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Tiling in the Geometric Model for Water
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Hydrogen bonded liquids like water present a rich thermodynamic behaviour due to the strength and direction-
ality of the bonds. In a recent paper a geometric model based on Bernal’s model for liquids was proposed to
study the effects of the hydrogen bonds on the phase transitions of water, under pressure and temperature vari-
ations. Water molecules were assumed to stay at the vertices of coordindtiea 4, 5, 6) of perfectly tiled
polygons, and to have four links which allow up to four hydrogen bonds per particle. Mean field calculations
yielded a phase diagram with three phases of different densities and a critical point at the end of the coexistence
line between the high and low density phases. The three phases were considered to be liquids of different den-
sities. In the present work we have shown that applying some geometric constraints to particle arrangements
(thus correcting the system entropy, which was overestimated in the previous work), and allowing a variable
number of links per molecule, leads to substantial alteration of the phase diagram. Three phases of different
densities are still present, but no critical point appears. Two of the phases are solid, and one phase is amorphous.

1 Introduction Used as a solvent, square water presents hydrophobic hydra
tion [8], albeit insufficient to explain water solubility prop-
Water and other hydrogen bonded liquids are known to erties.
exhibit many anomalous properties [1-10], which seem to Density fluctuations seem to be an essential ingredi-
arise from the strength and directionality of hydrogen bonds ent. The geometric model for water, proposed by two of
(HB), and ensuing low density. The HB network, which per- us [9], allows for changes in the local environment of the
colates in liquid water, is thought to be responsible, among molecules. It is based on the geometric description of lig-
other things, for the increase of the isothermal compressibil-uids given by Bernal [13], and developed on the plane by
ity and constant pressure specific heat upon cooling, and forCollins[17] a few decades ago. In two dimensions, the wa-
the isothermal compressibility minimum 44°C. ter molecules are disposed at the vertices of squares anc
In the context of molecular dynamics simulations, sev- triangles of equal sides, perfectly tiling the plane. Such
eral microscopic models have been studied in an attempttiling yields coordination numbers for sites (vertex) given
to describe the peculiar properties of the associated liquidby » = 4, 5 or 6. Four open links are allowed for each
[1, 4, 5, 6]. These models focus attention mainly on the molecule, so that it can form up to four hydrogen bonds
charge distribution on the rigid molecule and the parameterswith its r neighbors. A mean-field treatment of the model,
of the electrostatic and Lennard-Jones potential are adjustec@dapted from a previous study[17] for the inclusion of HBs,
to fit experimental data. Definition of hydrogen bonds de- yielded coexistence of three phases of different densities,
pends on still controversial energetic and angular criteria, and a critical point at the end of a high-low densities co-
and are also parameter dependent. existence line. The three phases present no regularity, anc
A different approach is that of simplified models. In therefore were interpreted as liquid phases.
this case one hopes to include microscopic properties able To obtain the above results, a tiling constraint on entropy
to reproduce qualitatively the main features of liquid wa- was left aside. It was assumed that the entropic term in the
ter behaviour, independently of adjustable parameters. Ondree energy has two contributions: one coming from the dis-
example is the square water model, which incorporates thetribution of four bonds amongneighbors, and another one,
directional character of the HB[10, 8, 11]. Square water coming from the number of geometric arrangements of the
is exactly solvable af’ = 0 and gives an excellent es- sites. Particles were treated as independent, therefore the
timation of the residual entropy of the ice [12]. The HB geometric constraint of perfect tiling was not taken into ac-
number is a decreasing function of temperature, but thecount in the calculation of the degeneracy of the spatial ar-
model does not present an order-disorder transition drivenrangements.
by temperature[10, 8, 11]. Under an external electric field, In the present work, we have modified the treatment of
the system displays a structural phase transition[10] at T=0.the geometric model for water imposing a geometric con-
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straint to the neighborhood of each site, in order to have aconservation give

perfect tiling of squares and triangles at least at the nearest-

neighboring sites. We have also allowed for a variable num-

ber of links (2. = 2, 3, 4), in order to represent possible N, =N
misalignment under temperature variations. The geomet- r=4.5,6

ric constraint on entropy was first calculated by Kawamura

[14], for a purely hard core semi-infinite system and a solid-

liquid transition was suggested. Similar corrections to en-

tropy were found by Do et al. [15] and Yi et al. [16], in the

treatment of the geometric model with a Lennard-Jones po- Z Nyv. =V, (5)
tential, for which they also proposed a melting line. We will r=4,5,6

show that the geometric correction for the water model pro-

duces a substantial change of the phase diagram: two of the

phases of different densities are crystalline and no critical
point is present.

This article is organized as follows: in Sec. 2 we review
the geometric model for water and introduce a variable num-
ber of bonds per molecule. In Sec. 3 we perform a mean
field calculation of the Gibbs free energy of the model, in
which the constraint of tiling is introduced in the calculation
of entropy. Finally, in Sec. 4, we present our discussions
and conclusions.

; (4)

whereV is the total volume andV is the total number of
particles.

2 The model

In 1960, Bernal proposed a geometric model for liquids, in
which the fluid particles were placed at the vertices of reg-
ular or quasi-regular polyhedra. The choice of these ran-
domly distributed three-dimensional objects was motivated
by the presence of local ordering, together with the absence
of long range order in the liquid phase. Collins [17] con-
sidered a two-dimensional version of Bernal’'s model that
consists of a perfect tiling of triangles and squares of equal

sides. He found a discontinuous phase change for a SpeCi‘F’\l—'igure 1. Typical configuration of the geometrical model for lig-

energy condition, from a mean-field calculation, \_Nh_iCh he uids (or a random square-triangle tiling) with intermediate density.
suggested to be analogous to a change of association num-

ber from one liquid phase to another. The noninteracting
version of the model was employed later in the study of
guasi-crystals [18, 19, 20], observed in alloy systems such
as V-Ni and V-Ni-Si, in an attempt to explain their mecha- Hydrogen bonds will be defined as follows. Each
nism of formation. molecule is connected to itsneighbors by lines. It may

In Fig. 1, we show a typical configuration of the system haven. = 2, 3 or 4 open links with itsr neighbors. These
in an amorphous phase. The ordered (crystalline) phases arlinks may or may not be available due to, for example, orien-
the square and triangular lattices, where the plane is com-ational restraints and, if available, are distributed randomly
pletely filled by triangles or squares. The possible local over ther lines. An HB will be present if two neighboring
structures around each site are shown in fig. 2. The sitesmolecules point one of their links towards each other. In this
can have three different coordination numbefs = 4, 5 way, the maximum number of hydrogen bonds for a given

and6), whose specific volumes. are molecule isn.. In Fig. 2, (S1) and (S2) represent pairs of
molecules at sites of the type A and B, with coordination

vy = 0%, (1) numbersr = 4 ands = 5, respectively. In the case of

vs = b*(2+ V/3) /4, 2) (S1), the A molecule has,. = 4 links (represented by the

full lines), and the B molecule, hag. = 2. Only in (S2),
where two links are in the line joining A and B, do we have
a hydrogen bond between the two molecules.

Vg = b2\/§/2 5 (3)

whereb is the intermolecular distance (polygon side), which
is kept fixed § = 1 in this work). Each lattice site is occu- Only hydrogen-bond energies shall be considered, since
pied by a molecule, and we defidé. as being the number van der Waals interactions are one order of magnitude
of molecules with- neighbors. Volume and particle number smaller than the hydrogen bond ones.

I There are two possible geometries for the molecule with coordination numbes but in the previous work [9], it was considered just one.
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particle, which is independent of site-coordination. A natu-

o o o o o . o . ral choice for the potential energy between two sites is then
% TN L e e e ¢rs = —ePup (hereg = 1).

¢49 699 o« e . e 5 The energy per particle is written as

o o 0o o o o ' *
A B C D e{N;} = ZOrs¢r.s ) (7)

where C,.¢ is the number of(rs) nearest pairs, given by
Crs = [rNpps(r)+sNspr(s)(1 =9, 5)]. The functionp,(r)

- is the probability of a pair of neighboring sites with coordi-
o . H nation numbers ands, which is given by
N,
st 2 Pa(r) = 7o - ®)
Figure 2. The four possible configurations of the vertices: (A) ver- tot
tex with coordination number = 4, (B) and (C) vertices with where
r = 5 but different geometries, and (D) vertex with= 6. (S1)
and (S2) represent two neighboring molecules and their links (full
lines). In (S1) the upper molecule has four links, while the lower Niot(4) = Ny + Nsg + Nsc 9)
one has only two. There is not an HB between them. In (S2) there Niot(5) =N, (10)
is one HB since two links are aligned. Nuot(6) = Nsg + Nac + N . (11)

Here, N5z and N5 are the number of vertices of the type

; ; B and C, respectively (fig. 2).Ny.:(r) is the number of
3 Mean field calculations neighbors tor particles, and the first neighbor geometric
In this section, we consider a mean field approximation in consrt][)alnt,_ V\f[h'lfh pr(tecludes 4t and 6-particles from being
order to find the Gibbs free energy of the present geomet-ne'?\l orsista e;n m_to ?r::cou? j fth i A
ric model. The first step is to obtain the total energy of the . N"W;VG mL(st vtvrl_te g. etn_got)ydo € Sys er_?‘ tsr?um-
system, which results solely from HBs. Following the defi- "9 ¥ Indépendent sites distribute amofy, } sites, the

nition of the previous section (see Fig. 2), we may write, for number of spatial arrangements is simply

the probability of an HB between two molecules (assuming NI
they are independent) whose sites have coordination num- Q= NAN- I N- N (12)
bersr ands , 4 Yo BHNSC NG
Pup = Mele Mo 7 (6) The last expression overestimates the number of possible
rs rs states of the system, since tiling constraints were not taken

wheren! (n?) is the number of open links of a molecule with  into account. To correct the number of states given by eq.
coordination number (s), andn is the fraction of links per 12, we consider the factor[14, 16]

]

F(N4, N5, Nsc, Ng) = (nsp + nsc)Vent2Nse (13)

2N4+N5B/2( )N4+(NSB+N5C)/2

(na +nsp) n4 +nsp + nsc

N5 N, 243N,
(n5B+n5C+n6) B+Nsc /2+3Ng

)

wheren, = N,/N. The correcting factof’ guarantees comparison with the known entropy of the athermal ver-
a perfect arrangement of polygons at least for the nearestsion of the square-triangle tiling model, given the area frac-
neighboring sites. For a further explanation concerning this tion occupied by each component. The exact partition func-
factor, see references 14 and 16. In this way, the number oftion for the latter was obtained using the Bethe ansatz and,
states due to this geometric constraint becomes for the case of equal area fractions, the entropy per vertex
[19, 21, 22] is

Q¢(N4, N5, Nsc, Ng) = QoF (N4, Nsg, Nsc, Ne)

(14) Sex = In(223%) — 2v/31In(2 + v/3) ~ 0.120 .
The newly calculated geometrically constrained number

of spatial arrangements is significantly improved with re- Maximization of(2, and(2, (egs. 12 and 14) for this special
spect to the non-constrained case. This can be seen frontase of area fractions yields, respectively,~ 1.38 and
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sq =~ 0.55, with s = £21n (), indicating a significant im- 6
provement of the estimated entropy by taking into account 1
the constraint factof'. 5]
We must yet compute the entropic contribution due to 1
the distribution of the molecular links. Let us defihg,, as 4
the number of sites with,. links. Note that\/,,, satisfies the | __tp
relationsMs+ Ms+ M4 = N and2Ms+3Ms+4M, = N, o
whereN. = Nn.. For a given set of values d¥/,,_, the 37
number of arrangements of sites havinglinks is 1 .
27
NI | ID
Qyg=——"-—. (15) 1-
Mo M3!My! | o
The number of states for a given site witmeighbors 0 o o2 o4 \ o6 os 1
andn,. links is the number of combinations of over n,. ’ ' T ' '

and, therefore, the total number of states accessible to the
system is Figure 3. Phase diagraff versusT of the geometric model for

a variable number of links (continuous line) and for a fixed hum-
ber,n. = 4 (dashed line). The LD (low density), ID (intermediate
rl Nrone density) and HD (high density) regions represent phases rich in
Q= Q0 H m ) (16) r = 4, 5 and6 sites, respectivelytp is the triple point.

TN

whereN,. .. is the number of sites havingneighbors and
n. links, which in this mean field approximation we take as 14 T&%.H.ﬂ
Nyn, = N.M,_/N. The entropy per particle is given by W

s= ’j{? In 2 and the partition function of the model is given

by:

c~ 0.5
2Py = Y exp [w(ewvm) L

{Ni, M;} NG

where P is the pressure = (kgT)~ !, T is the tem-
perature, and the prime in the summation indicates the
constraints ., N; = N and > ,M; = N. Writing — T T

C({Ns, M;}) = e—Ts+ Puv, we can identify the Gibbs free 0 02 04 _ 06 0B 1
energy per particle ag(T', P) = ((T, P,{N;, M;}, . ),
where {N;, Mj} _is the set of values ofV; and M Figure 4. Fractiom, of r-coordinated sites as a function of tem-

which minimizes(. Solutions were sought for in the ranges Peraturel’ at P = 0 for a variable number of linksn, (circles),

0< N;/N<1,0<M;/N <1and2 < 7, < 4 through ns = nsp + nsc (Crosses) andg (triangles). Note that the frac-
the simulated annga“n&:%] a_lgorithm - o tionsn, are discontinuous at the transition temperat@res 0.18

andT ~ 0.76, for a variable number of links.

In Fig. 4 we have plotted the fractions, of r-
. coordinated sites, as a function of temperatur® at 0. It
4 Results and conclusions may be observed that the fractiomschange abruptly at the
transition temperatures. At low temperatures, the energetic
In Fig. 3 we exhibit the phase diagram of the model in the term dominates, and we have a low density (LD) phase with
plane P versusT for both fixed (four) and variable number ny = 1. As the temperature increases, the entropic term
of links. As can be seen in the figure, the diagram presentshecomes important and we have two transitions to higher
three phases of different densities, a triple point (tp), and nodensity phases (ID and HD phases). Note that the HD phase
critical point. Note that allowing for a variable number of hasng = 1. In Fig. 5, we show the fractions, as a func-
links (continuous lines in Fig. 3) stabilizes the intermedi- tion of pressure &’ = 0. At low pressures, the LD phase
ate density phase at higher temperatures, in relation to thehasn, = 1. Increasing the pressure, fét > 4.6 the LD
case in that the number of links is fixed, which may be at- phase also presents sites with coordination numbets5
tributed to the additional source of disorder that comes from andr = 6, indicating the appearance of defects in this crys-
the variable number of links. talline phase. Around® ~ 5 a transition to the HD phase is
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accomplished. We have a competition betweentheéerm, in our earlier model [9], are remarkable. The differences
which favours the HD phase, and the enesggontribution, in the thermodynamic behaviour of the two systems arise
which favours the LD phase. The behaviour of thedensi- mainly from the geometric constraint imposed on entropy,
ties at temperatures and pressure away from the axes can bence variations on the number of links do not change the
read from the table 1. phase diagram qualitatively (see Fig. 3). Three points de-

serve our attention: i) The strongly reduced role of spatial
tentropy (see egs. 12 and 14), associated with a restriction
in the number of possible geometric arrangements, prevents
the system from going continuously from the LD phase to
HD phase; ii) The negative slope of the coexistence lines
U indicates, in accordance with Le Chatelier’s principle, that
0 entropy increases while volume decreases, on transitions
0.065 to higher temperature. The energetic term favours the LD
1 phase ¢, is a minimum forr = s = 4), while the to-
0 tal entropy (geometric entropy plus entropy from the links)
0.065 favours the phases of higher densities, leading to a compe-
1 tition between energy and entropy, at constant pressure. In
our earlier work [9] we have shown that the unconstrained
geometrical entropy favours the low density phase, while the
link entropy favours the phases of higher density. These
facts arise as interpretations of the phase diagram, which
presents a coexistence line of positive inclination for the
first case, of pure spatial disorder, and negative slope in case
link disorder is included. In this work, spatial disorder is re-
1 duced, and link entropy is increased (through the introduc-
N tion of variable link numbers). As a result, coexistence lines
are all of negative slope. iii)The reduced role of spatial dis-
order is also apparent in the fact that the LD and HD phases
1 are crystalline, for the variable link case. In these phases en-
0.6 tropy increase with temperature is due solely to the link dis-
" order, while the system remains quasi-crystalline. In the pre-
vious model the absence of the geometrical constraint allows
smooth variation on eachcoordinated site fraction, imply-
1 ing in the presence of more heterogeneous phases, with nc
024 predominant,.

Table 1: Fractiom,. of r-coordinated sites for different val-
ues of pressure and temperature for a variable number o
links.

P T Ty nsp
0| 0.08 1 0
0.3 | 0.012| 0.531
0.8 0 0
2| 0.08 1 0
0.2 | 0.015]| 0.532
0.8 0 0
4 | 0.025
0.2
0.8
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. Figures 6 and 7 exhibit the fractions of hydrogen bonds
0 and links per molecule as a function of temperature and pres-
44 46 48 5 52 54 56 sure, respectively, aP = 0 andT = 0. As expected, in

P both figures, the fraction of hydrogen bonds, which is pro-
portional to energy, is a decreasing function of temperature,
and presents discontinuities at the transition temperatures
In the region of constant pressure (Fig. 6) the fraction of
links also decreases with temperature, except at the ID-HD
phase transition, at which it shows an evident increase. This
behavior can be seen from the fact that total entropy must

From the two figures and data in the table 1 it can be seen!lcrease with temperature: while the '._'D phase has a low
spatial entropys = 1 as can be seen in Fig. 4) the num-

that the HD phase is the ordered triangular lattice, whereas ) : .
the LD phase is the square lattice, except near the phas%er of Imks contnbutes_to raise the entr_opy (eq. 16). .For
boundary, where defects appear. These two phases may be — 0 (Fig. 7) the fraction of links remains constant, with
associated with crystalline solid phases. The ID phase hag'c 4, and the number 9f hydrogen bonds is maximum (4
no long range order and can be described as amorphous. n the_L!D phase and 8/3 In the HD phase), corresponding to
Let us compare our results with those of the previ- the minimum energy configurations.

ous work[9], in which entropy of spatial arrangement of In conclusion, we have improved a previous geometric
molecules was not geometrically constrained TAE 0 the model for water, including a variable number of links, and
effects of entropy (of the spatial arrangements of moleculesa first order correction to the geometric entropy, with the
and of links) are absent and both phase diagrams coincidepurpose of achieving a good tiling of the polygons. The
presenting a LD-HD transition @& ~ 5. However, away  phase diagram presents three phases of different densities
from this axis, the absence of a liquid-liquid phase transi- two crystalline (LD and HD) and one amorphous phase (ID).
tion line and a corresponding critical point, features presentNo critical point or liquid-liquid phase transition is present.

Figure 5. Fractiom,. of r-coordinated sites as a function of pres-
sure P atT = 0 for a variable number of links.n4 (circles),
ns = nsp + nsc (crosses) anesg (triangles). Fractions,. are
discontinuous at the transition pressiite~ 5 for a variable num-
ber of links.
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