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We discuss the Casimir effect for a massive bosonic field with mixed (Dirichlet-Neumann) boundary conditions.
We use theζ-function regularization prescription to obtain our physical results. Particularly, we analyse how
the Casimir energy varies with the mass of the field and compare this mass dependence with those obtained for
other boundary conditions. This is done graphically. Some other graphs involving a massive fermionic field are
also included.

1 Introduction

Although the standard (electromagnetic) Casimir effect was
proposed in 1948 by H.B.G Casimir[1], the Casimir effect in
its general form1 is a very active area of research nowadays
(for a detailed discussion of the effect and its applications
see [2, 3, 4] and references therein). This is due in part to its
interdisciplinary character, once it is of some relevance not
only in QED, but also in condensed matter physics, theories
with compactified extra dimensions, gravitation and cosmol-
ogy, mathematical physics and even in nanotechnology, on
the construction of electromechanical devices.

Though the first experiment on Casimir effect has been
performed by Sparnaay [5] in 1958 (with only a qualitative
agreement), it was just recently that new measurements with
slightly different setups were made with a high accuracy by
many authors [6].

Although the Casimir effect disappears as the mass of
the field goes to infinity, as expected (since in this limit
there are no more quantum fluctuations), the precise way the
Casimir energy varies as we change the mass is not obvious
in some cases [4, 7].

Here we shall compute the influence of the mass in the
Casimir energy of a bosonic field submitted to mixed bound-
ary conditions (BC) and compare the obtained results with
those for other BC already existent in the literature. Mixed
BC are interesting mainly because they may provide repul-
sive Casimir forces. In fact, T.H. Boyer [8] studied the
Casimir force for electromagnetic field between two par-
allel plates where one of them was a perfectly conductor
plate and the other was an infinitely permeable one. This
result can be mimicked by a massless scalar field submit-
ted to mixed BC [9, 10]. Nowadays, the study of repulsive
Casimir forces has attracted the attention of physicists, since

the existence of paramagnetic material with non-trivial per-
meability may exist [11], though there is some controversy
about it [12, 13]. Further, repulsive Casimir forces may be
of some relevance in the construction of nanodevices where
the attractive forces could lead to restrictions in these de-
vices [4, 14]. Mixed BC have also been considered in the
context of cavity QED [15-18].

This paper is organized as follows. In section 2, we cal-
culate the Casimir energy for a massive bosonic field under
mixed BC. In section 3, we compare the mass dependence
of the Casimir energy of a bosonic field obtained in section 2
with those obtained with other BC, namely, Dirichlet, peri-
odic and antiperiodic BC. This is done graphically. We also
compare (graphically) the mass dependence of the Casimir
energy of a fermionic field under distinct BC. However, in
this case, we use only three BC, namely, MIT2, periodic and
antiperiodic BC, since there is no sense to impose Dirich-
let or Neumann BC in the Dirac equation. We also make a
comparison between the Casimir energy for a bosonic field
under Dirichlet BC with a fermionic field under MIT BC. In
section 4, we calculate the Casimir pressure for the massive
scalar fields and plot some graphs. Last section is left for
the final remarks and conclusions.

2 Casimir energy for a massive scalar
field with mixed boundary condi-
tion

Since massless scalar fields under Neumann or mixed BC
may exhibt peculiar results regarding the signal of the
Casimir force between the boundaries involved, it seems
natural to investigate whether these results will persist for

1Every vacuum energy shift of any field (not necessarily the electromagnetic field) caused by the imposition of boundary conditions, dictated, for instance,
by the presence of material surfaces, or even due to the compactification of some dimensions, is also refered as Casimir effect.

2The fermionic Casimir energy was first computed by Johnson[19] in the context of the MIT-bag model for a massless Dirac field confined between
parallel planes with separationa.
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a massive scalar field. Let us then consider a massive scalar
field in ad + 1 Euclidian spacetime subjected to a Dirichlet
boundary condition atxd = 0 and a Neumann BC atxd = a:

φ(τ, x1, x2, ..., xd = 0) = 0

∂φ

∂xd
(τ, x1, x2, ..., xd = a) = 0 .

Using theζ-function regularization prescription [20], the
vacuum energy can be written as:

Ecas(a,m) = − 1
2TE

∂ ζA

∂s
|s=0 , (1)

where

ζA(s) = tr A−s =
∫

dd+1x〈x|A−s|x〉 (2)

with A = −∂2
E+m2. In Eq.(1),TE is the euclidean time and

it is implicit an analytic continuation for the whole complex
plane. Such conditions lead us to the following eigenvalues:

c

{κ2 + (n + 1/2)2(π/a)2|κ2 = k2
1 + ... + k2

d ; n ∈ IN}. (3)

With these eigenvalues, we have:

ζA(s) =
TELd−1

(2π)d

∞∑
n=0

∫
dk1...dkd

{
κ2 +

(
n +

1
2

)2
π2

a2
+ m2

}−s

=
TELd−1

2d−1πd/2Γ(d/2)

∞∑
n=0

∫ ∞

0

dκ κ2( d−1
2 )

{
κ2 +

(
n +

1
2

)2
π2

a2
+ m2

}−s

, (4)

whereLd−1 is the area of the hiperplane and we used that
∮

dΩd = 2πd/2

Γ(d/2) .

Using the following integral representation of the Euler beta functionB(x, y) = Γ(x)Γ(y)
Γ(x+y)

∫ ∞

0

dx (x2)
α−1

2 (x2 + A2)β−1 =
1
2
(A2)

α
2 +β−1B(α/2, 1− β − α/2) (5)

we get

ζA(s) =
TELd−1

2d−1πd/2

Γ(s− d/2)
Γ(s)

∑

n=odd

1
2

{
n2π2

4a2
+ m2

} d
2−s

. (6)

Introducing the Epstein function, defined as

EM2

1 (z, a) =
∞∑

n=1

1
(an2 + M2)z

, (7)

equation (6) can be cast into the form:

ζA(s) =
TELd−1Γ(s− d/2)

4d−sπ2s−d/2Γ(s)ad−2s

[
E

(2ma/π)2

1 (s− d/2; 1)− 4d/2−sE
(2ma/π)2/4
1 (s− d/2; 1)

]
. (8)

The last expression is not well defined for<(s) > 1/2, so one can say it is useless for our purposes, since we need it ats = 0.
However, as it is well known in the literature [21], this function is suscetible to an analytic continuation into a meromorphic
function in the whole complex plane, namely:

EM2

1 (z, a) =
1

2M2z
+

(π

a

)1/2 1
2M2z−1Γ(z)

×

×
[
Γ

(
z − 1

2

)
+ 4

∞∑
n=1

a(1−2z)/4

(πMn)(1/2)−z
K(1/2)−z

(
2πMn

a1/2

)]
, (9)

whereKν(z) is the modified Bessel function of second type. We express then the generalized zeta function by the following
equation

ζA(s) =
TELd−1

2
3d
2 − 3

2−sπ
d+1
2

m
d+1
2 −s

a
d−1
2 +s

1
Γ(z)

∞∑
n=1

ns− d
2− 1

2

[
Ks−( d+1

2 )(4mna)− 1

2s+ 1−d
2

Ks−( d+1
2 )(2mna)

]
. (10)
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Computing thes derivative ats = 0 and using Eq.(1), we obtain our main result:

Ecas(a,m) = − Ld−1

2
3d−1

2 π
d+1
2

m
d+1
2

a
d−1
2

∞∑
n=1

1

n
d+1
2

[
K− d+1

2
(4mna)− 2

d−1
2 K− d+1

2
(2mna)

]
. (11)

If d = 3, for instance, one can easily obtain the limits for the last expression whenma << 1 or ma >> 1, respectively:

Ecas(a,m) ≈ 7
8

L2π2

1440
1
a3
− 1

192
L2

a
m2 (ma << 1) (12)

and

Ecas(a, m) ≈ L2

16

( m

πa

)3/2

e−2ma (ma >> 1). (13)

d

In eq.(13), we see that the Casimir energy for two paral-
lel plates vanishes exponentially as the mass goes to infinity
(for spherical geometries it vanishes as a negative power of
the mass [4]). On the other hand, for a small mass, we have
the well known result for the corresponding massless case
(first term of r.h.s. stands for− 7

8 times the standard result
of the Casimir energy for a massless scalar field subjected
to Dirichlet BC) [8, 10] plus a small (negative) correction in
m2.

3 The influence of the mass in the
Casimir effect: Graphical results

In this section we shall compare the result (11) obtained in
the previous section with those already existent in the lit-
erature obtained with other boundary conditions, namely,
Dirichlet (D), periodic (P) and antiperiodic (A) ones. In
order to make such a comparison, it is convenient to write
down explicitly the respective expressions for the Casimir
energies for these cases:

c

ED
cas(a,m) = − 2Ld−1

(4π)(d+1)/2

m(d+1)/2

a(d−1)/2

∞∑
n=1

n−(d+1)/2K−(d+1)/2(2mna); (14)

EP
cas(a,m) = − Ld−1

2(d−1)/2π(d+1)/2

m(d+1)/2

a(d−1)/2

∞∑
n=1

n−(d+1)/2K−(d+1)/2(mna); (15)

EA
cas(a,m) = − Ld−1

2d−1π(d+1)/2

m(d+1)/2

a(d−1)/2

∞∑
n=1

n−(d+1)/2
[
K−(d+1)/2(2mna)−

− 2(d−1)/2K−(d+1)/2(mna)
]
. (16)

c
The first important thing to be noticed is the simple relation
that arises between the Casimir energies under mixed BC
and Dirichlet one:

EM
cas(a, m) = ED

cas(2a,m)− ED
cas(a,m). (17)

For the zero mass limit ind spatial dimensions the previous
equation leads to

EM
cas(a, 0) = ED

cas(2a, 0)− ED
cas(a, 0)

=
(

1
2d
− 1

)
ED

cas(a, 0) , (18)

where we used the fact that, form = 0, the Casimir ener-
gies for such setups are proportional to1/`d, with ` being

the distance between the planes. This gives the well known
−7/8 factor for the particular case whered = 3 already
mentioned.

Also, it is straightforward to verify that the antiperiodic-
periodic comparison mimics this behaviour. In other words,
we may also write

EA
cas(a,m) = EP

cas(2a,m)− EP
cas(a,m). (19)

These “duality” relations between the Casimir energies
under different BC, given by equations (17) and (19), can
be formally established by a simple heuristic argument. Let
us consider, for instance, the Dirichlet-mixed case. Casimir
energy for the mixed BC can be written as
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EM
cas(a,m) = N

∫
dk1 · · · dkd

∞∑
n=0

√
(2n + 1)2

( π

2a

)2

+ κ2 + m2

= N

∫
dk1 · · · dkd

∞∑

n=odd

√
n2

( π

2a

)2

+ κ2 + m2, (20)

whereN is a constant andκ = k1 · · · kd. Now, let us use the simple trick of adding and subtracting the sum over evenn
(n = 2n′), that is

EM
cas(a,m) = N

∫
dk1 · · · dkd

∞∑
n=1

√
n2

( π

2a

)2

+ κ2 + m2 −

− N

∫
dk1 · · · dkd

∞∑

n′=1

√
(2n′)2

( π

2a

)2

+ κ2 + m2

= ED
cas(2a,m)− ED

cas(a, m), (21)

d

where we identify the first term of the r.h.s. of (21) as the
Casimir energy for a massive scalar field under Dirichlet BC
with distance2a between the planes and the second term as
the same Casimir energy with distancea.

Considering now the normalized energy, which is de-
fined as

Ẽ(m, a) =
Ecas(m, a)
Ecas(0, a)

(22)

one can easily show that

ẼA(2ma) = ẼP (ma) (23)

ẼM (2ma) = ẼD(ma). (24)

Note that the normalized energies depend on the mass and
the distance only through the productma. Using Eqs.(11)-
(16) and (22), we plot our first graph for the normalized en-
ergies withd = 3 (see Fig. 1). As already mentioned, note
that in all graphs the energy vanishes as the mass goes to
infinity.

For a massive fermionic field ind = 3, we may plot the
following graph:

In the fermionic case, the Casimir energies for periodic
and antiperiodic boundary conditions are equal to a quarter
of the bosonic Casimir energy with the same BC ind = 3.
The Casimir energy with MIT boundary condition for a
massive fermionic field was first computed by Mamaev and
Trunov [22] (see also Ref.[3]), but can be cast into the form
[23]:

EMIT
cas (a) = −Ld−1α(d)µ(d−2)/2

2d+1πd/2Γ(d/2)ad

∞∑

k=1

(−1)k+1

kd/2+2

Γ
(

d

2
+ k

)
d

dλ

[
λ−d/2W−k, d−1

2
(4µkλ)

]∣∣∣
λ=1

, (25)
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Figure 1. The vertical axis represents the normalized Casimir en-
ergy for a massive field. In the graph, we have the following BC
(from top to bottom): antiperiodic, periodic, mixed and Dirichlet
respectively.
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Figure 2. Massive fermionic field with three BC (from top to bot-
tom): antiperiodic, periodic and MIT.

whereµ := ma, Wν,µ(z) is the Whittaker function [24] and
α(d) is a dimensionless factor that counts the number of dif-
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ferent spin states and is given by2(d−1)/2, for d odd, and by
2(d−2)/2 if d is even.

Once the Dirichlet and MIT boundary conditions are the
most natural ones for the bosonic and fermionic fields re-
spectively, we also compare graphically the Casimir energy
for these two cases (see Fig. 3). It is worth emphasizing that
the fermionic Casimir energy with MIT boundary condition
goes to zero faster, as the mass of the field increases, than
the Casimir energy for a massive bosonic field with Dirich-
let boundary condition.

4 The Casimir pressure of massive
scalar fields

One interesting feature of the Casimir effect is that even-
though it is a genuine quantum effect, it predicts macro-
scopic effects, as an attractive force between two uncharged
parallel perfectly conducting plates [1]. One can obtain the
force per unit area (Casimir pressure) through the relation

F(m, a) = −∂E(m, a)
∂a

, (26)

0
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0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
ma

Figure 3. From top to bottom we have the Casimir energies for a
massive bosonic field subjected to Dirichlet BC and for a massive
fermionic field submitted to MIT BC, respectively.

whereE(m, a) = Ecas(m, a)/Ld−1. Using Eq.(26), we are
able to extract the Casimir pressure for scalar fields when
subjected to mixed boundary conditions, which is (for the
cased = 3)

c

FM (m, a) = − m2

16a2π2

[ ∞∑
n=1

3
n2

K2(4man) +
∞∑

n=1

4ma

n
K1(4man)

]
+

+
m2

8a2π2

[ ∞∑
n=1

3
n2

K2(2man) +
∞∑

n=1

2ma

n
K1(2man)

]
.

(27)

The explicit formulas for the other boundary conditions are

FD(m, a) = − m2

8a2π2

[ ∞∑
n=1

3
n2

K2(2man) +
∞∑

n=1

2ma

n
K1(2man)

]
, (28)

FP (m, a) = − m2

2a2π2

[ ∞∑
n=1

3
n2

K2(man) +
∞∑

n=1

ma

n
K1(man)

]
(29)

and

FA(m, a) = − m2

4a2π2

[ ∞∑
n=1

3
n2

K2(2man) +
∞∑

n=1

2ma

n
K1(2man)

]
+

+
m2

2a2π2

[ ∞∑
n=1

3
n2

K2(man) +
∞∑

n=1

ma

n
K1(man)

]
. (30)

c
We may show now the comparative plot between the dif-

ferent pressures (their modules, actually)
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Figure 4. In this graphic: we plot the modules of pressures with
antiperiodic BC (line) and periodic BC (point).
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Figure 5. In this graphic we plot the modules of pressures with
mixed BC (line) and Dirichlet BC (point).

which is not very different from the previous plot, compar-
ing normalized energies. Using Eqs.(27)-(30), one can ob-
tain analogous relations to (17) and (19) (see also Eq.(26))

FM (m, a) = 2FD(m, 2a)−FD(m, a) (31)

and
FA(m, a) = 2FP (m, 2a)−FP (m, a). (32)

5 Conclusions and final remarks

In this work we computed the Casimir energy and the
Casimir pressure for a massive scalar field submitted to
mixed boundary conditions. Our physical results were ob-
tained with the aid of the generalizedζ-function regulariza-
tion prescription, but other methods could be used as well.
The limits of small and large mass were taken and are in
agreement with expected results. In fact, the zero mass limit
coincides precisely with the results found in literature [8, 10]
and the first correction in the mass has opposite sign com-
pared with the zero mass case. This means that the first cor-
rection weakens the Casimir energy.

For finite mass, we compared our result with those ob-
tained from the literature for other boundary conditions and
showed that the behaviour of the Casimir energy with mixed
BC is analogous to the others (the Casimir energy is a mono-
tonically decrescent function ofma).

As can be observed in Fig. 1, the relation between the
Dirichlet BC and mixed BC is completely analogous to that
between the periodic and antiperiodic BC. This can be easily
understood from Eqs. (17) and (19).

We have also presented a graph involving a massive
fermionic field under different BC which shows that the
Casimir energy with MIT BC diminishes much more rapidly
than the Casimir energy with periodic or antiperiodic BC. It
is worth emphasizing that, when compared with the Casimir
energy for a massive scalar field under Dirichlet BC, the
fermionic Casimir energy with MIT BC also is much smaller
for a given value ofma.

Though the influence of the mass in the Casimir energies
for the cases discussed here were of considerable simplicity,
this will not be the case for more involved situations, with
other geometries and non trivial topologies, but that will be
left for future works.
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