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Efficiency Dynamics on Two Coupled Small-World Networks
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We investigate the effect of clusters in complex networks on efficiency dynamics by studying a simple ef-
ficiency model in two coupled small-world networks. It is shown that the critical network randomness corre-
sponding to transition from a stagnant phase to a growing one decreases to zero as the connection strength of
clusters increases. It is also shown for fixed randomness that the state of clusters transits from a stagnant phase
to a growing one as the connection strength of clusters increases. This work can be useful for understanding the
critical transition appearing in many dynamic processes on the cluster networks.
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1. INTRODUCTION

In recent years, complex networks have attracted much at-
tention in various fields [1–3]. In the studies of complex net-
works, an important issue is to investigate the effect of their
complex topological features on dynamic processes taking
place upon the networks [4–10]. The topological features,
such as degree distribution, clustering coefficient, degree-
degree correlation, and so on, are mostly concerned. Lately,
it has been determined that many real-world networks show
cluster structures [11–13]. Cluster networks are relevant to
many social and biological phenomena [14–18]. Cluster net-
works consist of a number of clusters, where nodes within
each group are densely connected, while the linkage among
the groups is sparse. Among the many outstanding problems
concerning cluster networks, the propagation of information,
such as rumor, news, or facts [19], and the propagation of
mass or energy [20] are of great interest. However, there are
few works about the influences of various degrees of cluster
structure upon dynamics [21, 22].

In the past, a simple model which describes the dynamics
of efficiencies of competing agents [23] was developed on
a small-world network and on scale-free networks with the
tunable degree exponents [24, 25]. In this model communi-
cations among agents lead to the increase of efficiencies of
underachievers, and the efficiency of each agent can increase
or decrease irrespective of other agents. The model has been
found useful in modelling the dynamics of a variety of sys-
tems, including force fluctuations in granular systems such
as bead packs, river networks, voting systems, wealth distri-
butions, size distributions of fish schools, inelastic collisions
in granular gases, the generalized Hammersley process, par-
ticle systems in one dimension, and various generalized mass
transport models [26–33].

In this paper, based on the recently addressed problem
of “cluster” in complex networks, we studied a simple effi-
ciency model in the two coupled small-world networks. The
present work can be useful for understanding the critical tran-
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sition appearing in many dynamic processes on the cluster
networks.

2. MODEL AND METHOD

2.1. Two coupled small-world networks

First, two separated small-world networks are constructed.
An one-dimensional small-world network can be established
as follows [34]: The starting point is a ring with N nodes,
in which each node is symmetrically connected with its 2K
nearest neighbors. Then, for every node each link connected
to a clockwise neighbor is rewired to a randomly chosen
node with probability x, and preserved with probability 1−x.
Self-connections and multiple connections are prohibited,
and realizations for which the small-world network becomes
disconnected are discarded. As advanced above, the param-
eter x measures the randomness of the resulting small-world
networks. Being independent of the value of network ran-
domness x, the average number of links per site < k > is
always 2K. And then, M links are randomly connected be-
tween two small-world networks. If M = 0, the two networks
are separated clusters. The system size is 2N.

2.2. Efficiency model

The evolution of the efficiencies is the one used by S.-
Y. Huang et al. [24] and Z.-G. Shao et al. [25], which may
mimic the dynamics of efficiencies of competing agents such
as airlines, travel, agencies, insurance companies and so on.
Our efficiency model on the two coupled small-world net-
works can be described as follows: Each vertex i in the net-
work represents an agent, which is characterized by a non-
negative integer number hi(t). This value stands for its effi-
cient level. The higher hi is, the more advanced (efficiently
speaking) the agent is. We assume that the interaction makes
the efficiencies of underachievers try to equal to the efficien-
cies of better performing agents. The interactions between
the agents are expressed by the networks. The calculated
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results for present model are independent of the initial con-
ditions [23–25]. For simplicity, we set the efficiency of each
agent as hi(t) = 0 in the initial conditions. Monte Carlo (MC)
simulations have been used to study the evolution of the ef-
ficiencies of N agents in the small-world network. At each
MC step, an agent i is selected at random and its efficient
level is updating according to rules [24, 25]:

(I) hi(t)→max[hi(t),h j(t)] with probability 1/(1+ p+q),
where the agent j is one of the agents which are linked to the
agent i. This move is due to the fact that each agent tries
to equal its efficiency to that of a better performing agent in
order to stay competitive.

(II) hi(t)→ hi(t)+1 with probability p/(1+ p+q). This
incorporates the fact that each agent can increase its effi-
ciency due to innovations, irrespective of other agents.

(III) hi(t)→ hi(t)−1 with probability q/(1+ p+q). This
corresponds to the fact that each agent can lose its efficiency
due to unforeseen problems such as labor strikes. Note, how-
ever, that since hi(t) ≥ 0, this move can occur only when
hi(t)≥ 1.

The evolution of efficiency continues step by step. After
each MC step the ‘time’ is increased by 1/N, so after 1 time
step on average all agents in the network have made an up-
date. Because we mainly investigate the effect of the clusters
in complex networks on efficiency dynamics, the parameters
p and q are held fixed for the two clusters, namely p = 1.5
and q = 7.5, which are used in Ref. 24.

3. RESULTS AND DISCUSSION

Extensive numerical simulations were done to investigate
the dynamics of efficiency on the two coupled small-world
networks. In the simulations, we take the size of each cluster
as N = 104. To reduce the effect of fluctuation the calculated
results are averaged over both 10 different network realiza-
tions and 10 independent runs for each network realization.

Firstly, we set M = 0 to study efficiency dynamics on a
single small-world network. As shown by S.-Y. Huang et al.
[24] for fixed p and q, there exists a critical phase transition
from a stagnant phase of efficiency to a growing phase of
efficiency at a critical xc . To characterize this transition, we
calculate the growth rate ν of the average efficiency 〈h(t)〉
per agent in the long-time limit,

v≡ d〈h(t)〉
dt

, (1)

where

〈h(t)〉= 1
N

N

∑
i=1

hi(t). (2)

This transition can be also characterized by the efficiency
fluctuation w of the system, which corresponds to the nonuni-
form degree of efficiencies in the system. The efficiency fluc-
tuation w(t) is defined as

w2(t) =
1
N

N

∑
i=1

(hi(t)−〈h(t)〉)2 . (3)

FIG. 1: (a) The asymptotic growth rate ν of the average efficiency
and (b) the asymptotic efficiency fluctuation w as functions of net-
work randomness x.

In the long-time limit, the efficiency fluctuation w(t) tends to
a constant w = 〈w(t→ ∞)〉.

Figure 1(a) shows the growth rate v of the average effi-
ciency as a function of x. It can be seen from this figure that
there exists a transition at a certain value xc. As x > xc, ν

increases rapidly with x; As x < xc, growth rate ν is equal
to zero. As x ≈ xc, growth rate ν transits from zero to a fi-
nite value, which corresponds to the transition of the system
from a stagnant phase to a growing one. Figure 1(b) shows
the asymptotic value w as a function of x. From Fig. 1(b)
we can see that fluctuation w also shows a transition behav-
ior similar to that of growth rate ν. From the Fig. 1(b), we
obtain that xc = 0.12.

FIG. 2: The critical network randomness xc as a function of M.

Secondly, we study the efficiency dynamics on the net-
works A and B, which are characterized by the same rewiring
probabilities, namely xA = xB. Figure 2 shows critical net-
work randomness xc as a function of M. As long as M in-
creases, xc decreases and we have that xc = 0 for M ≥m. For
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M = 0, and xA = xB < xc = 0.12, the states of two clusters
are both the stagnant phase. When xc decreases to a value
smaller than xA, the states of the two clusters transit from
the stagnant phases to the growing one. For M is larger than
a certain value m, the transition disappears, which indicates
that the state of the two clusters is always the growing phase
independent of network randomness x.

FIG. 3: (color online) (a) The growth rate ν of the average ef-
ficiency and (b) the asymptotic value w in the clusters A, B, and
global network as functions of M.

Finally, let us study the efficiency dynamics on the net-
works when xA = 0.2 and xB = 0.01 are fixed. When M = 0,
the state of cluster A is a growing phase, and the state of clus-
ter B is a stagnant phase. Figure 3 shows the growth rate v of
the average efficiency and the asymptotic value w in the clus-
ters A, B, and global network as functions of M, where the
global network consists of the clusters A and B. As shown
in Fig. 3 we can see that the states of two clusters are both
growing phases as M ≥ 1. From the curve of the asymptotic
values w of the global network as a function of M, we ob-
tain that the critical point is given by Mc = 1. We can still
find that only one link between two clusters can change the
state of efficiency dynamics. It is a guidance to develop eco-
nomics of two different regions. For example, cooperations
between a wealthy region and a poor region or between two
poor regions are significantly positive to the development of
economics.

In the following, we try to understand the critical behavior
by analyzing the dynamic properties of the present model.
Firstly, we write down the evolution equation for the aver-
age efficiency 〈h(t)〉 per agent. The contributions to the time
evolution of 〈h(t)〉 come from three parts: increase due to
learning from its linked agents, increase due to innovation,
and decrease due to unforeseen problems. Thus, the growth
rate ν of the average efficiency can be expressed as [23–25]

ν(t)≡ d〈h(t)〉
dt

=
rw(t)+ p−qs(t)

1+ p+q
, (4)

where r is a proportional factor concerning with the M and

FIG. 4: The distance of global network D as a function of M with
xA = xB = 0.1.

x, and s(t) is the probability that an agent has a nonzero ef-
ficiency. The first term on the right-hand side of the above
equation indicates the increase in efficiency per agent due to
the fact that each agent tries to equal its efficiency to that of a
better performing agent, which is proportional to the nonuni-
form degree w of efficiencies among agents. The second term
represents the increase in efficiency per agent due to the in-
novation of each agent. The last term quantifies the loss in
efficiency per agent due to some unforeseen problems, taking
into account the fact that the reduction can take place from
an agent only if the agent has a nonzero efficiency.

Secondly, based on the above Eqs. (4), we analyze the two
different situations. For the situation of efficiency dynamics
on the networks with the same parameters. Figure 4 shows
the distance of global network D as a function of M with
xA = xB = 0.1. D is the average shortest path length which is
a measure of the typical separation between two nodes in the
global network, namely

D =
2

N(N−1) ∑
i j

di j (5)

where di j is the optimal path length from node i to node j.
From Fig. 4 one can see that D decreases when M in-

creases. The growth rate ν increases because the first term
rw(t) increases. Therefore, the xc will decrease as the M
increases. For the situation of efficiency dynamics on the
networks with different parameters, xA = 0.2 and xB = 0.01.
Because there is a growing phase in the cluster A and one
link between the two clusters, the term rw(t) related to the
cluster B is proportional to the same term related to cluster
A. Therefore the state of the cluster B is a growing phase.

4. CONCLUSION

To investigate the effect of the clusters on efficiency dy-
namics in complex networks, we studied a simple efficiency
model in two coupled small-world networks. As the connec-
tion strength of clusters increases, the state of clusters tran-
sits from a stagnant phase to a growing one, and the critical
network randomness xc decreases to zero. We hope that the
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present work will also be useful for understanding the critical
transition appearing in many dynamic processes on complex
networks with clusters, optimizing or controlling dynamic
processes on social or biological networks.
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