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Fractal Propagators in QED and QCD and Implications for the Problem of Confinement
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We show that QED radiative corrections change the propagator of a charged Dirac particle so that it acquires a
fractional anomalous exponent connected with the fine structure constant. The result is a nonlocal object which
represents a particle with a roughened trajectory whose fractal dimension can be calculated. This represents a
significant shift from the traditional Wigner notions of asymptotic states with sharp well-defined masses. Non-
abelian long-range fields are more difficult to handle, but we are able to calculate the effects due to Newtonian
gravitational corrections. We suggest a new approach to confinement in QCD based on a particle trajectory
acquiring a fractal dimension which goes to zero in the infrared as a consequence of self-interaction, representing
a particle which, in the infrared limit, cannot propagate.
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I. INTRODUCTION

In [1], a gauge-invariant calculation was presented showing
that the propagator for a charged particle acquires an interest-
ing fractal structure from its self-interaction in quantum elec-
trodynamics. In simple terms, the usual Dirac propagator S(k)
is replaced by the nonlocal expression

S(k) = (κ− k/)D(k),

D(k) =
( κ

iΛ

)α/π




Γ
(
1+(α/π)

)
[
k2 +κ2− i0+

](1+(α/π)
)


 , (1)

where ~κ = mc, Λ is a short distance length scale, the frac-
tional exponent γ is a function of the coupling strength α =
(e2/~c) which we find to be α/π and the usual Gamma func-
tion is

Γ(z) =
∫ ∞

0
e−ssz ds

s
with ℜe(z) > 0. (2)

This represents a rather radical departure from the usual
textbook discussions of particle propagators (with the notable
exception of [2]) and from the usual Wigner classification of
elementary particles in terms of a sharp mass and spin (see, for
example, [3]). This is despite the fact that it is well-known that
particles coupled to long-range massless fields cannot have
sharp masses[4–6]. A good review of the basic issues can be
found in [7].

Aside from having been neglected in textbooks, the actual
exponent in the above expression has been the subject of some
controversy. There are calculations in the literature based on
either infinite sums of logarithmic Feynman diagrams[15] or
non-perturbative Schwinger[8, 9, 11] computations which ar-
gue that such an electron propagator should be of the form we
obtained:

S(k) =
( κ

iΛ

)γ
Γ(1+ γ)

{
κ− k/

[
k2 +κ2− i0+

](1+γ)

}
, (3)

.

In the literature there has not been full agreement about
what constitutes the correct function γ(α), nor has there been
a consensus as to whether or not it can be set to zero by a
suitable choice of gauge.

Appelquist and Carazzone[12] argued that γ = −(α/π) +
. . . to leading order, in conflict with earlier work based on
summing logarithms[15]. Reference [12] does not actually
derive the exponent, rather citing the earlier work, so there is
a possibility that a typographical error may be involved.

The fourth volume of the Landau and Lifschitz course of
theoretical physics[10] starts off in agreement with γ 6= 0 but
ultimately sets γ = 0 by giving a small mass to the photon.
Such a photon mass explicitly breaks both gauge invariance
and conformal/scale invariance and must be rejected on phys-
ical grounds. Intuitively, what goes wrong is that the fractal
structure of the propagator for a charged particle must be due
to the fact that ever increasing wavelengths one can produce
more and more soft photons without limit. A photon mass
implies a maximum photon wavelength and a loss of scale in-
variance.

There have been other approaches in the literature, often
tackling only the case of charged scalar fields, or again ar-
guing that the anomalous dimension can somehow be set to
zero. For example, a path integral[11] approach using the
Schwinger[8] proper time representation of the propagator
and some work by Bloch and Nordsieck[16] on soft photon
emission gives the same sort of result as ours, but with the
final answer given only for charged scalar fields. These re-
sults are argued to be gauge invariant in such a way that the
singularity structure can be returned to a simple pole by a
choice of gauge. As argued above, this is unphysical as there
is a real meaning to a fractional exponent and the failure of
charged particles to have sharp masses. Fried also discusses
this problem[17] as do Johnson and Zumino[18], and Stefa-
nis and collaborators[19]. Batalin, Fradkin and Schvartsman
have made a similar gauge dependent calculation for scalar
particles[20].

In addition, there are possible experimental consequences
of the radical change in the nature of the singularity in the
propagator. Handel has argued[21] that the change from a
pole into a branch point has measurable physical implications
for “1/ω” noise in the Schrödinger (non-relativistic) limit.
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The result is clearly not analytic in α and requires a non-
perturbative approach. Such non-analyticity in α for an all-
orders or non-perturbative calculation could be anticipated on
physical grounds from the arguments of Dyson against the
convergence of perturbative expansions in QED[13].

Given the apparent confusion in the literature, we present a
simple derivation which preserves gauge invariance through-
out. With this in hand, we then discuss the physical inter-
pretation of the result, extend it to include Newtonian grav-
ity,discuss the fractal dimension one can associate with paths
involved, and finally introduce a new way to think about con-
finement in these terms.

II. DERIVATION OF THE DRESSED ELECTRON
PROPAGATOR

For completeness, we rederive the expression for the
dressed electron propagator presented in [1].

For an electron in an external electromagnetic field, Fµν =
∂µAν−∂νAµ, the Dirac propagator

(−id/ +κ)G(x,y;A) = δ(x− y) ,

dµ = ∂µ− i
(

eAµ

~c

)
, (4)

may be solved employing the function ∆(x,y;A);

∆(x,y;A) =
∫

γ5G(x,z;A)γ5G(z,y;A)d4z ,

G(x,y;A) = (id/ +κ)∆(x,y;A) ,(
d/ 2 +κ2)∆(x,y;A) = δ(x− y) ,

d/ 2 =−dµdµ− e
2~c

σµνFµν . (5)

The Hamiltonian of the electron can be written

Htot = H +Hspin ,

H =
1

2m

{(
p− e

c
A
)2

+m2c2
}

,

Hspin =−
(

e~
4mc

)
σµνFµν (6)

and with pµ = −i~∂µ, one may define the amplitude for the
electron to go from y to x in a proper time τ as the matrix
element

G(x,y,τ;A) = 〈x|e−iHtot τ/~ |y〉 . (7)

From Eqs.(5), (6) and (7) follows the electron propagator ex-
pression

∆(x,y;A) =
i~
2m

∫ ∞

0
G(x,y,τ;A)dτ,

~G(x,y;A) =
(

mc− p/+
e
c

/A(x)
)

∆(x,y;A) . (8)

One also has a Lagrangian

L(v,x;A) =
1
2

m
(
vµvµ− c2)+

e
c

vµAµ(x),

d
dτ

(
∂L
∂vµ

)
=

(
∂L
∂xµ

)
; (9)

As we are interested here in the infrared limit, spin-flips
are suppressed and we can neglect the corresponding term in
the Hamiltonian. This corresponds to usual Bloch-Nordsieck
replacement of cγµ by four velocity vµ – one simply thinks
of the Dirac spinor having only one nonvanishing component
representing an electron of given spin state and allows no cou-
pling to the other spin state (and, of course, no coupling to
positrons).

With this approximation, Eq. (7) which gives the propaga-
tion amplitude for an electron can be written in the Lagrangian
path integral formulation

G(x,y,τ;A)≈
∫ X(τ)=x

X(0)=y
eiS [X ;A]/~∏

σ
dX(σ),

S [X ;A] =
∫ τ

0
L(Ẋ(σ),X(σ);A)dσ. (10)

This expression deserves some comments. The paths X(σ)
which are integrated over represent virtual histories for the
electron. The proper time τ for each path in the sum is not
given by the classical expression c2τ2 6=−(x−y)2, so in inte-
grating over paths one is integrating here over all proper times.

For each one of these paths, with its own proper time, the
interaction between the electron and an elecromagnetic vector
potential Aµ is described by the action

Sint(P;A) =
∫ τ

0
Lint(Ẋ(σ),X(σ);A)dσ,

Sint(P;A) =
e
c

∫ τ

0
Aµ(X(σ))Ẋµ(σ)dσ,

Sint(P;A) =
e
c

∫

P
Aµ(X)dXµ, (11)

where the integral is along the worldline P.
For the case of no external field, we want the action due to

self-interaction (interaction with vacuum fluctuations), so one
wants to apply the rule

eiSint(P;A)/~→ 〈0|eiSint(P;Â)/~ |0〉+ ,

eiSint(P;A)/~→ eiSsel f (P)/~,

Ssel f (P) =
~α
2

∫

P

∫

P
Dµν(x1− x2)dxµ

1dxν
2. (12)

In the above Eq.(12), the subscript “+” denotes time order-
ing, Âµ(x) denotes the operator vector potential field and the
photon propagator is given by

Dµν(x1− x2) =
i
~c
〈0| Âµ(x1)Âν(x2) |0〉+ . (13)

The action form in Eq.(12) is of a well known form[22]. As
noted earlier, we have bypassed the usual Bloch-Nordsieck
replacement of cγµ by four velocity vµ by simply evaluating a
phase in the soft photon infrared limit that we are considering
here.
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The propagator may be written

Dµν(x− y) =
(

ηµν− (1−ξ)
∂µ∂ν

∂2

)
D(x− y),

D(x− y) =
∫ 4π

k2− i0+ eik·(x−y) d4k
(2π)4 ,

D(x− y) =
i
π

{
1

(x− y)2 + i0+

}
. (14)

where the parameter ξ fixes a gauge.
Because the worldline of the electron never begins nor ends

the partial derivative terms in Eq.(14) do not contribute to
the self action in Eq.(12). This requirement that the world-
line have no endpoints is required by charge conservation (or,
equivalently, by gauge invariance).

Independent of any choice of the gauge parameter ξ then,
we have

Ssel f (P) =
~α
2

∫

P

∫

P
D(x1− x2)dx1µdx µ

2 . (15)

In the absence of any external field (other than that due to
vacuum fluctuations) we have now derived expressions for the
renormalized vacuum electron propagator

G̃(x− y) =
∫

S(k)eik·(x−y) d4k
(2π)4 ,

G̃(x− y) = 〈0|G(x,y; Â) |0〉+ ,

G̃(x− y) = (i∂/ +κ) ∆̃(x− y) ,

∆̃(x− y) =
i~
2m

∫ ∞

0
G̃(x− y,τ)dτ. (16)

The functional integral expression for G̃(x− y,τ) is given by

G̃(x− y,τ) =
∫ X(τ)=x

X(0)=y
eiS̃ [X ;A]/~∏

σ
dX(σ),

S̃ [X ] =
∫ τ

0
L0(Ẋ(σ))dσ+Ssel f [X ], (17)

wherein the free electron Lagrangian is

L0(Ẋ) =
1
2

m0(ẊµẊµ− c2), (18)

and the self action is given by Eqs.(14) and (15) as

Ssel f [X ] =
i~α
2π

∫ τ

0

∫ τ

0

Ẋµ(σ1)Ẋµ(σ2)dσ1dσ2

(X(σ1)−X(σ2))2 + i0+ . (19)

The divergent piece of the self action

ℜeSsel f [X ] =
∆m
2

∫ τ

0
(Ẋµ(σ)Ẋµ(σ)− c2)dσ,

|∆m|= ∞. (20)

The formally infinite self-mass can be absorbed into a rede-
finition of the finite physical mass 0 < m = (m0 + ∆m) < ∞.

Thus, Eq.(17) is renormalized to

G̃(x− y,τ) =
∫ X(τ)=x

X(0)=y
eiS̃ [X ;A]/~∏

σ
dX(σ),

S̃ [X ] =
∫ τ

0
Lm(Ẋ(σ))dσ+ iW [X ]

Lm(Ẋ) =
1
2

m(ẊµẊµ− c2)

W [X ;τ] = ℑmSsel f [X ],

W [X ;τ] =
~α
2π

∫ τ

0

∫ τ

0

Ẋµ(σ1)Ẋµ(σ2)dσ1dσ2

(X(σ1)−X(σ2))2 . (21)

For a straight-line path Xµ(σ) = V µσ with V µVµ = −c2, one
finds

W (τ) =
~α
2π

∫ τ

0

∫ τ

0

dσ1dσ2

(σ1−σ2)2 . (22)

This expression as it stands is infinite and requires regulariza-
tion. Using differential regularization[23] we have

d2W (τ)
dτ2 =

~α
πτ2 . (23)

The solution to the differential equation Eq.(23) with a loga-
rithmic cut-off Λ is

W (τ) =−
(
~α
π

)
ln

( cτ
2Λ

)
. (24)

From Eqs.(21) and (24), one finds

G̃(x− y,τ)≈ e−W (τ)/~G̃m(x− y,τ) (25)

wherein G̃m(x− y,τ) is the proper time Green’s function for
a particle of mass m with the corresponding free Lagrangian
Lm(Ẋ). To exponentially lowest order in α, one then has

G̃m(x− y,τ) =
∫ {

e−i~(k2+κ2)τ/2meik·(x−y)
} d4k

(2π)4 ,

G̃(x− y,τ) =
( cτ

2Λ

)α/π
G̃m(x− y,τ). (26)

Eqs.(16) and (26) then imply

∆̃(x− y) =
∫

D(k)eik·(x−y) d4k
(2π)4 ,

G̃(x− y) =
∫

S(k)eik·(x−y) d4k
(2π)4 . (27)

and we obtain Eq. (1).
We chose differential regularization as simple and conve-

nient, and preserving gauge invariance, but other regulariza-
tions can also be used as long as they are also gauge invariant.
We plan to return to this issue in a later publication in more
detail. In a sense, the form of the answer is intuitively clear
since, on dimensional grounds, the expression to be regular-
ized can only be logarithmic. The sign, as we shall see below,
has a physically sensible interpretation, and is in agreement
with reference [2] and with reference [12] if one assumes that
there was a typographical error going from reference [15].
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III. A PHYSICAL INTERPRETATION

It is interesting to consider what the physical interpreta-
tion of the non-integer exponent in the radiatively corrected
Dirac propagator means. First of all, the fact that the exponent
is non-integer means that the renormalized Dirac operator is
non-local[24]. This was, of course, to be expected since the
electromagnetic field has infinite range.

Non-locality has been previously introduced ad-hoc[25, 26]
as a regularization tool. Here it appears naturally, suggesting
that some form of regularization of otherwise formally diver-
gent expressions may be implicit in at least some quantum
field theories with massless fields, but appearing only when
one goes beyond perturbation theory. We will also see later
that there is evidence that the corrections to the exponent can
be changed when other fields are added, and need not always
be of the same sign as in pure QED. The appearance of this
sort of non-locality also makes the analytic but rarely used
regularization proposed by Speer[27] more physically moti-
vated.

So far we have only been able to treat the long-wavelength
approximation since we expect a quenched approximation in
which we can ignore electron loops to be a reasonable one.
The physical picture would be one where, as one backs away
from the worldine of an electron, one continues to see photons
radiated and absorbed, but now of longer and longer wave-
length. This would suggest a fractal[28] structure, which is
made precise by the above derivation. Such notions of scaling
and fractality are not new in QED and in quantum field theory
in general, but are often considered in the high energy, ultravi-
olet limit[29, 30]. This continues without limit at longer and
longer distance scales since there is no minimum energy pho-
ton (photons are massless) and this self-similarity reflects the
scale invariance of Maxwell’s equations.

If the photon is given a mass, however small, this structure
will break down asymptotically, since now there is a minimum
energy required to create a virtual photon, and at distances
greater than the corresponding Compton wavelength one will
get the non-interacting Dirac propagator. This was done by
Lifshitz et al.[10], and this argument makes clear how break-
ing gauge invariance, i.e. including a photon mass, removes
the anomalous scaling behavior here derived for gauge invari-
ant QED.

The fact that a particle is non-localizable, at least in part
due to its electromagnetic field which extends over all space,
is interesting. The feeling of this calculation is such that
at least part of what one thinks of as quantum-mechanical
about an otherwise point-particle (its lack of localizability)
may arise from the non-perturbative quantum mechanics of
its self-interaction[31].

At shorter distance scales one might again expect an anom-
alous dimension, but now the calculations are more compli-
cated since one must imagine more and more electron (and
other charged particle) loops contributing, with an ever “froth-
ier” structure at smaller and smaller distance scales. In fact,
one would not even expect a constant exponent which is inde-
pendent of momentum since one expects a running α with val-
ues which change with momentum scale. In the infrared limit

one simply goes to α(q2 = 0) which is the Thompson value
and there are no additional complications. In the ultraviolet
limit, one expects a continuously changing exponent and thus
a multifractal as opposed to fractal structure. In addition, the
lack of asymptotic freedom leads one to expect trouble at very
short distance scales unless, as noted above, other fields enter
significantly.

IV. NEWTONIAN QUANTUM GRAVITY

For quantum gravity one can do the analysis in much the
same way as for quantum electrodynamics. The ultraviolet
divergences need not worry us since we are dealing with a
strictly infrared problem. There should be graviton-graviton
interactions, but if we neglect these as small compared to
graviton-electron interactions we can just repeat what was
done for electrostatics but now with the Newtonian limit of
gravity.

This approximation would not be as reasonable in the QCD
case for a quark propagator since gluon-gluon couplings are
comparable to gluon-quark couplings, but there is evidence
from other calculations of the appearance of anomalous di-
mensions for infrared propagators. (For a review see [32].
Very recent calculations can also be found in references [33].)

Perhaps the simplest way to think of this is to look at Eq.
(15) and regard the (singular) double integral as the limit of
two paths which must be taken as approaching each other arbi-
trarily closely. This is an alternative to the differential regular-
ization we used in Eq.(23) and physically corresponds to two
electron worldlines interacting via the exchange of an arbitary
number of photons between them and at all points of their
paths. In the limit of the paths coinciding, this becomes self-
interaction, with the electron continuously exchanging pho-
tons with itself along its worldline.

For gravity (at least in the Newtonian limit) we want to re-
place the repulsive electrostatic self-interaction, say +(e2/r),
with the attractive gravitational self-interaction, say −Gm2/r,
suggesting an asymptotic form of the Dirac propagator expo-
nent

γ≈ 1
π~c

(e2−Gm2)+ . . . . (28)

If m = |e/√G|, which is the ADM[34, 35] mass of charged
shell of charge e, regularized by its own gravity, then one
recovers an effectively free propagator. Since one generally
makes measurements using the electromagnetic interaction,
and the suggestion that quantum mechanics might be linked
to self-interaction[31], it is interesting to consider what this
might imply for the role of gravity in the quantum measure-
ment problem[36]. In particular, since one has a connection
between mass and charge which is non-perturbative in New-
ton’s G, and implies a mass near the Planck mass ∼ 10−5 gm,
which may be thought to be in the neighborhood of a putative
classical-quantum boundary.

Intuitively, electromagnetic interactions roughen the path
of an electron, making it “spread out more”, which is natural
since the electromagnetic force between two identical charges
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(or an electron and itself) is repulsive. Gravitational inter-
actions, on the other hand, make it “spread out less”, since
the gravitational force between two identical objects (here an
electron and itself) is attractive.

V. FRACTAL PATHS

The notion of a path somehow “spreading out” can be made
precise with the notion of fractal dimensions.

The fractal nature of particle paths has been discussed in the
literature (see, for example [37, 38]). Abbott and Wise[39],
working within nonrelativistic quantum mechanics, found 2
as the dimension of a quantum mechanical path, as opposed
to 1 for a classical path. Cannata and Ferrari[40] extended this
work for spin-1/2 particles and find different results not only
in the classical and quantum mechanical limits, but also in the
non-relativistic and relativistic limits.

Intuitively one can understand the dimension 2 result for
the nonrelativistic quantum mechanical case by thinking of
the Schrödinger equation as a diffusion equation in imaginary
time[41]. For diffusion one has the distance r a particle covers
in time t satisfying a relationship of the form t ∝ rd wherein
d is the fractal dimension of the “path”. For example, t ∝ r2

in the diffusion limit, and t ∝ r in the ballistic (simple path)
limit[42].

Here we have a closely analogous situation but with a
4-dimensional Hamiltonian H and with fractal diffusion in
proper time, and as was showed in [1], one has

d = 2(1+ γ)≈ 2+
2α
π

+ . . . , (29)

All previous discussions of fractal propagators in quantum
field theory and quantum mechanics have, to the best of our
knowledge, ignored the effects of self-interaction via long-
range fields.

The fact that self-interaction can qualitatively change the
nature of a propagating particle even when coupled to a weak
(small coupling constant) Abelian gauge field naturally leads
one to wonder whether or not coupling to a strong (large cou-
pling constant) non-Abelian gauge field might have significant
physical effects. We turn now to a discussion of possible im-
plications of this sort of phenomenon for an understanding of
confinement in QCD.

VI. QCD

In this section we consider how propagators with anom-
alous dimensions could shed light on the confinement mech-
anism in QCD. Precise and rigorous calculations are beyond
the scope of this paper, but we do indicate approaches to such
calculations and what one would expect qualitatively.

Quantum chromodynamics is an incredibly difficult theory
in which to say anything precise. The fundamental degrees
of freedom carry strong (colour) charges, interact via highly

nonlinear interactions, and (by hypothesis), are not even ob-
servable asymptotically.

Perturbative treatments make QCD look very much like
QED, and involve propagators which look pretty much like
those of QED with the main difference being in the nonabelian
nature of the gauge fields and their associated self-couplings.
The question which we now raise is whether or not one can
imagine a situation whereby anomalous exponents in the in-
frared will give rise to such strong qualitative changes in how
propagators behave that the originally postulated degrees of
freedom will simply not propagate (at least at low energies) –
that is, that some form of confinement appears.

What could confinement mean in terms of an anomalous
dimension? If in Eq. 29 we had a γ which drove d to zero, one
would have a zero-dimensional path, which is no path at all!
This would correspond to a confined particle.

Let us see how far we can argue that such a phenomenon
would occur. One could start from Eq.(15) with an appropri-
ate form of D(x1− x2) for QCD valid for any separation. Un-
fortunately, we do not have an exact expression for D(x1−x2)
in the infrared limit and in fact every expectation is that (even
aside from colour indices) it is very different from the QED
one – presumably having a confining term, roughly linear in
separation. Of course this would be assuming confinement.

A simpler approach is to imagine that d = 2(1 + γ) where
γ ∝ αs and γ < 0. If the strong coupling constant αs is large
enough then one could get d → 0. Let us follow this line of
argument more closely. The first thing to check is that the
energy of self-interaction of a quark with itself is indeed of
the same sign as that due to gravity (and opposite to that due
to electromagnetism). While the interaction energy between
a quark and an antiquark in the singlet state separated by a
distance r is given perturbatively by 4

3
αs(r)

r , the correspond-
ing quark-quark expression in the triplet is − 2

3
αs(r)

r . In other
words, it is of the correct sign to lead to confinement.

Now let us revisit Eq.(15) and regard the (singular) double
integral as the limit of two paths which must be taken as ap-
proaching each other arbitrarily closely as we did in section
IV. We are now looking at two paths of a red, say, quark,
exchanging an arbitrary number of gluons. If we now argue
as we did for gravity, we have d = 2(1− 2

3
αs(r)

π ). It is well-
known[43, 44] (and can be shown on very general grounds
from dispersion relations) that αs must increase without bound
as r goes to infinity (or squared momentum transfer q2 goes to
zero). Happily here one only needs αs to reach a value mak-
ing d = 0. At the corresponding value of q2 the dimension of
a quark path goes to zero and the quark is confined. Lower
values q2 (and negative dimensions) make no sense since the
integrals in Eq. (15) now have no paths any more as soon as
d hits zero. Note that this approach to thinking about confine-
ment does not require any singular (i.e. infinite) values of q2

(or length) but should happen at some well-defined value of
q2 (or length) presumably related to the confinement scale.

A rigorous calculation along these lines would be difficult,
but a few points can be made in defense of this overall picture.
First of all, why would one imagine in the regularized view of
Eq. (15) that one was always looking at a red quark interacting
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with another red quark? Surely each emitted gluon changes
the colour of the particle and complicates matters. This is in-
deed true, but if one has defined the quark as being red (in
some gauge) then, even with various colours of gluons be-
ing continuously emitted, one expects that it would remain on
average red. Any tendency to be green or blue would be a vi-
olation of SU(3) symmetry since it would indicate a preferred
direction in colour space other than “red” (The effective value
of the colour charge would be expected to be scale-dependent,
but this is exactly what a running coupling constant is meant to
describe.) This sort of argument could be the basis for a more
rigourous mean field theory approach. Second αs is usually
studied as a function of q2, but its form is not even known at
long distance scales and thus a rather difficult (!) function to
work out in coordinate space to use in Eq.(15). The point we
want to make here is that it is very generally known that α in-
creases in the infrared limit, and this alone is enough to argue
for confinement. Even without an explicitly known confining
form for D(x−y), all one needs to know is that α continues to
rise. At some point it will rise to a value high enough to drive
d to zero. Beyond that, the quark is non-propagating (our ver-
sion of “confined”) and there is no need to evalute paths in
Eq.(15) since the quark has none! The expected results from
asymptotic freedom are, of course, reproduced, since as αs
goes to zero the propagator goes over to its free form (aside
from whatever corrections remain due to charge and mass as
discussed earlier – particles coupled to long-range fields never
really get free!).

A similar argument would be expected to hold for any
coloured objects, including gluons and hypothetical objects
in other representations of SU(3) colour.

The physical picture is an interesting one and rather differ-
ent from the assumption that quarks are bound due to strong
attractive forces to other quarks which increase linearly with
separation in some approximation. Here, below some energy
scale (that at which the dimension d goes to zero), coloured
objects interact so much with their own glue that they get
“stuck” in the sense that their would-be paths are reduced to

dimension zero. At higher energy scales they partially escape,
with a dimension which rises as the effective coupling strength
drops until they become, to a good approximation, free. It
is interesting to note that the view of confinement suggested
here applies to any coloured object with no need for it to have
neighbours present to “bind” to it and ensure that a colour sin-
glet state propagates – here interaction of a single coloured
object with its own colour field is enough to confine it.

VII. CONCLUSIONS

We have reviewed the simple and intuitive path integral de-
scription of how the propagator for a charged Dirac particle
is modified by soft self-energy radiative corrections as shown
in reference [1]. The result is a self-similar (fractal) object
with the non-locality one would expect for a particle carrying
an infinite range field. Arguments are made for a similar, but
qualitatively different, effect due to attractive self-interactions
such as gravity and a calculation made for Newtonian gravity.
The results are linked to the fractal dimensions of the paths
that particles take in quantum field theory, and the effects of
repulsive (QED) and attractive (gravity) self-interactions are
discussed. Finally an attempt is made to estimate what effects
would be expected in QCD, with a link made to confinement
at a finite energy scale in terms of a fractal dimension which
goes to zero.
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