
682 Brazilian Journal of Physics, vol. 30, no. 4, December, 2000

Experimental Characterization of the Ising Model

in Disordered Antiferromagnets

D. P. Belanger

Department of Physics, University of California, Santa Cruz, CA 95064 USA

Received on 5 August, 2000

The current status of experiments on the d = 2 and d = 3 random-exchange and random-�eld
Ising models, as realized in dilute anisotropic antiferromagnets, is discussed. Two areas of current
investigation are emphasized. For d = 3, the large random �eld limit is investigated and equilibrium
critical behavior is characterized at high magnetic concentrations.

I Introduction

The Ising model is one of the most studied and ba-
sic models for phase transitions. In this article, the
current status of experimental studies characterizing
two classic models of second-order phase transitions
in short-range interaction systems in the presence of
quenched disorder, the random-exchange Ising model
(REIM) and the random-�eld Ising model (RFIM), is
presented. The discussion concentrates on experiments
in dilute, insulating, anisotropic antiferromagnets, the
systems that have yielded the best understood data for
these two models. The REIM is realized in zero mag-
netic �eld and the RFIM with a �eld applied along the
spin-ordering direction.

The REIM is rather well characterized experimen-
tally, theoretically and through computer simulations.
The d = 2 RFIM is fairly well characterized, although
the scaling behavior of scattering near the destroyed
phase transition is still being investigated.

The understanding of the RFIM for d = 3 is not
as complete, though signi�cant progress has been made
in the past few years, and it is this model that will be
the main focus of this short review. The early history
of the d = 3 RFIM was fraught with controversial in-
terpretations of the data, a result of severe nonequilib-
rium e�ects. Nevertheless, some experimental groups
realized from the start that underlying the observed,
complicated behavior is a new kind of phase transition.
E�orts to characterize the new critical behavior were
thwarted by the severe nonequilibrium e�ects. These
nonequilibrium e�ects have recently been overcome by
going to suÆciently high magnetic concentration and a
complete characterization of the universal d = 3 RFIM
critical behavior is possible and underway. The most
recent static critical behavior will be compared to re-
sults from computer simulations and theory.

In addition to these low-�eld behaviors, much has
been learned about the high-�eld limit of the RFIM.

An overview will be given of the phase diagram and
the di�erent behaviors observed.

Experiments have been performed on REIM and
RFIM systems for more than two decades. Since the
experiments performed some time ago have been re-
viewed previously[1], they will be included here only
as needed to give a perspective on the current physical
understanding of the models.

Theory and simulation results will be included as
needed for the interpretation of the experiments.

Another classic model of ordering in the presence
of disorder, the spin glass, will be covered in another
review[2] in this Ising Colloquium and so will not be
discussed here in detail, although some spin-glass-like
behaviors do occur at low magnetic concentrations and
at high magnetic �elds.

Table I shows the most frequently measured static
critical behaviors associated with a phase transition.
We will make reference to the universal parameters de-
�ned in Table I as needed.

speci�c heat C = A�jtj�� +B
for �! 0 C = A ln jtj

order parameter (T < Tc) Ms =Mojtj
�


uctuation correlation length � = ��o jtj
�� = 1=�

staggered susceptibility �s = ��o jtj
�


disconnected susceptibility �ds = �d�o jtj��


Table 1. Asymptotic forms for commonly measured
static critical behaviors. The superscript + (-) on the
amplitudes signi�es T > Tc (T < Tc). The exponent
values and the amplitude ratios are universal quanti-
ties that depend only on the general properties of the
system.
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II Experiments on Pure d = 2

and d = 3 Anisotropic Anti-

ferromagnets

Observations of asymptotic static critical behavior in
the pure d = 2 and d = 3 Ising antiferromagnets
are very well documented. The magnetic speci�c heat
(Cm) critical behavior has been characterized using op-
tical linear birefringence techniques[3, 4] on the d = 2
Rb2CoF4 system[5] and the d = 3 FeF2 system[6].

The measured pure Ising critical exponents � and
the amplitude ratios A+=A� are in superb agreement
with very many theoretical and simulation results. The
birefringence technique is particularly useful and more
accurate than pulsed speci�c heat techniques since it is
insensitive to the large phonon contributions which are
particularly diÆcult to handle for d = 2.

The critical behavior of the staggered susceptibility
and correlation length have been determined with neu-
tron scattering for K2CoF4[7] for d = 2 and in FeF2[8]
for d = 3.

In general, the scattering line shapes for the pure
and REIM systems away from the Bragg scattering
point follow the scaling behavior of the spin-spin corre-
lation function

�s(q) = A����2f(q=�) ; (1)

where 
 = �(2� �).

For both d = 2 and d = 3, the scaling functions used
in data analysis are approximate ones[9, 10] that di�er
signi�cantly from the mean-�eld (MF) Lorentzian

f(q=�) =
1

1 + (q=�)2
; (2)

as can be seen in Fig. 1 where various scaling functions
are compared. The deviation from the Lorentzian is
more pronounced for d = 2 and for T < Tc(H) in both
dimensions.

The order parameter critical behavior has been de-
termined using neutron scattering[7] in the d = 2 com-
pounds. The M�ossbauer technique[11] was used in the
study of the d = 3 system.

The results for the pure Ising model in d = 2 and
d = 3 are summarized in Table 2. Note that the Rush-
brooke scaling relation

2� + 
 + � � 2 (3)

is satis�ed as an equality for both cases. Included in
Table 2 are the results from a few theoretical and sim-
ulation studies. No attempt is made to review the vast
literature on the pure Ising models.

Figure 1. A comparison of the logarithm of the scaling func-
tions f(q=�) versus q=� for di�erent models (See Eq. 1). The
pure cases are from approximate expressions from numerical
studies[9, 10]. The REIM and RFIM are determined from
the experiments. Note that the corrections to the MF equa-
tion are largest below the transition and are very signi�cant
for the pure d = 2 and random-�eld d = 3 cases.

III Random-Exchange Experi-

ments in Dilute d = 2 and

d = 3 Anisotropic Antiferro-

magnets

The REIM is realized in dilute, anisotropic insulating
antiferromagnets when the site dilution does not result
in strongly frustrated bonds (which would lead to spin-
glass behavior). Random-exchange phase transitions
are observed in d = 2 and d = 3 systems and these ap-
pear to be in good accord with theory and simulations.

The d = 2 REIM Cm critical behavior was observed
using the birefringence technique[5] on the magnetically
dilute antiferromagnet Rb2Co0:85Mg0:15F4. The ap-
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proximately logarithmic divergence is compatible with
theoretical predictions[17, 18].

The scattering critical behavior[19] of the compound
Rb2CoxMg1�xF4 was analyzed using approximate scat-
tering line shapes[9, 10] developed for the pure d = 2
Ising model. The successful analysis using these line
shapes suggests that the correct line shape is close to
the pure one. The static critical behavior of the d = 2
Ising model is quite well characterized by experiments
and theory as shown in Table 3.

The d = 3 REIM is similarly well characterized with
birefringence, neutron scattering and M�ossbauer exper-
iments employing FexZn1�xF2 with the results shown
in Table 3 along with some theoretical and simulation
results, with which they agree very well. The criti-
cal behavior of the speci�c heat of the d = 3 REIM,
measured with birefringence techniques[21], is shown
in Fig. 2. Monte Carlo simulations[27] based on the
FexZn1�xF2 system are shown in Fig. 3.

Figure 2. Cm vs. T for Fe0:93Zn0:07F2 at H = 7 T as deter-
mined using the birefringence technique. The inset shows
the FC data. There appears to be a tiny hysteresis very
close to the transition, perhaps a consequence of random-
�eld activated dynamics.

The birefringence technique yields a negative spe-
ci�c heat exponent � as predicted[28], consistent with
a universality class di�erent from the pure Ising model
where � is positive. Note that, just as in the
pure case, the birefringence technique is consistent
with pulsed speci�c heat techniques, though the lat-
ter technique su�ers from greater concentration gradi-
ent sensitivity[29] and the large phonon speci�c heat
component.

Figure 3. Cm vs. T from Monte Carlo simulations modeled
after the Fe0:8Zn0:2F2 system. The simularity with the data
is striking, though not all Monte Carlo simulations yield a
sharp peak in Cm.

The critical behaviors of the staggered susceptibil-
ity and correlation length were determined from neu-
tron scattering experiments[26]. The order parame-
ter critical behavior was determined from M�ossbauer
studies[25]. The scattering line shape scaling functions
are not known from theory and were therefore deter-
mined directly from the scattering data in neutron scat-
tering experiments[30] using Fe0:93Zn0:07F2. The re-
sults shown in Fig. 1 clearly indicate that the scaling
functions are fairly close to those of the pure d = 3 case.

The REIM universal static critical parameters for
d = 2 and d = 3 are shown in Table 3 along with theo-
retical and simulation results. In both dimensions the
agreement is excellent. Note that the Rushbrooke scal-
ing relation (Eq. 3) is satis�ed as an equality for the
REIM.

IV The d = 3 Magnetic Perco-

lation Threshold Concentra-

tion

As the magnetic percolation threshold concentration,
xp, is approached from above in zero �eld, the equilib-
rium phase transition is expected to approach zero tem-
perature. For a particular magnetic structure, xp de-
pends on what interactions exist between the di�erent
neighboring spins. For example, for FexZn1�xF2, xp =
0:245; provided only the dominant interaction between
the body-center and corner spins is considered[34].
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Pure d = 2 Experiment Theory[12]
� 0:00� 0:01[6] O(log jtj)
A+=A� 1:01� 0:00[6] 1(log jtj)
� 0:155� 0:02[7] 1=8
� 1:02� 0:05+[7] 1

1:12� 1:13�[7]
�+=�� 0:54� 0:06[7] 1=2

 1:82� 0:07+[7] 7=4

1:92� 0:20�[7]
�+=�� 32:6� 3:7[7] 37:33
Pure d = 3 Experiment Theory
� 0:11� 0:005[13] 0:1099� 0:0007[14]

0:109� 0:004[15]
A+=A� 0:54� 0:02[13] 0:55[16]
� 0:325� 0:005[11] 0:32648� 0:00018[14]

0:3258� 0:0014[15]
� 0:64� 0:01[8] 0:63002� 0:00023[14]

0:6304� 0:0013[15]
�+=�� 0:53� 0:01[8] 0:52[16]

 1:25� 0:02[8] 1:2371� 0:0004[14]

1:2396� 0:0013[15]
�+=�� 4:6� 0:2[8] 4:8[16]

Table 2. The pure d = 2 and d = 3 Ising static critical exponents obtained from experiments, theory and Monte
Carlo simulations.

d = 2 Random Experiment Theory[20, 17]
Exchange (H = 0)
� � O(log jtj)[5] O(log(log 1=jtj))
A+=A� 0:95� 0:10[5] 1(log jtj)
� 0:13� 0:02[19] 1=8
� 1:08� 0:06+[19] 1

1:58� 0:52�[19]
�+=�� 0:98� 0:02[19] 1=2

 1:75� 0:07+[19] 7=4

2:6� 0:6�[19]
�+=�� 19:1� 5:0[19] 37.33
d = 3 Random Experiment Theory
Exchange (H = 0)
� �0:10� 0:02[21] �0:051� 0:013[22]
A+=A� 1:55� 0:15[23] �0:5[24]
� 0:350� 0:009[25] 0:3546� 0:0028[22]
� 0:69� 0:01[26] 0:6837� 0:0053[22]
�+=�� 0:54� 0:06[26] 0:83[24]

 1:31� 0:03[26] 1:342� 0:010[22]
�+=�� 2:8� 0:2[26] 1:7[24]

Table 3. The d = 2 and d = 3 REIM Ising static critical exponents obtained from experiments, simulations and
theory.
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d = 3 Random FexZn1�xF2 Monte Carlo
Field (H > 0) & Exact Ground State
� 0:0� 0:02[21] �0:5� 0:2[31]

�0:55� 0:2[32]
� not measured[33] 0:00� 0:05[31]

0:02� 0:01[32]
0:25� 0:03[27]

� 0:88� 0:05[30] 1:1� 0:2[31]
1:14� 0:10[32]


 1:58� 0:13[30] 1:7� 0:2[31]
1:5� 0:2[32]

�
 2
 = 3:16� 0:26 3:3� 0:6[31]
3:4� 0:4[32]

Table 4. The d = 3 RFIM Ising static critical exponents obtained from experiments, simulations and theory.

Except very close to xp, the much smaller inter-
actions can be ignored. Close to xp, however, the
smaller interactions may drastically a�ect the behav-
ior and even prevent ordering above xp when they frus-
trate the predominant interaction. Both the extremely
slow dynamics near percolation[35] and the sensitivity
to tiny frustrating interactions[36] can cause the system
to exhibit spin-glass-like behavior.

A good deal of e�ort has focused on the properties of
the system FexZn1�xF2 for x near xp. This system has
a small frustrating interaction[37]. The spin-glass-like
properties were �rst elucidated in experiments by Mon-
tenegro et al. [38-43]. For H > 0 and x = xp, there ex-
ists a boundary that resembles a de Almeida-Thouless
boundary with curvature T�To � H2=� where � = 3:4,
a typical spin-glass value. It was shown with neutron
scattering[44] that there is no antiferromagnetic long-
range ordering below this boundary. Much of the be-
havior is very reminiscent of a canonical spin glass.
The detailed behavior of this sample has been studied
experimentally[38, 45] and extensively modeled in local
mean-�eld[46, 47] and Monte Carlo simulations[48].

V d = 2 Random-Field Behavior

Scaling arguments for Zeeman and domain wall en-
ergies by Imry and Ma[49] as well as considerations
by Binder[50] leave little doubt that the d = 2 Ising
transition is destroyed by the introduction of arbi-
trarily small random �elds. Birefringence[5] and neu-
tron Bragg scattering[51] experiments bear this out;
no sharp phase transition is observed in equilibrium,
though the rounded transition exhibits the expected
scaling behavior.

The equilibrium region is separated from a lower
temperature region of strong hysteresis observed in the
di�erence between data obtained upon heating after
cooling in zero �eld to low temperatures and then ap-
plying the �eld (ZFC) and upon simply cooling the sam-

ple in the �eld (FC). The boundary separating these re-
gions is time-scale dependent[52]. The domain dynam-
ics induced with the application of a magnetic �eld as
well as those remaining after the �eld is removed at low
temperatures have been studied experimentally[53, 54]
and theoretically[55].

VI d = 3 RFIM behavior for

xp < x < xe at low �elds.

The behavior for concentrations between xp and the
percolation threshold concentration for vacancies, xe =
1 � xp, with a relatively small applied �eld occupied
the bulk of early experimental e�orts[1]. Much of the
controversy over interpretations of experimental data
involved this region of concentration and �elds.

As a result of the equivalence[56, 57] of the di-
lute anisotropic antiferromagnet in small �elds and the
random-�eld ferromagnet often studied theoretically, it
was believed that concentrations near x = 0:5 would
yield strong random-�eld e�ects in reasonably small
�elds and would be the best realizations of the d = 3
RFIM for phase transition studies. At the time of
the �rst experiments [58-61], it was generally believed,
based on many theoretical arguments, that no phase
transition would be observed. Indeed, early neutron
scattering FC experiments, by Yoshizawa et al.[61],
seemed to bear this out. In particular, a resolution-
limited Gaussian Bragg peak does not occur upon
FC, although subsequent experiments[54] show that the
samples retain long-range order below the phase bound-
ary if ZFC. In contrast, the �rst Cm studies[60, 62]
yielded compelling evidence for a fundamentally new
phase transition governing the behavior. The phase
boundary T � Tc(H) � H2=� behaves as predicted[63]
with � = 1:42� 0:03 for random-exchange to random-
�eld crossover[64].

Despite the sharp Cm peak, many have argued
against it as evidence of the existence of a phase tran-
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sition. The most recent of these discussions is the
\trompe l'oeil transition" phenomenological model[65].
Among the assumptions of this model are that the bire-
fringence and Cm experiments do not yield the same
behavior, the uniform magnetization is re
ected by the
square of the staggered magnetization, and conven-
tional scaling is inoperative. This phenomenological
model was shown to be inconsistent[66] when all avail-
able data are considered.

In contrast, more proven and conventional tech-
niques of analyzing the experimental data, as described
in this review, have been very fruitful in providing con-
sistent results in a meaningful scaling context.

It is clear that the phase transition underlying the
behavior is obscured by nonequilibrium behavior below
the boundary, Teq(H), lying just above the phase tran-
sition and scaling in the same manner, albeit with a
slightly larger amplitude[67]. The equilibrium behavior
above Teq(H) can be used to extrapolate the scattering
data to the obscured phase transition boundary.

When done carefully, the boundary determined in
this way coincides with that determined via Cm ex-
periments, which are much less sensitive to the non-
equilibrium behavior that distorts the neutron scatter-
ing data. For a long time, the nonequilibrium experi-
ments represented the best random-�eld results avail-
able. One of the particularly interesting predictions[31]
of the change in the critical behavior induced by the
random �elds is that the order parameter critical ex-
ponent � should decrease from 0:35 to a value near
zero. This can only be measured below Tc(H), i.e.,
in the nonequilibrium region, so it was not clear what
would be observed. Experiments on thin �lms were
made[68] for x = 0:52, well below xe � 0:76. Not sur-
prisingly, the results were peculiar. The curvature of
the Bragg intensity versus T was such that it would re-
quire � >> 0:5, which is hard to justify theoretically.
Magnetic x-ray scattering data showed similar behavior
near surfaces in bulk samples, though they were inter-
preted under the \trompe l'oeil" phenomenology and
the Bragg scattering was not separated from the 
uc-
tuation scattering[65].

For some years it appeared that the problems of
metastability below Teq(H) could not be avoided, i.e.,
that they were intrinsic to the random-�eld behavior as
realized in dilute antiferromagnets. However, insight
into the origins of the metastable domains �nally led
to experiments[30] at high magnetic concentration as a
way to avoid the nonequilibrium behavior, as discussed
below.

The metastable domains formed upon FC are them-
selves quite interesting and their dynamics were studied
in some detail both experimentally[69, 70, 71, 62, 72]
and through simulations[73, 74, 75].

VII RFIM behavior for xp < x <

xe at high �elds.

The general phase diagram features, shown in Fig. 4
for the RFIM at high �elds were investigated in pio-
neering pulsed-�eld magnetization measurements[76] in
FexZn1�xF2. Low temperature single spin 
ips and the
phase boundary are shown in Fig. 5 and, interestingly,
the behavior of the upper phase boundary appears to
be di�erent for x < xe and x > xe. This is consis-
tent with the di�erentiation of the behaviors observed
in neutron scattering experiments above and below xe.

Figure 4. The H � T phase diagram for FexZn1�xF2 mea-
sured in pulsed magnetic �elds. The concentrations for the
alphabetic labels are given in Fig.5.

In recent years, it has become clear that weak

RFIM (small applied �eld) and strong RFIM regimes

exist for xp < x < xe. The Fe0:31Zn0:69F2 system

exhibits[77] typical low-�eld behavior for H < 1:5 T,

with TN � Tc(H) and TN � Teq(H) scaling as H2=�

with � � 1:4. At larger �elds, however, the curvature

for TN � Teq(H) changes to � � 3:4, a value close to

that observed in spin glasses. Some of these features

were suggested qualitatively in [78, 79].

While the lower region has been shown to have anti-

ferromagnetic long-range order upon ZFC[80], no long-

range antiferromagnetic order is observed at higher

�elds below Teq(H). Instead, spin-glass-like behavior

is observed. This is clearly the same type of behav-

ior observed for all �elds at the percolation threshold

concentration[81]. The same type of distinctive low and

high �eld behaviors have been observed for x as large

as 0:60.
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Figure 5. Low temperature spin 
ips and phase boundary
for FexZn1�xF2 as a function of x. Note that the phase
boundary behavior is quite di�erent for x < xe and x > xe.

The two regions are separated by an equilibrium

boundary[82, 83], as observed for x = 0:56 (Fig. 6) and

0:60, and it appears to decrease towards the H = 0

boundary at �nite temperature well below Tc(H) and

approach the phase transition line at �nite �eld, a point

separating the sharp transition observed at low �eld

and the more glassy transition at higher �elds. This

also is consistent[84] with speci�c heat peaks that are

very sharp at low �elds and quite rounded at high

�elds[85, 65].

The distinction between high- and low-�eld behav-

ior is observed as well in ac susceptibility experiments.

At low �elds, there exists a single peak which seems

to be associated with extremely slow dynamics, either

from activated dynamics or at least power-law behavior

with a very large dynamic exponent[86, 87]. There is

little hysteresis between the ZFC and FC procedures at

low H . At larger �elds the peak splits in the ZFC pro-

cedure only, with a sharp peak at slightly lower tem-

peratures than the broader peak[88, 84]. This split-

ting appears to be associated with the upper region

of the phase diagram corresponding to spin-glass-like

behavior[84].

These e�ects have not been investigated for x > xp.

The high �eld region for these concentrations is still an

open area for research.

Figure 6. The H � T phase diagram for x = 0:56 showing
the upper equilibrium boundary, the phase boundary and a
lower equilibrium boundary.

VIII d = 3 RFIM Equilibrium

Critical Behavior for x >

xe

It was, of course, realized very early that the metastable

domain walls at low magnetic concentrations took ad-

vantage of vacancies. What was not fully appreciated

was that the Imry-Ma domain wall energy argument[49]

is not applicable when domain walls can to a great ex-

tent pass through vacancies, avoiding the energy cost

of breaking magnetic bonds. With suÆcient vacancies,

i.e., for x < xe, domain walls can take advantage of

vacancies to such an extent that the domain wall en-

ergy can be insigni�cant. Interestingly, every experi-

ment that could have detected low temperature hystere-

sis, particularly neutron scattering and capacitance[67]

experiments, was done for x � 0:72, which is below

xe = 0:76. Higher concentrations were avoided since

the generated random �elds are small, resulting in quite

narrow asymptotic random-�eld critical regions around

Tc(H). Nevertheless, concentrations well above xe are

necessary to study the equilibrium critical behavior and

require high magnetic �elds and very �ne temperature

resolution.

Fig. 2 shows the speci�c heat data for

Fe0:93Zn0:07F2, measured with optical linear birefrin-

gence. The speci�c heat was also measured to demon-

strate that, in agreement with theory[3] and contrary

to the so-called `trompe l'oeil' phenomenology[65], the

data from the both techniques yield the same crit-

ical parameters. An important advantage of the

birefringence technique is its relative insensitivity to
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the concentration gradients that tend to smear the

transition[29].

Interestingly, the critical behavior appears to be

very similar to that of lower concentrations where

metastable domains dominate the scattering behav-

ior. The speci�c heat was studied using Monte Carlo

simulations[27] based on the Fe0:93Zn0:07F2 system and

the results are shown in Fig. 3. Although the simula-

tions are not of suÆcient resolution to extract the crit-

ical exponent, the similarities in the shapes of both the

REIM and RFIM indicate the same qualitative change

from the asymmetric cusp at H = 0 to the nearly sym-

metric peaks at H > 0. This result, however, is not

seen in all MC simulations[31].

The neutron scattering experiments[30] on

Fe0:93Zn0:07F2 show no hysteresis below the phase tran-

sition, in stark contrast with samples with x < xe.

There is no evidence that domains form upon ZFC or

FC in this concentration range and the line shapes are

independent of the thermal cycling procedure, implying

equilibrium conditions.

Neutron scattering experiments on this sample were

diÆcult to analyze since the RFIM line shape is not

known from theory. In general, two di�erent scaling

functions are involved with the form

�s(q) = A����2f(q=�) +B�����4g(q=�) : (4)

with two independent sets of critical behavior expo-

nents. However, simulations[22] and high temperature

series expansions[89] strongly suggest a simpler sce-

nario. The predictions are that the exponents are sim-

ply related, �� being twice �, and the new scaling func-

tion g(q=�) is, to a good approximation, the square

of f(q=�). Not only were the universal RFIM criti-

cal parameters obtained in this experimental study[30],

but the scaling analysis yielded the spin-spin correla-

tion scaling function f(q=�).

This scaling function is compared to several other

known spin-spin correlation scaling functions in Fig.

1. Note that the d = 3 RFIM one seems the furthest

away from the MF Lorentzian of all the examples for

T > Tc(H), whereas for T > Tc(H) the pure d = 2 case

is further than the d = 3 RFIM, though both are very

far from MF behavior.

The critical parameters for the RFIM with x > xe
are shown in Table 4. Certainly more e�ort is needed to

complete the experimental entries and to �nd reconcili-

ation between the simulation and experimental results.

Note that some sets of exponents from the simulations

violate[32] the Rushbrooke scaling relation in (Eq.3).

IX The Vacancy Percolation

Threshold Concentration

The regions of low temperature nonequilibrium behav-

ior and equilibrium behavior have been shown to be sep-

arated at relatively small H by a nearly vertical sharp

boundary at x � xe = 0:755 in FexZn1�xF2, using

Monte Carlo studies[90]. Fig. 7 shows simulations on

three dimensional lattices with two sublattices, each of

size L3 with L = 64, modelled closely after FexZn1�xF2.

Hysteresis is observed upon FC and ZFC for x < xe
but not above. The hysteresis for x < xe increases for

larger lattices or slower thermal cycling, showing that

it is not simply an artifact of the simulations not being

run long enough. The concentration dividing equilib-

rium and nonequilibrium behavior is very close to or

equal to the vacancy percolation threshold concentra-

tion xe = 0:755. Apparently, the percolation vacancy

structure facilitates the formation of domain walls.

To further investigate this boundary, recent exper-

iments have been done[91] on a sample with x = 0:76,

just above xe. No evidence of domains has been ob-

served for small H . Since earlier experiments[67] for

x = 0:72 in FexZn1�xF2 gave clear evidence for domain

formation, including a reversal of the Bragg intensity

curvature just below Tc(H) upon ZFC, the boundary

must be 0:72 < xe < 0:76, in agreement with the MC

simulations. There have been no theoretical studies re-

ported explaining the existence or nature of this bound-

ary.

Figure 7. Monte Carlo simulation data for the staggered
magnetization versus T for magnetic concentrations 0:5, 0:6,
0:7 and 0:8. The ZFC and FC procedures exhibit hystere-
sis for the lower concentrations, which only gets worse for
slower runs or larger lattices. No hysteresis is observed for
the higher concentrations.
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X The Current Situation and

Outlook

The recent measurement of the equilibrium critical be-

havior in the random-�eld Ising model has side-stepped

the great diÆculties encountered in the interpretation

of data below the transition that are obscured by

nonequilibrium phenomena in many studies at lower

concentrations.

Certainly, there is wide agreement that a phase

transition exists. Although experiments for x > xe
are much more diÆcult since the random-�eld region

is very narrow, they are being done. Interestingly, the

experimental results are not in agreement with much

of the theory and simulation results, unlike the REIM

and pure Ising model. A reliable characterization of

certain aspects of the d = 3 RFIM universality class

behavior remains to be completed. The phase diagram

of FexZn1�xF2 has proven to be quite rich in detail. An

important area of the phase diagram for which a good

understanding is being developed is the large random

�eld limit for xp < x < xe. With the the progress

being made along these two lines of inquiry, a rather

complete experimental characterization of the RFIM in

dilute antiferromagnets seems near at hand.

Recent work has been supported by Department of

Energy Grant No. DE-FG03-87ER45324.
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