resonance, i.e., the expansion of
|0〉 in terms of the eigenstates has a small breath Γ0 around an
energy εr = ε0 +∆0, where ∆0 = ∆(ε = εr) is a small shift due
to the interaction. We exclude systems with localized eigen-
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FIG. 1: Local spectrum (LDoS) in the complex plane z = ε+i έ. εL
and εU are the lower and upper band-edges, respectively. The pole
appears in εr− iΓ0. The integration path is shown with dotted lines;
consist of four straight lines and two arcs, that avoid the band-edges
singularities.

states [11]. Then

P00(t) = | a e−(Γ0+iεr)t/~︸ ︷︷ ︸
SC−FGR

+
∞Z

0

[
e−(ε′+i εL)t/~N0(εL− iε′)

−e−(ε′+i εU)t/~N0(εU − iε′)
]

dε′
︸ ︷︷ ︸
return correction from quantum diffusion

|2, (5)

where

a = 2πi lim
z→εr−iΓ0

[(z− εr + iΓ0) N0(z)] , (6)

= 2πi

[
1− ∂

∂ε
∆(ε)

∣∣∣∣
εr−iΓ0

]−1

. (7)

The first term of Eq.(5) already supersedes the usual Fermi
Golden Rule approximation since it has a pre-exponential fac-
tor (|a|2 & 1) and the exact rate of decay Γ0. This result is
the self-consistent Fermi Golden Rule (SC-FGR). By analogy
with a classical Markov model, this exponential term is identi-
fied with a “pure survival” amplitude. Within the same anal-
ogy, the second term will be called “return” amplitude, as it
is fed upon the initial decay. The first term is the dominant
one for a wide range of times, while the “quantum diffusion”
described by the second, dominates for long times and brings
out the details of the spectral structure of the system. The
second term is also fundamental for the normalization at very
short times where the most excited energy states of the whole
system can be virtually explored. Both terms combine to pro-
vide the initial quadratic decay required by the perturbation
theory:

P00 (t) = 1− t2

~2

〈
(ε− εr)2〉

N0
+ · · · . (8)

Here
〈
(ε− εr)2

〉
N0

is the energy second moment of the den-
sity N0 (ε). This expansion holds for a time shorter than the
spreading time tS of the wave packet formed upon decay.

For long times, the behavior of P00 (t) is governed by the
slowly decaying second term in Eq.(5). Only small values of
ε′ contribute to the integral. This restricts the integration of
the LDoS to a range near the band-edges. Then, one can go
back to Eq.(4) and perform the Fourier transform retaining
only the van Hove singularities [16, 17] at these edges. The
relative participation of the energy states at each edge of the
LDoS is given by the relative weight of the Lorentzian tails at
these edges β = [(εr−εL)2 +Γ2

0]/[(εU −εr)2 +Γ2
0]. Then, the

survival probability for long times is

P00(t) ≈
[
1+β2−2βcos(Bt/~)

]

×
∣∣∣∣
Z

dε′e−ε′t/~N0(εL− iε′)
∣∣∣∣
2

. (9)

This means that the long time behavior is just the power law
decay of the integral multiplied by a factor containing a mod-
ulation with frequency B/~.

III. SURVIVAL COLLAPSE

In steady state transport [12] as well as in dynamical elec-
tron transfer [13] there are situations when a particle can reach
the final state following two alternative pathways. Since each
of them collects a different phase, this allows a destructive
interference blocking the final state. This phenomenon has
been dubbed antiresonance [12, 13]. It extends the Fano
resonances describing the anomalous ionization cross-section
[14]. In the present case, the survival of the local excitation
also recognizes two alternative pathways: the pure survival
amplitude, which is typically described by the Fermi Golden
Rule, and the pathways where the excitation has decayed, ex-
plored the substrate, and then returns. These two alternatives
can interfere. We rewrite Eq.(5) to emphasize that the survival
probability P00 (t) is the result of two different contributions:

P00 (t) = |ΨS +ΨR|2 , (10)

= |ΨS|2 + |ΨR|2 +2Re[Ψ∗
SΨR], (11)

where the phase in ΨR arise from the exponentials with εL and
εU (the LDoS is real for any argument). Hence,

ΨS (t) = |a|e−iφae−Γ0t/~e−i(εr−εL)t/~, (12)

ΨR (t) = |ΨR (t)|eiφ(t); (13)

φ(t) = arctan
(

βsin(Bt/~)
1−βcos(Bt/~)

)
. (14)

where Eq.(14) results using the long time limit of Eq.(9).
While the interference term in P00 (t) is present along the
whole exponential regime, it becomes important when both,
the pure survival amplitude and the return contribution, are of
the same order. This occurs at the cross-over time tR between
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FIG. 2: 2d-lattice with an add atom with site energy ε0 and hopping
V0.

the exponential regime and the power law. The interference
term can produce a survival collapse, i.e., a pronounced dip
that takes P00 (t) close to zero (see Fig. 3). In order to obtain
a full collapse, two simultaneous conditions are needed;

|ΨS (tR)|= |ΨR (tR)| and (15)
(εr− εL) tR/~−φ(tR) = (π−φa)+2πn, (16)

which are satisfied with a fair precision because the return am-
plitude has a phase with a slow variation:

|(εr− εL)/~| À Γ0/~> 2π/tR ≥ |φ(tR)|/tR, (17)

while, the pure survival term oscillates rapidly. When both
amplitudes are of the same order, the destructive interference
will be noticeable.

IV. DECAY IN A 2D-SYSTEM

The above results (Eq.(5), Eq.(9), and the survival collapse
effect) were verified and quantified in a recent publication [8],
which solves the dynamics of a surface spin excitation weakly
coupled to a semi-infinite chain of interacting spins. The in-
tegral in Eq.(4) is analytically solved for the different time
regimes (short, exponential and long time). Also, the cross-
over from the short time regime to the exponential SC-FGR tS,
and the cross-over from the SC-FGR to the power law regime
tR, were found. The survival collapse takes place at tR.

Here, we shall consider a square lattice with an add atom.
The Tight Binding Hamiltonian is

Ĥ = ∑
n
|n〉εn 〈n|−∑

n,m
|n〉Vn,m 〈m| , (18)

where each 〈r|n〉 is centered around the corresponding lat-
tice site n, εn are the site energies and Vn,m are the hop-
pings. We consider the case where the 0th site denotes the
add atom, i.e., is different from the others sites in both site
energy, ε0 6= εn ≡ 4V and hopping V0,1 ≡V0 < Vn,m ≡V . This
defines a continuous spectrum in the range [0,B ≡ 8V ]. The
Green function of this problem, and hence the LDoS, is eval-
uated using the Dyson equation

[
GR

00 (ε)
]−1 =

[
GR(0)

00 (ε)
]−1

+V0,1GR(0)
11 (ε)V1,0, (19)

following the general continued fraction procedure described
in Ref. [2]:

GR
00(ε) =

1

ε− ε0−V 2
0 GR(0)

11 (ε)
, (20)

where GR(0)
11 (ε) is the Green function for a periodic square lat-

tice (Ref. [15]).
For this system, the local second moment of the Hamil-

tonian is V 2
0 . The short time regime (Eq.(8)) holds up to a

time tS in which the quadratic decay becomes an exponential.
A good estimate of tS is obtained from the minimal distance
between the short time decay and the exponential decay. We
can use the first pole approximation (evaluating GR(0)

11 (ε = ε0)
in Eq.(20)) to obtain Γ0 ≈ πV 2

0 N(0)
1 (ε0) , which coincides with

the FGR. In the same order of approximation we can take
|a|2 ≈ 1 in Eq.(5). Then we obtain

tS ≈ ~πN(0)
1 (ε0) . (21)

This result shows that the spreading time tS is only determined
by N(0)

1 (ε0) , the local density of states at the first site of the
unperturbed substrate.
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FIG. 3: Local polarization, in a doble logarithmic scale, as a func-
tion of time. We consider an unperturbed energy of ε0/V = 2 and
interaction strength V0/V = 0.4. This is the case that we consider in
Fig. 1. The decay exhibits: The exponential behavior as described
by the self-consistent Fermi Golden Rule, and an asymptotic square
power law decay. The inset shows the oscillation that modulates this
decay. The cross-over time tR when the survival collapse takes place
is indicated.

We verify Eq.(5), Eq.(9), and the survival collapse effect,
using the analytical expression for GR

00 (ε) and N0(ε), and per-
forming the numerical Fourier transform. In Fig. 3 we show
P00(t). The curve shows the exponential SC-FGR, which then
is overrun by a 1/t2 power law decay. The cross-over time
tR is easily identified through the survival collapse shown as a
dip in P00. There, the survival probability suddenly decreases
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from its average by almost three orders of magnitude. The in-
set shows the small oscillation that modulates the power law.

It is important to note that the square power law decay ob-
tained for long times is a consequence of the θ(ε) dependence
of the LDoS (inset of Fig. 1), i.e., this power law is consistent
with Eq.(9) taken together with Eq.(20).

V. CONCLUSIONS

In the present work we have discussed the dynamics of a
local excitation that decays through a weak interaction with
a continuum spectrum with finite support. Our approach
goes beyond the usual Markovian approximation that uses the
Fermi Golden Rule to describe these environmental interac-
tions.

The evolution starts with the expected quadratic decay.
Then, it follows the usual exponential FGR regime, but with a

corrected rate and a pre-exponential factor, i.e., the SC-FGR.
Finally, we get the long time regime, that consists of a square
power law decay modulated by oscillations whose frequency
is determined by the bandwidth. This power law decay is a
consequence of the θ(ε) behavior of the LDoS in the band-
edge (Eq.(9)) and is identified with the quantum diffusion in
the substrate. Hence, anomalies in the excitation decay gives
information about the substrate dynamics.

Finally, we predict the existence of the survival collapse.
This non-Markovian result fully considers the memory effects
to infinite order. Such effect, hinted but not explained in pre-
vious works, is visualized as the destructive interference be-
tween the pure survival amplitude and the return amplitude
that arises from pathways that have already explored the rest
of the system.

[1] M. C. Desjonquères and D. Spanjaard, Springer, 2nd Ed. New
York, 271 (1996)

[2] H. M. Pastawski and E. Medina, Rev. Mex. de Fı́s. 47, 1 (2001),
cond-mat/0103219.

[3] L.A. Khalfin, Sov. Phys. JETP 6, 1053 (1958).
[4] L. Fonda and G. C. Ghirardi, and A. Rimini, Rep. Prog. Phys.

41, 588 (1978).
[5] G. Garcı́a Calderón, and J.L. Mateos and M. Moshinsky, Phys.

Rev. Lett. 74, 337 (1995).
[6] P. Facchi and S. Pascazio, Phys. A 271, 133 (1999).
[7] A. G. Kofman, G. Kurizki, and B. Sherman, J. Mod. Opt. 41,

353 (1994).
[8] E. Rufeil-Fiori and H. M. Pastawski, Chem. Phys. Lett. in press,

quant-ph/0511176 (2005).
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