1804 Brazilian Journal of Physics, vol. 34, no. 4B, December, 2004

On the MHD Boundary of Kelvin-Helmholtz Stability
Diagram at Large Wavelengths

F. T. Gratton, G. Gnavt, C. J. Farrugi3 and L. Bender
!Instituto de Fsica del Plasma, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires y Consejo Nacional de InvestigacionedfiCiant Ecnicas,
Ciudad Universitaria, 1428 Buenos Aires, Argentina
2 Space Science Center, University of New Hampshire, Durham, NH, 03824, USA

Received on 08 February, 2004; revised version received on 14 May, 2004

Working within the domain of inviscid incompressible MHD theory, we found that a tangential discontinuity
(TD) separating two uniform regions of different density, velocity and magnetic field may be Kelvin-Helmholtz
(KH) stable and yet a study of a transition between the same constant regions given by a continuous velocity
profile shows the presence of the instability with significant growth rates. Since the cause of the instability
stems from the velocity gradient, and since a TD may be considered as the ultimate limit of such gradient, the
statement comes as a surprise. In fact, a long wavelenytmoundary for the KH instability does not exist in
ordinary liquids being instead a consequence of the presence of magnetic shear, a possibility that has passed
unnoticed in the literature. It is shown that KH modes of a magnetic field configuration with constant direction

do not have the long boundary. A theoretical explanation of this feature and examples of the violation of the

TD stability condition are given using a model that can be solved in closed form. Stability diagrams#id the (

M 4) plane are given (wherkd = 27d/\, 2d is the velocity gradient length scale, and, is the Alfvénic

Mach number) that show both the well-known limit at smedland the boundary for large but finits noted

here. Consequences of this issue are relevant for stability studies of the dayside magnetopause as the stability
condition for a TD should be used with care in data analysis work.

1 Introduction (also called th¢hin mode). The tangential discontinuity is a
simple planar interface across which the unperturbed fields,

The importance of the Kelvin-Helmholtz (KH) instability velocity V;, magnetic strengthB,, and densitypo, suffer

of parallel flows in laboratory, geophysical, or astrophysical sudden changes. According to incompressible MHD theory,

systems, recognized many years ago, has generated a hugeTD is Kelvin-Helmholtz stable when the following relation
literature. An internet search covering only the year 2003 js satisfied:

yielded over 280 entries. Theoretical works on the KH ins-
tability are numerous. For overviews, among many others _/0,100,2 Vit — Vio)? <
see Chandrasekhar [1], Drazin and Reid [2], Belmont and po,1 +po2
Chanteur [3], Huerre and Rossi [4], Farrugia, Gratton and o » ] ]
Torbert [5], and the references quoted in these surveys. Here the indices 1 and 2 refer to quantities on ¢ e|ther side of
Working within the domain of inviscid incompressible ~ the interface, and’;, B, are the projections oF, and B,
MHD theory, we find that a tangential discontinuity between on the direction of the wave vectch“ respectively. The cri-
two uniform regions of different density, velocity and mag-  terion depends on the direction @f but not on its absolute
netic field may be Kelvin-Helmholtz stable, and yet a smo- value, k = ‘ A ‘ and hence it is valid for all wavelengths,
oth transition (modeled with continuous profiles) between
the same constant regions shows the existence of unstable = 27 /k associated to modes with a fixddorientation.
modes (with equal orientation of thi -vector) with signi- The assumption that the stability of a parallel flow is en-
ficant growth rates. Since the cause of the instability stemssured by the stability criterium of the associated TD does
from the velocity gradient, and since a tangential disconti- not hold in general for MHD. In a magnetohydrodynamic
nuity (TD) may be considered as the ultimate limit of such flow, and for a fixed orientation of thé -vector, besides the
gradient, the statement may be surprising at first sight. well-known short wavelength stability boundaky (such
The assumption that a TD is the worst case from the that modes withh < ), are stable) there are configurati-
point of view of stability may lead to the erroneous infe- ons in which also a long wavelength limi§ exists (such
rence that to decide on the stability of a particular parallel that all modes witth > \; are KH stable). In other words,
flow it is sufficient to examine the criterion of the related TD the unstable\ interval may be finiteh, < A < );, instead
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of semi-infinite,A; < A\ < oo, as it is widely assumed. tangent) profiles, that a MHD flow with a uniformly oriented
The long wavelengthX) stability boundary is a conse- magnetic field does not have the loAgtability boundary.
guence of the presence of magnetic shear in MHD flows, a  Among the possible applications of this feature of the
possibility that seems to have been passed unnoticed in th&KH instability perhaps one of the most important is found
literature. Indeed, a long boundary for the KH instability ~ in space physics, related to the data analysis of spacecraft
does not exist in ordinary non conducting fluids, where there crossings of the terrestrial magnetopause A study of the KH
is no process equivalent to the magnetic field stabilization. instability of configurations that become stable at lakge
The surface tension operates only at the interface of two li- due to the presence of magnetic shear, relevant to magne-
quids, and it is not similar to the action of a magnetic field, tospheric physics has been published elsewhere Gratton et
the latter being an effect operating in the whole volume of al. [6]. Here we present a different set of theoretical results
the flow. of general nature, not aimed at a particular application.
In this paper we give examples and a theoretical explana-
tion of the violation of the stability condition 1 at moderate . .
As, using a model that can be solved in closed forminwhich 2~ The basic equation of the MHD
the fields have idealized profiles. We present stability dia- AL ; H AL
grams in the kd, A7) plane wherekd — 2rd /A, 24 — A Kelvin He!mholtz instability for in
is the scale length of the velocity gradient, ahfl, is the compressible flows
Alfv énic Mach number) which shows both the well-known
limit at small As and the new boundary for large, but finite Our study of the Kelvin-Helmholtz instability is based on
A values. We also show, by solving numerically the stability the perturbative linear equation derived from the set of ideal
problem of a similar model built with smooth (hyperbolic MHD equations (see, e.g., reference [1])

N
p% = —grad(p) + —Tot(f?)) X §, dw(ﬁ) =0,

d (B B d

s <p> = ? ~g7’ad(7), d—f = —pdiv(?). 2

Given a set of Cartesian axgs;, y, z), such that the main  and is obtained under the conditidiv(v') = 0 that corres-

stream is lying On(_lfvz) planes, all equilibrium fields ., 4q 19 the incompressible approximation. Giventhe
Vo, By, po are stratified across the flow and dependyon  characteristic boundary value problem for equation 5 deter-

only, mines both the complex frequencyand the mode eigen-
T = (Vouly) + v, 0!, Vouly) + vl) function ¢(y). The imaginary part ob, v = S(w), gives
. N vy e = the growth rate of the instability (whep > 0) and the real
B = (Buo(y) + By, vy, Bo:(y) + Bl), part,R(w), gives the frequency of oscillation of the wave.
p = poly)+pt. (3) The function® = H (y; ?,w) in eq.5 is defined by
The y component of the amplitude of a Lagrangian displa- H = po()[(c — Viu())? — V2. ()], (6)

cement of an infinitesimal plasma element is denoted by

¢ = {(z,y.2t). The displacemen{ is related to they  wherec is the (complex) phase velocity
component of the perturbative velocity by = d(/dt. The

dependence of the modes is assumed to be of the form c=. (7)
Z: C(y) exp(—iwt + ik x + ik, z2). 4) _ ) ) )
) _)( ) In eq.6, as already mentioned in the introductipy, =
The real wavevectork = (k,,0,k.) lies on the(x, 2) po(y) represents the equilibrium density across the flow,
- . N A
plan_e, the coordlnath is |r21 the direction transversal to.the K;v(y) = Vo - & is the projection of the equilibﬂum velocity
motion, andk = \/k2 + k2, the absolute value ok , defi- Vo = Vo (y) on the wavevector directior’ = & /k, while

nes the wavelength of the mode.

A derivation of the equation that governs the mode am-
plitude((y) (omitted here for brevity) can be found, for ins-
tance, in Farrugia et al. [7]. The equation is

d d¢ 9 _
a (H dy) —k*H ¢ =0, (5) Vi)

B, = Bu(y) = ES - K is the projection of the equilibrium
magnetic field. Finally, we have introduced the projection
of the Alfvén velocity onr , V.., defined by

Bi(y)

~ dmpoly)” ®)
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The reader must note that equation 5 is valid for modes
with all As, but with a fixedx". A change of the wavevector IC]> = R()? + 3(¢)? (13)
direction leads to a different set of field projectiof%{y),

B, (y) and so to a different eq. 5. Thus, a complete stability
analysis of a given parallel flow, requires not only a study
of all A\s modes, but also an examination of all the orientati-
ons of & on the(z, z) plane. In the following we ordinarily
consider only fixeds modes, and therefore the analysis is
restricted to a particular direction of the wavevector.

The theory based on eq.5 is restricted to incompressi- 9
ble perturbations. It can be shown (e.g., Contin et al. [8], M(y) = po(y) UdC 1g2 ICIQ] . (14)
Gratton et al. [9]) that the relative change of density due to dy
plasma advectiondp/po)., for KH modes, is much larger
than the variation due to compressibilityp /o)., when the

and the square of the absolute value of the derivativé of
play an important role in the determination of the spectrum
properties of the characteristic values- ¢, + ic;. In fact,

to discuss the spectral properties of the KH instability we
may introduce a quantity analogous to a density distribution,
which we may call thenode weightdefined by

In this conceptual analogy/ (y) is associated not only to the

) — equilibrium density, (y) but depends also on the amplitude
velocity U = ’VO‘ Is much smaller than the local speed of an the localization of the perturbative mode via the bracket
sound,C,. In fact, it turns out that one can estimate the ratio containing\§|2 and|d§/dy|2. The mode weight is reminis-
of density changes caused by the two mentioned processegent of techniques used in the Rayleigh-Ritz method for the

as ) study of the Sturm-Liouville spectral theory, although the
@p/po)e (U (99  Characteristic value dealt here is not an eigenvalue problem
(6p/p0)a Cs of the latter family, and therefore some powerful classic pro-

perties do not hold.
Starting from equation 5, multiplying by* and integra-
ting overy, we find after integration by parts the following

Thus, compressibility is a minor correction in the perturba-
tive analysis of subsonic flows when

U\ 2 condition
(2 <1 00 2
* ¢ 212
o . H||—=| +k dy = 0. 15
We may note that iny intervals wheré is constant there / U dy ICF) dy (%)

are two simple exponential solutiorsp (+ky) of eq.5.

These solutions represent the KH perturbation on both sidesie have assumed that— 0 asy — +oo, which is cer-

of a layer that separates two regions of constant field with tainly the case for configurations with two asymptotic re-
different values. When the wavelengtbecomes much lar-  gions with constant fields, separated by a velocity gradient
ger than the thicknesA of the interface, the field profiles region where all the fields change. In mathematical terms,
po, Bk, or V., can be approximated by step functions with the formula 15 is of the class of “energy integrals”.

a discontinuity (TD) at the position = yo where the tran- Separating the real and the imaginary part of equation
sition occurs. Thus, wheh > A, the KH modes do not 15, it is easy to show that the real and imaginary part of
contain any information on the structure of the transition, the phase velocity; = ¢, + ic;, for the unstable spectrum
and are forced to be piecewise exponential functions, sym-c¢; = S(c¢) > 0, are given by the expressions indicated in the
metric with respect tg,. Qualitatively speaking, the long- following. The real part of the phase velocity is equal to the
modes have lost functional “plasticity” compared with solu- speed of a fictitious center of mass

tions corresponding té «~ A.

From eq.5 one can see that the matching conditions at . J Vi(y)M(y)dy ¢ 40 (16)
Yy =yoare " [My)dy * 77
[¢] =0, {H dC] =0, (11) computed with the mode weight. Clearly, the weight dis-
dy tribution decides which value of thE,(y) profile is being
where the bracket is a shorthand fofQ] = emphasized by a physically admissible perturbation, and be-
lime o [Q(yo +€) — Q(yo — €)]. This is the basis of the comes the phase velocity of the growing wave. The impor-
TD model, which leads to the dispersion relation tance of equation 16 is that it shows that the phase velocity is
restricted to the rang®g.,,, < ¢, < Vi, WhereVi,,, Vi
Hi+Ha =0, (12)  are the minimum and maximum values gf(y), respecti-

h he suff d2indi h | ¢t the phvsi Ively, and thus the excited wave is resonant with some plasma
where the suffixes 1 and 2 indicate the values of the physical|,yer of the velocity gradient region. We must stress that this
guantities on either side of the discontinuity. holds only when; 0

i .

The growth rate of the instability, instead, is given by
the difference of two positive terms. The first, the driving
3 Th_e unstable SpeCtra and the mode term of the instability, is the quadratic spread of the velocity
Welght ana|Ogy projection V,;(y) with respect to the center of mass velo-
city. The second term represents the stabilizing influence of
The square of the absolute value of the Lagrangian displa-magnetic tensions, and is equal to the quadratic mean of the
cement projected Alfien velocity
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02 _ f(vﬁ(y) - cr)zM(y)dy _ IVAK(y)ZM(y)dy

t [ M(y)dy [M(y)dy

The formula reminds at a distance a similar Rayleigh quoti- of V,,(y) with respect to the mean value, but is reduced by

ci > 0. 17)

ent of the mathematical literature of spectral problems. the average of/;_. The first term inc? relies on the pre-
It is convenient, starting from the mode weigHt(y), to sence of a region of velocity gradient b (y) (i.e., vorti-
define also a normalized mode distribution city, rot(V)) because it is zero whe¥, is a constant. On

the other hand, the stabilizing term is due to the magnetic

fly) = My (18) tensions that arise from the perturbati¢ty), which modi-
J M(y)dy fies the curvature of the magnetic lines that are straight in
satisfying equilibrium.
To favor the excitation of the instability, a perturbation
/ F(y)dy = 1. (19) s_hould have a peak ¢f(y) at ay p_osition that gives a signi-
ficant spread tqV,, — (V,.))?, while the same location and

We can then rely on the analogy ¢fy) with probability peak should produce or]ly a small averagg . I§ is evid(_ant
functions, also positive definite, and normalized to unity. thatvery strong magnetic fields may not permit the existence
Thus, we may define the average of any physical quantity©f Such a perturbation. However, in general, because of the

Q(y) with respect to the mode distribution as, difference of the profile functions, (y) andVa, (y), it may
be possible to havg intervals where the former dominates
_ over the latter. In that case, when the mode is physically ad-
(@)= /Q(y)ﬂy)dy’ (20)  missible, a peak of (y) in that specific interval may empha-
sSize the quadratic spread f — (V,.) over the averag¥3,,

:Orlrct)gzt;:iﬁts;omary way averages are defined in the theory o and produce the amplification of the perturbation.

The spectral theorem, embodied in equations 16 and 17, As an example of a}pplicatiqn of the spectral eqs.21., we
can then be rewritten in the following form show h_ow the dispersion re_latlon_ for a TD can be derived
from this theorem. The TD is defined by two sets of para-
meters,V,12, Vj;f, andp, » for regionsl, y > 0, and2,
e = Vi), Y <IO, separated ]E)fy an interfacr?gﬁtzlo, Whe;e the ?hy—h
2 _ 2 2 ‘ sical quantities suffer jumps. The solution of eq.5 for this
¢ = A=) = (Vie), a>0. (1) case, taking into account the continuityéty = 0, is
using the first and second order moments of the mode dis-
tribution f(y). We noted already the meaning of the first G = Aexp(—ky), y>0, (22)
equation, when the averad®,,) has been determined by (2 = Aexp(ky), y<O0,
a mode distribution, the growth of the instability given by
the second equation 21 depends on the quadratic deviatiorso that the mode functiofi(y) for this case is given by

]

P1 P2
= 2k exp (—2ky) , >0, = 2k exp (2ky) , < 0. 23
f(y) o+ 72 p(—2ky), y f(y) o p(2ky), y (23)

AveragingV,, with 23 we immediately obtain the phase velocity of the modes,

_ p1V.E+ paV2

r = R ) 24
e = oLt (24)
providedc; # 0 .Computinge? with eq.21 we find
2 2
2 P1 1 2 P2 2 2 (B;> + (BE)
c; = Ve (Vo)) + ———— (V= (Vi) — L —" = 25
p1+p2( (Vi) p1—|—p2( (Vi) I (ot o) (25)

(BY)® + (B2)”
4 (p1 + p2)

_ P1p2 1 2)2
BRI
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completing an alternative deduction of the well-known dis-
persion relation for a TD. The stability criterium 1 is a direct

consequence of eq.25.

In section 5 we use the mode distribution function and
the spectral theorem to explain the existence of the long wa

velength boundary of the KH instability.

4 A stability analysis solved in closed
form

In this model a sharp density drop and a variation3f
occur over a distancé, much smaller than the thickness,
A = 2d, where the gradient of the velocity, occurs. When
there is a wide difference between the two scadeg A,

we can obtain an exact solution of eq. 5 assuming step func-

tions for pg, B,, and a linear velocity profile fov; in the
interval —d < y < d. The model ignores the field structure
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normal to the magnetic fieldf(> i 1?0}) in that region. At
y = —d a current sheet exists and the directiorﬁ@)frotates
sharply, so thaB,, # 0 when—oo < y < —d, aninterval in
which the magnetic field becomes unidirectional again but

with a different orientation.

The purpose of this model is only to prove with an exact
solution, easy to handle and discuss, the thesis of the pa-
per. It does not intend to represent realistic features for any
particular application.

With the change of variable

w=vVHC, (26)
eq.5 is transformed into
2 2
Po (1, LEVHY 27)
dy? VH dy?

within &, which is possible when the wavelength of the per- We note that, sincé,, = 0 in the range of-d < y < oc,

turbation is such that the condition< A holds. Thus, this
model represents the changeggfind B, with discontinu-
ous jumps through an interface of zero thickness— 0)

located aty = —d, where matching conditions like eq.11
apply.
VK1
BKZ
o’ Pq
(-9
X
>
P2
Vka Bk
-2 -1‘.5 -1‘ -0‘.5 6 05 1‘ 1‘.5 2

y/d

Figure 1. Schematic of the idealized model that can be solved in

closed form. Field profileB,, V., andpy as functions ofy/d,
the vertical scale is arbitrary;, joins two intervals of constant va-
luesVi1, Vi.2 with a linear function in the interva}/d = (-1, 1);

thenH = p; (c—V,(y))?, wherep; is constant there. Within
the region of constant density and linear dependendg, of
with y (constantlV,, /dy) we see that

PVH

Then, the solution of eq.5 for the slahi < y < d is given
by

v
V(e —Vi(y))

where( , are constants, and

¢= [Cy exp (—ky) + Cz exp (ky)],

1

where we have writtety; = V,,(d) and set/.(—d) = 0.
For the intervall, d < y, the solution can be written as

_ Aj exp(—ky)

(30)

_ 31
V(e =) (31
whereas in the interva, y < —d, the solution is given by
A
C _ 2 eXp(ky) , (32)
N

B, and pp are constant functions with a discontinuous jump at with constant density, in that region

y/d = —1; the values ofB,.1, andV.., are zero (see text).

The schematic for this model is given in Fig. 1, which
shows step functions for bofky and B, while V; is repre-

sented by a continuous, albeit broken profile. The latter has

a linear transition of widti2d between two constant velo-

The dispersion relation is derived from two sets of mat-
ching conditions: one set is fgr= —d,

d¢

—1 =0 =0
M| =0 =0,

city values, the one on the left chosen to be zero. In Fig. 1 where there are jumps pf and B,., so thatH, = p1c?, for

the horizontaly axis is normalized withi, but the vertical

the value ofH on the slab side, arlly = poc? — B3 /4 for

scale is only qualitative, and indicates the trend of the threethe opposite side. The quantifys = B, (—d) is the cons-

guantities,py, By, andV,.. The reader should note that the
configuration does not requitgo to be zero in the interval
—d < y < oo, but only that the magnetic fielBT) is unidi-
rectional there. We are considering modes with avector

tant value of the magnetic field projection @hin region 2.
The other boundary conditions areyat d

dg

(<] =0, [@] =0 (33)
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where all the fields are continuous (a®} = 0). There which leads to an equation far, as is customary in this type
are four coefficientsd; ; andC 2, in the solution and four  of problems.

boundary conditions, which are linear homogeneous equa-

tions for these coefficients. The compatibility condition for The algebra is simple although laborious, omitting de-
this set of equations requirestac 4 determinant to be zero, tails the resulting polynomial ifi can be written as

]

20(1 +79)E + [a(1 = 2a)(1 4 r4) — 2a + aexp(—2a)(1 — r4)] &
—[1 =20+ 2aP? — exp(—2a)] € — (1 — 2a — exp(—2a))aP?
=0 (34)

which gives the dispersion relation for the model with a linear velocity slab and discontinuities in density and magnetic field.
The meaning of the symbols in eq.34 is the following

~ B? 1
a = 2kd, e= = - szgv P? = :

= — = = —. 35
U1 kUl’ P1 47Tp1U12 Mi ( )

The nondimensional parametéris the inverse of a parti-  Nevertheless, as we can see from Fig. 2 the system is unsta-
cular type of Alfvenic Mach number)/ 4, defined with the ble with a maximum growth rate,, ~ 0.16U; /A at about
velocity projectionl; and densityp; of region 1, and the  kd = 0.7. In the rangekd < 0.22, which is equivalent to
magnetic field projection of region 2. A > A 2 14.3 x A, all the modes (with the same orien-

In eq.34)\ andA = 2d may take arbitrary values. The tation %) are stable, so that the result is consistent with the
limit d — 0 whena — 0, requires the expansion of eq.34 in  TD criterium that predicts stability at very long.
a power series of.. The lower orders’, o!, are satisfied
identically. The lowest significant orderd€’, and leads to

(1 + Td)/C\Q —2c+1-— P2 =0, (36) ,=01M,=[13 14 15 17 19 23 4
which is the same polynomial that can be derived fromeq.12 |
whenH; = p1(c — Up)? andHy = pac® — B2 /4. In this ' —
limit the slab—d < y < d reduces to a TD, so that both o8y \\: |
eg.25 and the roots of eq.36 in this case give 0l |
- w 1 2 el i
=Y - 1+ /A +rg)P? - } . @) 3
A 1+m[ (+ra)P?=raf. (7 2 N |
Thus, the condition for KH stability in the long wavelength g 0al 1
limit of the model of Fig. 1 is g
0.3r 4
L Sp2o_"d (38)
—— = 0.2 4
M3~ (1+rd)
01r 4
which corresponds to the condition m
00 O‘.Z O‘.A 0.‘6 O‘.S ‘1 1‘.2 1.‘4 l‘.6 1‘.8 2
B3 U?
Vi = o > 2 (39) ’

dpy = (1+71q)
Figure 2.R(w)/kU1, upper line segments, abc S(w)d/Us, bot-

Next, we assume that condition 38 is satisfied, and hol- tom arcs, as functions @fd for r; = 0.1 from roots of the disper-
ding the same parameters for regions 1 and 2, i.e., for equakion relation eq.34. The different lines correspondfa = (1.3,
M, andry, we analyze the dispersion relation for finite 1.4, 1.5, 1.7, 1.9, 2.3, 4) starting from the right with, = 1.3
A = 2d as a function ofx = 2kd. Thus, we proceed to  and increasing to the left up tl4 = 4.
compute numerically the roots of eq.34, which are shown in
Fig. 2. As an example, for a density ratip= p>/p1 = 0.1, In Fig. 2, the growth rate is normalized with /d, and
and P = 0.43 that corresponds td/4 = 2.3, P is about  the plot show$ x & (wd/Uy ) versuskd, so that the real part
1.44 times larger than the critical stability value for the cor- of w may be shown in the same diagram. On the same verti-
responding TDP. = 0.3015, so that condition 1 is satisfied. ~cal scale, the normalized phase veloéityw)/kU; is given
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too. The figure gives the roots of (34) foy = 0.1, and Fig. 4 appears much enhanced with respect to thak(gj
seven values oM 4 = (1.3, 1.4, 1.5, 1.7, 1.9, 2.3, 4). The in Fig. 3. This is not only due t&¢|?, but mainly to the
upper line segments of the plot give the phase velocity of the contribution of|d¢/dy|?.

modes for whichs x vd/Uj is represented by the curves in
the lower part. The maximum growth rate of these curves in-
creases steadily with increasing,. We may also note that
the curves fob x & (wd/Uy) are shifted from right to left as

M 4 increases, while the unstalild intervals also grow sys-
tematically. Finally, betweenl4 = 2.3 andM 4 = 4, more
precisely forM§ = 3.317, the long wavelength boundary ,
disappears, in coincidence with the fact that the TD beco-
mes unstable. Fak/4 > Mg both the TD and the model
with a finite thickness are unstable, however the growth ra-
tes computed with eq.25 are reasonable estimates only wheh’|
A > A, otherwise they are unreliable.

Figure 2 also shows the presence of the shaboun-
dary, which is a well-known characteristic of the KH ins- !f
tability, and occurs also in ordinary fluids (no magnetic fi-
elds). For instance, the plot shows fbf, = 2.3 a limit
atkd ~ 1.1, i.e., for A\, ~ 2.9 A, so that the interval os
0 < X < )\, is also stable.

The phase velocity of the unstable modes is nearly cons-
tant at the smaller values @f/ 4, but shows more variation 0

Re(Q), 1,=01, M, =23, kd=0.6
25 : : :

8 -6 -4 -2 0 2 4 6 8
whenM 4 is large, withR(w)/k as a decreasing function of yid
k, so that the group velocity is smaller than the phase velo-
city. Figure 3. R(¢) as a function ofy/d for the unstable mode of the

Of course, the results and comments of this section aremodel of section 4 withrg = 0.1, Ma = 2.3, andkd = 0.6.
Note that the maximum value occurs inyed interval where

for a particular choice ofx’, the study of a different ori- B, — By1 = 0 (see Fig. 1).

entation of thek -vector would need new computations for
different functionsV;, andB,, as already noted.

5 The equivalent weight of unstable Mode disibuion ). 1, 01, M, =23, ki=0
modes

45F b

We show now why it may be possible that the modes are sta- 4
ble at long\s, and yet be unstable at smaller wavelengths.
Since the modes are known from the solutions of section 4°°]
we can comput€ in closed form. As an example, Fig. 3
shows the shape &%(¢), the real part of the-component

of the Lagrangian displacement (see eq.5) for a particular2sf
unstable mode of the model of section 4, corresponding to |
rqa = 0.1, M4 = 2.3, andkd = 0.6, with v = 0.156 Uy /A.
For the sameér™ orientation, modes with very longs are 150
stable sinceMy < MG = 3.317. Forkd = 0.6 we note
that R(¢) has a neat peak negr~ 0.5d in a range ofy
whereB, = 0. At y = 0.5d the value ofV is 0.75, while sk
the phase velocity, equal to V,, > according to equation

21, is¢, = 0.7. The peak ofR(¢) does not extend (with % > E} 0 1 > s
significant amplitude) into thg interval (y < —d) where v

the magnetic tension generated By # 0 provides a sta-
bilizing effect. The imaginary part3(¢) (not shown) has ="\~ bie mode of FigBi(= 0.1, Ma = 2.3, kd = 0.6).

similar features. _ o The peak is strongly localized in the interygld = (0, 1) where
Figure 4 gives the corresponding mode distribution func- v,,. = 0 (see text).

tion f(y) computed from eq.14. We can see that the nor-

malized M (y) is strongly localized in g interval where The possibility of such a strong localization of the mode
(Vi— < Vi, >)? is significantly different from zero, while  distribution f(y) for moderateAs allows the inequality
Vi. = 0, and thatM(y) is very small in the range of  ((V,, — (V,))2) > (VZ2,) to be satisfied, and hence the
where V3, is different from zero. The peak af/(y) in  development of the instability, in agreement with eq.21.

Figure 4. Example of a mode distributigity) versusy/d for the
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Conversely, modes with very long wavelengths, such that  We omit figures here for brevity, and report only that the
A > A, are broadly spread over and much beyond the in- trends revealed by the model of section 4 are qualitatively
terval A = 2d. In fact, at theses, the solution] becomes  confirmed by the numerical computations. The hyperbolic
necessarily close to exponential functions that decay sym-tangent model also has a critical valdg such that modes
metrically on both sides of the transition, as can be seenwith A > )\; are stable, corresponding to a cutoff of growth
from equation 22. Flexibility in localization is not possi- rates at small values @&fd, similar to that shown in Fig. 2
ble at these longs, the mode distribution has a fixed shape, for the idealized model. The maximum growth rate decrea-
a broad symmetric peak aboyt= 0, where the velocity  ses with diminishing/4 as expected, although with values
gradient region is concentrated. This kind of mode distri- somewhat smaller than those of Fig. 2. Also, the shift of the
bution cannot avoid to give a significant contribution to the unstable intervals towards larger valuesdffor decreasing
average of/3_, arising from intervals wher&3, = 0. The- values ofM 4 is much reduced in the case of the hyperbolic
refore, at long wavelengths the inequality may be reversed,tangent model. The interested reader may visually compare
(Vi = (Vi))?) < (V3,.), leading to stability as in the case the results of the hyperbolic tangent profiles with those of
of the TD criterium. the model of section 4 in Gratton et al. [6] where the matter
is discussed.

) ) Here, we focus on the results for the alternative configu-
6 Hyperbolic tangent profiles and the  ration with uniform magnetic field. Of course, in this case

case of uniform mag netic field. we may have flute modes with L B these are always uns-
table, except at smals, a range in which the velocity gra-
In this section we briefly comment on results of numerical diént operates as a stabilizing agent reversing its action as
integrations of eq.5 using continuous smooth profiles for all driver of the instability typical of longer wavelengths (see
the fields, i.e., with finite values for the length scaleands ~ Gratton et al. [9]). Let us consider, instead, modes with
defined in section 4. On one hand, the calculations show theB= = Bo # 0, for all y. A simple analytic solution for the
significance of the idealized model of section 4, ascertaining linear velocity profile, like that of section 4, is not possible
that the existence of a long wavelength stability boundary is In this case in spite of the simplicity of the magnetic field
confirmed working with smooth field profiles. On the other Profile, and a numerical treatment is required.
hand, it is found that a configuration without magnetic shear ~ We solve the stability problem for the second option of
(uniform magnetic field) does not have the lohgtability ~ €ds. 41. Fig. 5 gives the normalized growth ratey)d/Us
boundary for modes wit,. # 0. as a function oftd for a set of sixteen values af/, =
We have considered fields represented by hyperbolic v4mpoU1/Bo, ranging from 8.2 down to 2.2 with steps of
tangent functions, with a length scala, for V. (y), and 0.375. The stabilizing effect of the increasing magnetic fi-
another SC&'&S, for both BH and p- As an a|ternative' we eld is EVident, with the diminution of the grOWth rates and
examine also another Conﬁguration inwhiBh = By is a the Shrinking of the unstable interval. More interestingly,
constanty = pg also remains constant, and omy varies Flg 5 also CIearIy shows that in this case a Idngtablllty
as an hyperbolic tangent function. The equilibrium fields for boundary does not appear.
both configurations are given by

Uy

V. = 7[1—|—tanh(Y)]7
B = { gz[l—tanh(%(y'i‘l))] , (40) |
p = )+ (=g tanh(F(Y 1) 4y |

Po

Im(@)d/U

whereY = y/d. Itis worth noting that these steady state
field profiles, as well as those of the analytic model (Fig. 1)
of a previous section , are exact solutions of the steady state
equations of ideal magnetohydrodynamics, eqgs. 2. The hy-
perbolic tangent function was chosen only as a simple smo-
oth function, continuous together with all its derivatives, that
joins two intervals of constant value. ' ' ' D
The numerical work was performed with a method of
finite differences, applied to a set of first order differential ) )
equations equivalent to the second order eq.5. For the ”“?Fc;?l;rig'c'gﬁfrgfrlgfodngvzﬂvﬁtznﬁ?ﬁ&wﬁa/gﬁﬁ %J%”g:‘i;: ;’Z‘fg
merical computation Wlth the _two-s_cale model we have ta- (see text). The lines correspond to sixteen value¥/af from 8.2
kend/A = 0.2. The configuration with hyperbolic tangents gon 1o 2.2 with steps of 0.375. The plot shows that for this con-
for a” the fleldS was |ntended to be Close to the |deal|zed figuration without magnetic shear the lowet Stab|||ty boundary
example of Fig. 1. (long X, limit) is missing.
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Although the cause of the stabilization at loag is short), and long); boundaries mentioned in the introduc-

always the magnetic tension embodiedi # 0, neverthe- tion. ForM 4 > 3.3 only A4 exists and the instab_ility range
less the possibility of finding unstable modes at moderate Starts ated = 0. WhenM, < 1.2 the magnetic field is
)s that become stable at long, is due to the presence of sufficiently strong to stabilize the configuration for ad.
magnetic shear. This is because in the presence of magnetic
shear there is a chance that modes may be localizgdhin

tervals of small or zerd?2, as we have discussed in sections »
4 and 5.

Contour plot Im() d/U; =[0 003 0.06  0.09], r, =01

T T T T T T T
18-

7 Stability Diagrams
The flow with a constant magnetic field (second alternative 12f
in egs.41) has a stability diagram shown in Fig. 6. The line
gives the critical value ofd that separates stable from uns-
table modes (for a fixed orientatiafi) as a function of\/ 4. 08F
For strong magnetic fields\/4 < 2, the modes are stable ool
for all wavelengths. WheiM 4 is larger thar2 but remains
close to this valueM 4 Z 2, the kd interval of instability

0.4

is small and the uppékd limit corresponds to rather long 02l

wavelengths. However, the instability range starts always at . ‘ ‘

kd = 0. As M 4 increases significantly abo2ethe stability o o5 1 :
boundary tends to the valu@l = 1 and clearly there is only Y

a short), stability limit. A long-\ stability boundary does

not exist for this configuration Figure 7. Stability diagrankd versusM 4 for the model of section

4 with r, = 0.1. The white area is stable. Four contour lines for
S(w)d/U; = (0,0.03,0.06,0.09) that separate shaded regions
are also shown. In the interval2 < M4 < 3.3 two kd critical
values occur that correspond to the shartand long); stability
boundaries.

STABLE Contour plot Im(w) d/Ul =[0 0.03 0.06 0.09], Ty =1

05F

UNSTABLE

025

kd

Figure 6. Stability diagram showing the criticedl that separa-
tes stable from unstable regions as a functiod/bf for the same
model of Fig. 5.

The stability diagrams for the model of section 4, ob-
tained from the dispersion relation 34, are shown in Figs. 7 Figure 8. Stability diagramd versusM 4 for the model of section
and 8 and are very different from the diagram of Fig. 6. In 4 with; = 1.0 with the same format of Fig. 7. The plotillustrates
Fig. 7 we present the stability diagram for a density ratio the influence of the density ratio on the instability.
rq = 0.1inakdvs. M4 plane. The white area corres-
ponds to stable modes, while the shaded regions are unsta- In Fig. 8 a stability diagram is given far; = 1 with
ble. The curves that separate different gray areas corresponehe same format of Fig. 7. The shape of the contour lines
to contours of constant(w)d/U; . The criticalkd line is for change with the density ratio. The unstable area in Fig.
S(w)d/Uy = 0, and it encloses three contour lines of incre- |ooks like the bow profile of a boat. In Fig. 8 the bow profile
asing growth rates, witks(w)d/U; = (0.03, 0.06, 0.09). In  has straightened up. The rangeldf, for which the unsta-
Fig. 7 there are two stability limitéd for eachM4 value  ble interval forry = 1 has both shorh, and long); limits
in the rangel.2 < M4 < 3.3. These correspond to the js much smaller than the one corresponding.e= 0.1.
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8 Conclusions remember that the TD equation grossly overestimates the
growth rate for\ ~ A and completely ignores the stabiliza-

We have shown with a theoretical example that a stabletion at short\s. Readers interested to see cases of practical

tangential discontinuity may turn out to be unstable when application of the long stability limit to the study of the sta-

examined at short wavelengths, corresponding to modeshility of the magnetopause are referred to Gratton et al. [6]

that can explore the finite width structure of the interface. where the subject is treated in detail.

Although the configuration is not intended to be realistic, The theory presented here is limited to subsonic flows.

the example has the advantage that it can be solved in cloAn extension of the stability diagrams for supersonic flows

sed form and analyzed in detail. Numerical computation of requires the inclusion of compressibility effects in the per-

the instability with more realistic hyperbolic tangent profi- turbative equations and remains a subject for future studies.

les, for the same parameters of the idealized model, confirms

the results of the analytic study. This is only briefly stated Acknowledgments
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