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Working within the domain of inviscid incompressible MHD theory, we found that a tangential discontinuity
(TD) separating two uniform regions of different density, velocity and magnetic field may be Kelvin-Helmholtz
(KH) stable and yet a study of a transition between the same constant regions given by a continuous velocity
profile shows the presence of the instability with significant growth rates. Since the cause of the instability
stems from the velocity gradient, and since a TD may be considered as the ultimate limit of such gradient, the
statement comes as a surprise. In fact, a long wavelength (λ) boundary for the KH instability does not exist in
ordinary liquids being instead a consequence of the presence of magnetic shear, a possibility that has passed
unnoticed in the literature. It is shown that KH modes of a magnetic field configuration with constant direction
do not have the longλ boundary. A theoretical explanation of this feature and examples of the violation of the
TD stability condition are given using a model that can be solved in closed form. Stability diagrams in the (kd,
MA) plane are given (wherekd = 2πd/λ, 2d is the velocity gradient length scale, andMA is the Alfvénic
Mach number) that show both the well-known limit at smallλs and the boundary for large but finiteλs noted
here. Consequences of this issue are relevant for stability studies of the dayside magnetopause as the stability
condition for a TD should be used with care in data analysis work.

1 Introduction

The importance of the Kelvin-Helmholtz (KH) instability
of parallel flows in laboratory, geophysical, or astrophysical
systems, recognized many years ago, has generated a huge
literature. An internet search covering only the year 2003
yielded over 280 entries. Theoretical works on the KH ins-
tability are numerous. For overviews, among many others
see Chandrasekhar [1], Drazin and Reid [2], Belmont and
Chanteur [3], Huerre and Rossi [4], Farrugia, Gratton and
Torbert [5], and the references quoted in these surveys.

Working within the domain of inviscid incompressible
MHD theory, we find that a tangential discontinuity between
two uniform regions of different density, velocity and mag-
netic field may be Kelvin-Helmholtz stable, and yet a smo-
oth transition (modeled with continuous profiles) between
the same constant regions shows the existence of unstable
modes (with equal orientation of the

−→
k -vector) with signi-

ficant growth rates. Since the cause of the instability stems
from the velocity gradient, and since a tangential disconti-
nuity (TD) may be considered as the ultimate limit of such
gradient, the statement may be surprising at first sight.

The assumption that a TD is the worst case from the
point of view of stability may lead to the erroneous infe-
rence that to decide on the stability of a particular parallel
flow it is sufficient to examine the criterion of the related TD

(also called thethin model). The tangential discontinuity is a
simple planar interface across which the unperturbed fields,
velocity

−→
V0, magnetic strength,

−→
B0, and densityρ0, suffer

sudden changes. According to incompressible MHD theory,
a TD is Kelvin-Helmholtz stable when the following relation
is satisfied:

ρ0,1ρ0,2

ρ0,1 + ρ0,2
(Vκ,1 − Vκ,2)2 <

1
4π

[(Bκ,1)2 + (Bκ,2)2]. (1)

Here the indices 1 and 2 refer to quantities on either side of
the interface, andVκ, Bκ are the projections of

−→
V0 and

−→
B0

on the direction of the wave vector
−→
k , respectively. The cri-

terion depends on the direction of
−→
k but not on its absolute

value,k =
∣∣∣−→k

∣∣∣, and hence it is valid for all wavelengths,

λ = 2π/k associated to modes with a fixed
−→
k orientation.

The assumption that the stability of a parallel flow is en-
sured by the stability criterium of the associated TD does
not hold in general for MHD. In a magnetohydrodynamic
flow, and for a fixed orientation of the

−→
k -vector, besides the

well-known short wavelength stability boundaryλs (such
that modes withλ ≤ λs are stable) there are configurati-
ons in which also a long wavelength limitλl exists (such
that all modes withλ ≥ λl are KH stable). In other words,
the unstableλ interval may be finite,λs ≤ λ ≤ λl, instead
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of semi-infinite,λs ≤ λ < ∞, as it is widely assumed.
The long wavelength (λ) stability boundary is a conse-

quence of the presence of magnetic shear in MHD flows, a
possibility that seems to have been passed unnoticed in the
literature. Indeed, a longλ boundary for the KH instability
does not exist in ordinary non conducting fluids, where there
is no process equivalent to the magnetic field stabilization.
The surface tension operates only at the interface of two li-
quids, and it is not similar to the action of a magnetic field,
the latter being an effect operating in the whole volume of
the flow.

In this paper we give examples and a theoretical explana-
tion of the violation of the stability condition 1 at moderate
λs, using a model that can be solved in closed form in which
the fields have idealized profiles. We present stability dia-
grams in the (kd, MA) plane (wherekd = 2πd/λ, 2d = ∆
is the scale length of the velocity gradient, andMA is the
Alfv énic Mach number) which shows both the well-known
limit at smallλs and the new boundary for large, but finite
λ values. We also show, by solving numerically the stability
problem of a similar model built with smooth (hyperbolic

tangent) profiles, that a MHD flow with a uniformly oriented
magnetic field does not have the longλ stability boundary.

Among the possible applications of this feature of the
KH instability perhaps one of the most important is found
in space physics, related to the data analysis of spacecraft
crossings of the terrestrial magnetopause A study of the KH
instability of configurations that become stable at largeλs
due to the presence of magnetic shear, relevant to magne-
tospheric physics has been published elsewhere Gratton et
al. [6]. Here we present a different set of theoretical results
of general nature, not aimed at a particular application.

2 The basic equation of the MHD
Kelvin-Helmholtz instability for in-
compressible flows

Our study of the Kelvin-Helmholtz instability is based on
the perturbative linear equation derived from the set of ideal
MHD equations (see, e.g., reference [1])

c

ρ
d−→v
dt

= −grad(p) +
1
4π

rot(
−→
B )×−→B, div(

−→
B ) = 0,

d

dt

(−→
B

ρ

)
=

−→
B

ρ
· grad(−→v ),

dρ

dt
= −ρdiv(−→v ). (2)

d

Given a set of Cartesian axes,(x, y, z), such that the main
stream is lying on(x, z) planes, all equilibrium fields−→
V 0,

−→
B 0, ρ0 are stratified across the flow and depend ony

only,
−→v = (V0x(y) + v1

x, v1
y, V0z(y) + v1

z),
−→
B = (B0x(y) + B1

x, v1
y, B0z(y) + B1

z ),

ρ = ρ0(y) + ρ1. (3)

They component of the amplitude of a Lagrangian displa-
cement of an infinitesimal plasma element is denoted by
ζ̃ = ζ̃(x, y, z, t). The displacement̃ζ is related to they
component of the perturbative velocity byv1

y = dζ̃/dt. The
dependence of the modes is assumed to be of the form

ζ̃ = ζ(y) exp(−iωt + ikxx + ikzz). (4)

The real wavevector
−→
k = (kx, 0, kz) lies on the(x, z)

plane, the coordinatey is in the direction transversal to the
motion, andk =

√
k2

x + k2
z , the absolute value of

−→
k , defi-

nes the wavelength of the mode.
A derivation of the equation that governs the mode am-

plitudeζ(y) (omitted here for brevity) can be found, for ins-
tance, in Farrugia et al. [7]. The equation is

d

dy

(
H dζ

dy

)
− k2H ζ = 0, (5)

and is obtained under the conditiondiv(
−→
v1) = 0 that corres-

ponds to the incompressible approximation. Given
−→
k , the

characteristic boundary value problem for equation 5 deter-
mines both the complex frequencyω and the mode eigen-
function ζ(y). The imaginary part ofω, γ = =(ω), gives
the growth rate of the instability (whenγ > 0) and the real
part,<(ω), gives the frequency of oscillation of the wave.

The functionH = H (y;
−→
k , ω) in eq.5 is defined by

H ≡ ρ0(y)[(c− Vκ(y))2 − V 2
Aκ(y)], (6)

wherec is the (complex) phase velocity

c =
ω

k
. (7)

In eq.6, as already mentioned in the introduction,ρ0 =
ρ0(y) represents the equilibrium density across the flow,

Vκ(y) =
−→
V0 · −→κ is the projection of the equilibrium velocity−→

V0 =
−→
V0(y) on the wavevector direction−→κ =

−→
k /k, while

Bκ = Bκ(y) =
−→
B0 · −→κ is the projection of the equilibrium

magnetic field. Finally, we have introduced the projection
of the Alfvén velocity on−→κ , VAκ, defined by

V 2
Aκ(y) =

B2
κ(y)

4πρ0(y)
. (8)
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The reader must note that equation 5 is valid for modes
with all λs, but with a fixed−→κ . A change of the wavevector
direction leads to a different set of field projections,Vκ(y),
Bκ(y) and so to a different eq. 5. Thus, a complete stability
analysis of a given parallel flow, requires not only a study
of all λs modes, but also an examination of all the orientati-
ons of−→κ on the(x, z) plane. In the following we ordinarily
consider only fixed−→κ modes, and therefore the analysis is
restricted to a particular direction of the wavevector.

The theory based on eq.5 is restricted to incompressi-
ble perturbations. It can be shown (e.g., Contin et al. [8],
Gratton et al. [9]) that the relative change of density due to
plasma advection,(δρ/ρ0)a, for KH modes, is much larger
than the variation due to compressibility,(δρ/ρ0)c, when the

velocity U =
∣∣∣−→V0

∣∣∣ is much smaller than the local speed of

sound,Cs. In fact, it turns out that one can estimate the ratio
of density changes caused by the two mentioned processes
as

(δρ/ρ0)c

(δρ/ρ0)a
∼

(
U

Cs

)2

(9)

Thus, compressibility is a minor correction in the perturba-
tive analysis of subsonic flows when

(
U

Cs

)2

¿ 1. (10)

We may note that iny intervals whereH is constant there
are two simple exponential solutionsexp (±ky) of eq.5.
These solutions represent the KH perturbation on both sides
of a layer that separates two regions of constant field with
different values. When the wavelengthλ becomes much lar-
ger than the thickness∆ of the interface, the field profiles
ρ0, Bκ, or Vκ can be approximated by step functions with
a discontinuity (TD) at the positiony = y0 where the tran-
sition occurs. Thus, whenλ À ∆, the KH modes do not
contain any information on the structure of the transition,
and are forced to be piecewise exponential functions, sym-
metric with respect toy0. Qualitatively speaking, the long-λ
modes have lost functional “plasticity” compared with solu-
tions corresponding toλ v ∆.

From eq.5 one can see that the matching conditions at
y = y0 are

[ζ] = 0,

[
H dζ

dy

]
= 0, (11)

where the bracket is a shorthand for[Q] =
limε→0 [Q(y0 + ε)−Q(y0 − ε)]. This is the basis of the
TD model, which leads to the dispersion relation

H1 +H2 = 0, (12)

where the suffixes 1 and 2 indicate the values of the physical
quantities on either side of the discontinuity.

3 The unstable spectra and the mode
weight analogy

The square of the absolute value of the Lagrangian displa-
cement

|ζ|2 = <(ζ)2 + =(ζ)2 (13)

and the square of the absolute value of the derivative ofζ
play an important role in the determination of the spectrum
properties of the characteristic valuesc = cr + ici. In fact,
to discuss the spectral properties of the KH instability we
may introduce a quantity analogous to a density distribution,
which we may call themode weight, defined by

M(y) ≡ ρ0(y)

[∣∣∣∣
dζ

dy

∣∣∣∣
2

+ k2 |ζ|2
]

. (14)

In this conceptual analogyM(y) is associated not only to the
equilibrium densityρ0(y) but depends also on the amplitude
and the localization of the perturbative mode via the bracket
containing|ζ|2 and|dζ/dy|2. The mode weight is reminis-
cent of techniques used in the Rayleigh-Ritz method for the
study of the Sturm-Liouville spectral theory, although the
characteristic value dealt here is not an eigenvalue problem
of the latter family, and therefore some powerful classic pro-
perties do not hold.

Starting from equation 5, multiplying byζ∗ and integra-
ting overy, we find after integration by parts the following
condition

∫
H

[∣∣∣∣
dζ

dy

∣∣∣∣
2

+ k2 |ζ|2
]

dy = 0. (15)

We have assumed thatζ → 0 asy → ±∞, which is cer-
tainly the case for configurations with two asymptotic re-
gions with constant fields, separated by a velocity gradient
region where all the fields change. In mathematical terms,
the formula 15 is of the class of “energy integrals”.

Separating the real and the imaginary part of equation
15, it is easy to show that the real and imaginary part of
the phase velocity,c = cr + ici, for the unstable spectrum
ci ≡ =(c) > 0, are given by the expressions indicated in the
following. The real part of the phase velocity is equal to the
speed of a fictitious center of mass

cr =
∫

Vκ(y)M(y)dy∫
M(y)dy

, ci 6= 0, (16)

computed with the mode weight. Clearly, the weight dis-
tribution decides which value of theVκ(y) profile is being
emphasized by a physically admissible perturbation, and be-
comes the phase velocity of the growing wave. The impor-
tance of equation 16 is that it shows that the phase velocity is
restricted to the rangeVκm < cr < VκM , whereVκm, VκM

are the minimum and maximum values ofVκ(y), respecti-
vely, and thus the excited wave is resonant with some plasma
layer of the velocity gradient region. We must stress that this
holds only whenci 6= 0.

The growth rate of the instability, instead, is given by
the difference of two positive terms. The first, the driving
term of the instability, is the quadratic spread of the velocity
projectionVκ(y) with respect to the center of mass velo-
city. The second term represents the stabilizing influence of
magnetic tensions, and is equal to the quadratic mean of the
projected Alfv́en velocity
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c2
i =

∫
(Vκ(y)− cr)2M(y)dy∫

M(y)dy
−

∫
VAκ(y)2M(y)dy∫

M(y)dy
, ci > 0. (17)

d

The formula reminds at a distance a similar Rayleigh quoti-
ent of the mathematical literature of spectral problems.

It is convenient, starting from the mode weightM(y), to
define also a normalized mode distribution

f(y) ≡ M(y)∫
M(y)dy

, (18)

satisfying
∫

f(y)dy = 1. (19)

We can then rely on the analogy off(y) with probability
functions, also positive definite, and normalized to unity.
Thus, we may define the average of any physical quantity
Q(y) with respect to the mode distribution as,

〈Q〉 ≡
∫

Q(y)f(y)dy, (20)

in the customary way averages are defined in the theory of
probability.

The spectral theorem, embodied in equations 16 and 17,
can then be rewritten in the following form

cr = 〈Vκ〉 ,
c2
i =

〈
(Vκ − 〈Vκ〉)2

〉− 〈
V 2

Aκ

〉
, ci > 0, (21)

using the first and second order moments of the mode dis-
tribution f(y). We noted already the meaning of the first
equation, when the average〈Vκ〉 has been determined by
a mode distribution, the growth of the instability given by
the second equation 21 depends on the quadratic deviation

of Vκ(y) with respect to the mean value, but is reduced by
the average ofV 2

Aκ. The first term inc2
i relies on the pre-

sence of a region of velocity gradient forVκ(y) (i.e., vorti-

city, rot(
−→
V )) because it is zero whenVκ is a constant. On

the other hand, the stabilizing term is due to the magnetic
tensions that arise from the perturbationζ(y), which modi-
fies the curvature of the magnetic lines that are straight in
equilibrium.

To favor the excitation of the instability, a perturbation
should have a peak off(y) at ay position that gives a signi-
ficant spread to(Vκ − 〈Vκ〉)2, while the same location and
peak should produce only a small averageV 2

Aκ. It is evident
that very strong magnetic fields may not permit the existence
of such a perturbation. However, in general, because of the
difference of the profile functionsVκ(y) andVAκ(y), it may
be possible to havey intervals where the former dominates
over the latter. In that case, when the mode is physically ad-
missible, a peak off(y) in that specific interval may empha-
size the quadratic spread ofVκ−〈Vκ〉 over the averageV 2

Aκ,
and produce the amplification of the perturbation.

As an example of application of the spectral eqs.21, we
show how the dispersion relation for a TD can be derived
from this theorem. The TD is defined by two sets of para-
meters,V 1,2

κ , V 1,2
Aκ , andρ1,2 for regions1, y > 0, and2,

y < 0, separated by an interface aty = 0, where the phy-
sical quantities suffer jumps. The solution of eq.5 for this
case, taking into account the continuity ofζ aty = 0, is

ζ1 = A exp (−ky) , y > 0, (22)

ζ2 = A exp (ky) , y < 0,

so that the mode functionf(y) for this case is given by

c

f(y) =
ρ1

ρ1 + ρ2
2k exp (−2ky) , y > 0, f(y) =

ρ2

ρ1 + ρ2
2k exp (2ky) , y < 0. (23)

AveragingVκ with 23 we immediately obtain the phase velocity of the modes,

cr = 〈Vκ〉 =
ρ1V

1
κ + ρ2V

2
κ

ρ1 + ρ2
, (24)

providedci 6= 0 .Computingc2
i with eq.21 we find

c2
i =

ρ1

ρ1 + ρ2
(V 1

κ − 〈Vκ〉)2 +
ρ2

ρ1 + ρ2
(V 2

κ − 〈Vκ〉)2 −
(
B1

κ

)2 +
(
B2

κ

)2

4π (ρ1 + ρ2)
= (25)

=
ρ1ρ2

(ρ1 + ρ2)2
(V 1

κ − V 2
κ )2 −

(
B1

κ

)2 +
(
B2

κ

)2

4π (ρ1 + ρ2)
,



1808 Brazilian Journal of Physics, vol. 34, no. 4B, December, 2004

completing an alternative deduction of the well-known dis-
persion relation for a TD. The stability criterium 1 is a direct
consequence of eq.25.

In section 5 we use the mode distribution function and
the spectral theorem to explain the existence of the long wa-
velength boundary of the KH instability.

4 A stability analysis solved in closed
form

In this model a sharp density drop and a variation ofBκ

occur over a distanceδ, much smaller than the thickness,
∆ = 2d, where the gradient of the velocityVκ occurs. When
there is a wide difference between the two scales,δ ¿ ∆,
we can obtain an exact solution of eq. 5 assuming step func-
tions forρ0, Bκ, and a linear velocity profile forVκ in the
interval−d ≤ y ≤ d. The model ignores the field structure
within δ, which is possible when the wavelength of the per-
turbation is such that the conditionδ ¿ λ holds. Thus, this
model represents the changes ofρ0 andBκ with discontinu-
ous jumps through an interface of zero thickness (δ → 0)
located aty = −d, where matching conditions like eq.11
apply.

Figure 1. Schematic of the idealized model that can be solved in
closed form. Field profilesBκ, Vκ, andρ0 as functions ofy/d,
the vertical scale is arbitrary;Vκ joins two intervals of constant va-
luesVκ1, Vκ2 with a linear function in the intervaly/d = (−1, 1);
Bκ and ρ0 are constant functions with a discontinuous jump at
y/d = −1; the values ofBκ1, andVκ2 are zero (see text).

The schematic for this model is given in Fig. 1, which
shows step functions for bothρ0 andBκ, while Vκ is repre-
sented by a continuous, albeit broken profile. The latter has
a linear transition of width2d between two constant velo-
city values, the one on the left chosen to be zero. In Fig. 1
the horizontaly axis is normalized withd, but the vertical
scale is only qualitative, and indicates the trend of the three
quantities,ρ0, Bκ, andVκ. The reader should note that the
configuration does not require

−→
B0 to be zero in the interval

−d ≤ y < ∞, but only that the magnetic field
−→
B0 is unidi-

rectional there. We are considering modes with a
−→
k -vector

normal to the magnetic field (
−→
k ⊥ −→

B0) in that region. At
y = −d a current sheet exists and the direction of

−→
B0 rotates

sharply, so thatBκ 6= 0 when−∞ < y < −d, an interval in
which the magnetic field becomes unidirectional again but
with a different orientation.

The purpose of this model is only to prove with an exact
solution, easy to handle and discuss, the thesis of the pa-
per. It does not intend to represent realistic features for any
particular application.

With the change of variable

w =
√
H ζ, (26)

eq.5 is transformed into

d2w

dy2
−

(
k2 +

1√H
d2
√H

dy2

)
w = 0. (27)

We note that, sinceBκ = 0 in the range of−d ≤ y < ∞,
thenH = ρ1(c−Vκ(y))2, whereρ1 is constant there. Within
the region of constant density and linear dependence ofVκ

with y (constantdVκ/dy) we see that

d2
√H

dy2
= 0. (28)

Then, the solution of eq.5 for the slab−d ≤ y ≤ d is given
by

ζ =
1√

ρ1(c− Vκ(y))
[C1 exp (−ky) + C2 exp (ky)],

whereC1,2 are constants, and

Vκ(y) =
1
2
U1(1 +

y

d
), (30)

where we have writtenU1 = Vκ(d) and setVκ(−d) = 0.
For the interval1, d < y, the solution can be written as

ζ =
A1 exp(−ky)√

ρ1(c− U1)
, (31)

whereas in the interval2, y < −d, the solution is given by

ζ =
A2 exp(ky)√

ρ2c
, (32)

with constant densityρ2 in that region
The dispersion relation is derived from two sets of mat-

ching conditions: one set is fory = −d,
[
Hdζ

dy

]
= 0, [ζ] = 0,

where there are jumps ofρ0 andBκ, so that,Hs = ρ1c
2, for

the value ofH on the slab side, andH2 = ρ2c
2−B2

2/4π for
the opposite side. The quantityB2 = Bκ(−d) is the cons-
tant value of the magnetic field projection on−→κ in region 2.
The other boundary conditions are aty = d

[ζ] = 0, [
dζ

dy
] = 0 (33)
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where all the fields are continuous (andBκ = 0). There
are four coefficients,A1,2 andC1,2, in the solution and four
boundary conditions, which are linear homogeneous equa-
tions for these coefficients. The compatibility condition for
this set of equations requires a4× 4 determinant to be zero,

which leads to an equation forω, as is customary in this type
of problems.

The algebra is simple although laborious, omitting de-
tails the resulting polynomial in̂c can be written as

c

2α(1 + rd)ĉ3 + [α(1− 2α)(1 + rd)− 2α + α exp(−2α)(1− rd)] ĉ2

− [
1− 2α + 2αP 2 − exp(−2α)

]
ĉ− (1− 2α− exp(−2α))αP 2

= 0 (34)

which gives the dispersion relation for the model with a linear velocity slab and discontinuities in density and magnetic field.
The meaning of the symbols in eq.34 is the following

α = 2kd, ĉ =
c

U1
=

ω

kU1
, rd =

ρ2

ρ1
, P 2 =

B2
2

4πρ1U2
1

=
1

M2
A

. (35)

d

The nondimensional parameterP is the inverse of a parti-
cular type of Alfv́enic Mach number,MA, defined with the
velocity projectionU1 and densityρ1 of region 1, and the
magnetic field projection of region 2.

In eq.34λ and∆ = 2d may take arbitrary values. The
limit d → 0 whenα → 0, requires the expansion of eq.34 in
a power series ofα. The lower ordersα0, α1, are satisfied
identically. The lowest significant order isα2, and leads to

(1 + rd)ĉ2 − 2ĉ + 1− P 2 = 0, (36)

which is the same polynomial that can be derived from eq.12
whenH1 = ρ1(c − U1)2 andH2 = ρ2c

2 − B2
2/4π. In this

limit the slab−d ≤ y ≤ d reduces to a TD, so that both
eq.25 and the roots of eq.36 in this case give

ĉ =
ω

kU1
=

1
1 + rd

[
1±

√
(1 + rd)P 2 − rd

]
. (37)

Thus, the condition for KH stability in the long wavelength
limit of the model of Fig. 1 is

1
M2

A

≥ P 2
c ≡

rd

(1 + rd)
, (38)

which corresponds to the condition

V 2
A2 =

B2
2

4πρ2
≥ U2

1

(1 + rd)
. (39)

Next, we assume that condition 38 is satisfied, and hol-
ding the same parameters for regions 1 and 2, i.e., for equal
MA and rd, we analyze the dispersion relation for finite
∆ = 2d as a function ofα = 2kd. Thus, we proceed to
compute numerically the roots of eq.34, which are shown in
Fig. 2. As an example, for a density ratiord = ρ2/ρ1 = 0.1,
andP = 0.43 that corresponds toMA = 2.3, P is about
1.44 times larger than the critical stability value for the cor-
responding TD,Pc = 0.3015, so that condition 1 is satisfied.

Nevertheless, as we can see from Fig. 2 the system is unsta-
ble with a maximum growth rateγm ≈ 0.16U1/∆ at about
kd = 0.7. In the rangekd . 0.22, which is equivalent to
λ > λl & 14.3 × ∆, all the modes (with the same orien-
tation−→κ ) are stable, so that the result is consistent with the
TD criterium that predicts stability at very longλs.
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Figure 2.<(ω)/kU1, upper line segments, and5×=(ω)d/U1, bot-
tom arcs, as functions ofkd for rd = 0.1 from roots of the disper-
sion relation eq.34. The different lines correspond toMA = (1.3,
1.4, 1.5, 1.7, 1.9, 2.3, 4) starting from the right withMA = 1.3
and increasing to the left up toMA = 4.

In Fig. 2, the growth rate is normalized withU1/d, and
the plot shows5×= (ωd/U1) versuskd, so that the real part
of ω may be shown in the same diagram. On the same verti-
cal scale, the normalized phase velocity<(ω)/kU1 is given
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too. The figure gives the roots of (34) forrd = 0.1, and
seven values ofMA = (1.3, 1.4, 1.5, 1.7, 1.9, 2.3, 4). The
upper line segments of the plot give the phase velocity of the
modes for which5× γd/U1 is represented by the curves in
the lower part. The maximum growth rate of these curves in-
creases steadily with increasingMA. We may also note that
the curves for5×= (ωd/U1) are shifted from right to left as
MA increases, while the unstablekd intervals also grow sys-
tematically. Finally, betweenMA = 2.3 andMA = 4, more
precisely forM c

A = 3.317, the long wavelength boundary
disappears, in coincidence with the fact that the TD beco-
mes unstable. ForMA > M c

A both the TD and the model
with a finite thickness are unstable, however the growth ra-
tes computed with eq.25 are reasonable estimates only when
λ À ∆, otherwise they are unreliable.

Figure 2 also shows the presence of the shortλ boun-
dary, which is a well-known characteristic of the KH ins-
tability, and occurs also in ordinary fluids (no magnetic fi-
elds). For instance, the plot shows forMA = 2.3 a limit
at kd ≈ 1.1, i.e., for λs ≈ 2.9 ∆, so that the interval
0 < λ < λs is also stable.

The phase velocity of the unstable modes is nearly cons-
tant at the smaller values ofMA, but shows more variation
whenMA is large, with<(ω)/k as a decreasing function of
k, so that the group velocity is smaller than the phase velo-
city.

Of course, the results and comments of this section are
for a particular choice of−→κ , the study of a different ori-
entation of the

−→
k -vector would need new computations for

different functionsVκ andBκ, as already noted.

5 The equivalent weight of unstable
modes

We show now why it may be possible that the modes are sta-
ble at longλs, and yet be unstable at smaller wavelengths.
Since the modes are known from the solutions of section 4
we can computeζ in closed form. As an example, Fig. 3
shows the shape of<(ζ), the real part of they-component
of the Lagrangian displacement (see eq.5) for a particular
unstable mode of the model of section 4, corresponding to
rd = 0.1, MA = 2.3, andkd = 0.6, with γ = 0.156 U1/∆.
For the same−→κ orientation, modes with very longλs are
stable sinceMA < M c

A = 3.317. For kd = 0.6 we note
that<(ζ) has a neat peak neary ∼ 0.5d in a range ofy
whereBκ = 0. At y = 0.5d the value ofVκ is 0.75, while
the phase velocity, equal to< Vκ > according to equation
21, is cr = 0.7. The peak of<(ζ) does not extend (with
significant amplitude) into they interval (y < −d) where
the magnetic tension generated byBκ 6= 0 provides a sta-
bilizing effect. The imaginary part,=(ζ) (not shown) has
similar features.

Figure 4 gives the corresponding mode distribution func-
tion f(y) computed from eq.14. We can see that the nor-
malizedM(y) is strongly localized in ay interval where
(Vκ− < Vκ >)2 is significantly different from zero, while
V 2

Aκ = 0, and thatM(y) is very small in the range ofy
whereV 2

Aκ is different from zero. The peak ofM(y) in

Fig. 4 appears much enhanced with respect to that of<(ζ)
in Fig. 3. This is not only due to|ζ|2, but mainly to the
contribution of|dζ/dy|2.
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Figure 3.<(ζ) as a function ofy/d for the unstable mode of the
model of section 4 withrd = 0.1, MA = 2.3, andkd = 0.6.
Note that the maximum value occurs in ay/d interval where
Bκ = Bκ1 = 0 (see Fig. 1).
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Figure 4. Example of a mode distributionf(y) versusy/d for the
same unstable mode of Fig.3 (rd = 0.1, MA = 2.3, kd = 0.6).
The peak is strongly localized in the intervaly/d = (0, 1) where
VAκ = 0 (see text).

The possibility of such a strong localization of the mode
distribution f(y) for moderateλs allows the inequality〈
(Vκ − 〈Vκ〉)2

〉
>

〈
V 2

Aκ

〉
to be satisfied, and hence the

development of the instability, in agreement with eq.21.
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Conversely, modes with very long wavelengths, such that
λ À ∆, are broadly spread over and much beyond the in-
terval∆ = 2d. In fact, at theseλs, the solutionζ becomes
necessarily close to exponential functions that decay sym-
metrically on both sides of the transition, as can be seen
from equation 22. Flexibility in localization is not possi-
ble at these longλs, the mode distribution has a fixed shape,
a broad symmetric peak abouty = 0, where the velocity
gradient region is concentrated. This kind of mode distri-
bution cannot avoid to give a significant contribution to the
average ofV 2

Aκ, arising from intervals whereV 2
Aκ 6= 0. The-

refore, at long wavelengths the inequality may be reversed,〈
(Vκ − 〈Vκ〉)2

〉
<

〈
V 2

Aκ

〉
, leading to stability as in the case

of the TD criterium.

6 Hyperbolic tangent profiles and the
case of uniform magnetic field.

In this section we briefly comment on results of numerical
integrations of eq.5 using continuous smooth profiles for all
the fields, i.e., with finite values for the length scales∆ andδ
defined in section 4. On one hand, the calculations show the
significance of the idealized model of section 4, ascertaining
that the existence of a long wavelength stability boundary is
confirmed working with smooth field profiles. On the other
hand, it is found that a configuration without magnetic shear
(uniform magnetic field) does not have the longλ stability
boundary for modes withBκ 6= 0.

We have considered fields represented by hyperbolic
tangent functions, with a length scale,∆, for Vκ(y), and
another scale,δ, for bothBκ andρ. As an alternative, we
examine also another configuration in whichBκ = B0 is a
constant,ρ = ρ0 also remains constant, and onlyVκ varies
as an hyperbolic tangent function. The equilibrium fields for
both configurations are given by

Vκ =
U1

2
[1 + tanh(Y )],

Bκ = {
B2
2 [1− tanh(∆

δ (Y + 1))]
B0

, (40)

ρ = {
1
2 (1 + rd) + 1

2 (1− rd) tanh(∆
δ (Y + 1))

ρ0
,(41)

whereY = y/d. It is worth noting that these steady state
field profiles, as well as those of the analytic model (Fig. 1)
of a previous section , are exact solutions of the steady state
equations of ideal magnetohydrodynamics, eqs. 2. The hy-
perbolic tangent function was chosen only as a simple smo-
oth function, continuous together with all its derivatives, that
joins two intervals of constant value.

The numerical work was performed with a method of
finite differences, applied to a set of first order differential
equations equivalent to the second order eq.5. For the nu-
merical computation with the two-scale model we have ta-
kenδ/∆ = 0.2. The configuration with hyperbolic tangents
for all the fields was intended to be close to the idealized
example of Fig. 1.

We omit figures here for brevity, and report only that the
trends revealed by the model of section 4 are qualitatively
confirmed by the numerical computations. The hyperbolic
tangent model also has a critical valueλl, such that modes
with λ > λl are stable, corresponding to a cutoff of growth
rates at small values ofkd, similar to that shown in Fig. 2
for the idealized model. The maximum growth rate decrea-
ses with diminishingMA as expected, although with values
somewhat smaller than those of Fig. 2. Also, the shift of the
unstable intervals towards larger values ofkd for decreasing
values ofMA is much reduced in the case of the hyperbolic
tangent model. The interested reader may visually compare
the results of the hyperbolic tangent profiles with those of
the model of section 4 in Gratton et al. [6] where the matter
is discussed.

Here, we focus on the results for the alternative configu-
ration with uniform magnetic field. Of course, in this case
we may have flute modes with

−→
k ⊥−→B : these are always uns-

table, except at smallλs, a range in which the velocity gra-
dient operates as a stabilizing agent reversing its action as
driver of the instability typical of longer wavelengths (see
Gratton et al. [9]). Let us consider, instead, modes with
Bκ = B0 6= 0, for all y. A simple analytic solution for the
linear velocity profile, like that of section 4, is not possible
in this case in spite of the simplicity of the magnetic field
profile, and a numerical treatment is required.

We solve the stability problem for the second option of
eqs. 41. Fig. 5 gives the normalized growth rate=(ω)d/U1

as a function ofkd for a set of sixteen values ofMA =√
4πρ0U1/B0, ranging from 8.2 down to 2.2 with steps of

0.375. The stabilizing effect of the increasing magnetic fi-
eld is evident, with the diminution of the growth rates and
the shrinking of the unstable interval. More interestingly,
Fig. 5 also clearly shows that in this case a long-λ stability
boundary does not appear.

Figure 5. Normalized growth rate=(ω)d/U1 as a function ofkd
for a KH configuration with uniform magnetic field andBκ 6= 0
(see text). The lines correspond to sixteen values ofMA, from 8.2
down to 2.2 with steps of 0.375. The plot shows that for this con-
figuration without magnetic shear the lowerkd stability boundary
(longλl limit) is missing.
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Although the cause of the stabilization at longλs is
always the magnetic tension embodied inB2

κ 6= 0, neverthe-
less the possibility of finding unstable modes at moderate
λs that become stable at longλs, is due to the presence of
magnetic shear. This is because in the presence of magnetic
shear there is a chance that modes may be localized iny in-
tervals of small or zeroB2

κ, as we have discussed in sections
4 and 5.

7 Stability Diagrams

The flow with a constant magnetic field (second alternative
in eqs.41) has a stability diagram shown in Fig. 6. The line
gives the critical value ofkd that separates stable from uns-
table modes (for a fixed orientation−→κ ) as a function ofMA.
For strong magnetic fields,MA < 2, the modes are stable
for all wavelengths. WhenMA is larger than2 but remains
close to this value,MA ' 2, thekd interval of instability
is small and the upperkd limit corresponds to rather long
wavelengths. However, the instability range starts always at
kd = 0. As MA increases significantly above2 the stability
boundary tends to the valuekd = 1 and clearly there is only
a shortλs stability limit. A long-λ stability boundary does
not exist for this configuration.

Figure 6. Stability diagram showing the criticalkd that separa-
tes stable from unstable regions as a function ofMA for the same
model of Fig. 5.

The stability diagrams for the model of section 4, ob-
tained from the dispersion relation 34, are shown in Figs. 7
and 8 and are very different from the diagram of Fig. 6. In
Fig. 7 we present the stability diagram for a density ratio
rd = 0.1 in a kd vs. MA plane. The white area corres-
ponds to stable modes, while the shaded regions are unsta-
ble. The curves that separate different gray areas correspond
to contours of constant=(ω)d/U1. The criticalkd line is for
=(ω)d/U1 = 0, and it encloses three contour lines of incre-
asing growth rates, with=(ω)d/U1 = (0.03, 0.06, 0.09). In
Fig. 7 there are two stability limitskd for eachMA value
in the range1.2 . MA . 3.3. These correspond to the

shortλs and longλl boundaries mentioned in the introduc-
tion. ForMA > 3.3 only λs exists and the instability range
starts atkd = 0. WhenMA < 1.2 the magnetic field is
sufficiently strong to stabilize the configuration for allλs.
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Figure 7. Stability diagramkd versusMA for the model of section
4 with rd = 0.1. The white area is stable. Four contour lines for
=(ω)d/U1 = (0, 0.03, 0.06, 0.09) that separate shaded regions
are also shown. In the interval1.2 . MA . 3.3 two kd critical
values occur that correspond to the shortλs and longλl stability
boundaries.
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Figure 8. Stability diagramkd versusMA for the model of section
4 with rd = 1.0 with the same format of Fig. 7. The plot illustrates
the influence of the density ratio on the instability.

In Fig. 8 a stability diagram is given forrd = 1 with
the same format of Fig. 7. The shape of the contour lines
change with the density ratio. The unstable area in Fig. 7
looks like the bow profile of a boat. In Fig. 8 the bow profile
has straightened up. The range ofMA for which the unsta-
ble interval forrd = 1 has both shortλs and longλl limits
is much smaller than the one corresponding tord = 0.1.
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8 Conclusions

We have shown with a theoretical example that a stable
tangential discontinuity may turn out to be unstable when
examined at short wavelengths, corresponding to modes
that can explore the finite width structure of the interface.
Although the configuration is not intended to be realistic,
the example has the advantage that it can be solved in clo-
sed form and analyzed in detail. Numerical computation of
the instability with more realistic hyperbolic tangent profi-
les, for the same parameters of the idealized model, confirms
the results of the analytic study. This is only briefly stated
here, but it is discussed in detail in Gratton et al. [6].

The fact that there are cases in which a longλl stability
boundary for KH exists, besides the well-known shortλs

stability limit, as far as we know has not been noted in the
literature. The possibility of the existence of a longλ sta-
bility range relies on the presence of shear in the magnetic
field configuration. It is absent for both flute and non flute
modes of a unidirectional magnetic field, or in ordinary non
conducting fluids. The well-known short wavelength sta-
bility interval of KH, instead, is always present and occurs
even in the absence of magnetic fields. We have explained
the possibility of the existence of the long wavelength limit
in MHD parallel flows, by means of a spectral theorem that
allows a discussion of the physical effects operating on the
instability, and their enhancement or reduction due to the
possibility of strong localization of the modes at intermedi-
ateλs. We have shown also that this possibility is a MHD
property, facilitated by configurations with magnetic shear,
which is absent when the magnetic field is uniform.

The KH instability that amplifies surface waves, produ-
ces billows and vortices, and finally cascades into turbulence
(e.g., Belmont and Chanteur [3]). These processes lead to
diffusion and broadening of the velocity gradient, so that
the thickness of the transition region increases (see, for ins-
tance, Miura [10]). The KH excitation, therefore, is impor-
tant for the transport of momentum into the terrestrial mag-
netosphere, particularly during periods of northward orien-
tation of the IMF (Farrugia et al.[5]). In relation to data
analysis of spacecraft crossings, the reader should realize
that the TD condition 1 is not sufficient to asses the KH sta-
bility of the magnetopause. To determine the theoretical sta-
bility of a KH configuration the finite thickness structure of
the interface must be taken into account. On the other hand,
when the TD is unstable, a more precise analysis will also
confirm the instability. In that case, however, one should

remember that the TD equation grossly overestimates the
growth rate forλ ∼ ∆ and completely ignores the stabiliza-
tion at shortλs. Readers interested to see cases of practical
application of the long stability limit to the study of the sta-
bility of the magnetopause are referred to Gratton et al. [6]
where the subject is treated in detail.

The theory presented here is limited to subsonic flows.
An extension of the stability diagrams for supersonic flows
requires the inclusion of compressibility effects in the per-
turbative equations and remains a subject for future studies.
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