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Finite-Time-Singularity with Noise and Damping
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The combined influence of linear damping and noise on a dynamical finite-time-singularity model is considered
for a single degree of freedom. The noise resolves the finite-time-singularity and replaces it by a first-passage-
time distribution with a peak at the singularity and a long time tail. The damping introduces a characteristic
cross-over time. In the early time regime the first-passage-time distribution shows a power law behavior with
scaling exponent depending on the ratio of the non linear coupling strength to the noise strength. In the late time
regime the damping prevails. The study might be of relevance in the context of hydrodynamics on a nanometer
scale, in material physics, and in biophysics.

I Introduction

The influence of noise on the behavior of nonlinear dynami-
cal system is a recurrent theme in modern statistical physics
[1]. In a particular class of systems the nonlinear character
gives rise to finite-time-singularities, that is solutions which
cease to be valid beyond a particular finite time span. One
encounters finite-time-singularities in stellar structure, tur-
bulent flow, and bacterial growth [2, 3, 4]. The phenomenon
is also seen in Euler flows and in free-surface-flows [5, 6].

In the context of hydrodynamical flow on a nanoscale
[8], where microscopic degrees of freedom come into play,
it is a relevant issue how noise influences the hydrodynami-
cal behavior near a finite-time-singularity. Leaving aside the
issue of the detailed reduction of the hydrodynamical equa-
tions to a nanoscale and the influence of noise on this scale
to further study, we assume in the present context that a sin-
gle variable or “reaction coordinate” effectively captures the
interplay between the singularity and the noise.

II Model without damping

In a recent paper [13] we investigated a simple generic
model system with one degree of freedom governed by
a nonlinear Langevin equation driven by Gaussian white
noise,

dx

dt
= − λ

2|x| + η , 〈ηη〉(t) = ∆δ(t). (1)

The model is characterized by the coupling parameterλ, de-
termining the amplitude of the singular term and the noise
parameter∆, determining the strength of the noise correla-
tions. Specifically, in the case of a thermal environment at
temperatureT the noise strength∆ ∝ T .

In the absence of noise this model exhibits a finite-
time-singularity at a timet0, where the variablex van-

ishes with a square law dependence. When noise is added
the finite-time-singularity event att0 becomes a statistical
event and is conveniently characterized by a first-passage-
time distributionW (t) [9]. For vanishing noise we have
W (t) = δ(t − t0), restating the presence of the finite-time-
singularity. In the presence of noiseW (t) develops a peak
aboutt = t0, vanishes at short times, and acquires a long
time tail.

The model in Eq. (1) has also been studied in the con-
text of persistence distributions related to the nonequilib-
rium critical dynamics of the two-dimensional XY model
[10] and in the context of non-Gaussian Markov processes
[11]. Finally, regularized for smallx, the model enters in
connection with an analysis of long-range correlated station-
ary processes [12].

From our analysis in ref. [13] it followed that the distri-
bution at long times is given by the power law behavior

W (t) ∼ t−α , α =
3
2

+
λ

2∆
. (2)

For vanishing nonlinearity, i.e.,λ = 0, the finite-time-
singularity is absent and the Langevin equation (1) describes
a simple random walk of the reaction coordinate, yielding
the well-known exponentα = 3/2 [14]. In the nonlin-
ear case with a finite-time-singularity the exponent attains a
non-universal correction, depending on the ratio of the non-
linear strength to the strength of the noise; for a thermal
environment the correction is proportional to1/T .

III Model with damping

In our studies so far we have ignored damping. It is, how-
ever, clear that in realistic physical situations friction or
damping must enter on the same footing as the noise. This
follows from the Einstein relation or more generally from
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the fluctuation-dissipation theorem relating the damping to
the noise. In the present paper we attempt to amend this sit-
uation and thus summarize the results of an extension of the
analysis in ref. [13] to the case of linear damping.

For this purpose we consider the following model for
one degree of freedom:

dx

dt
= −γx− λ

2|x| + η , 〈ηη〉 = ∆δ(t). (3)

In addition to the coupling parameterλ, and the noise pa-
rameter∆, this model is also characterized by the damping
constantγ. Assuming for convenience a dimensionless vari-
ablex the coupling, noise strength, and damping,λ, ∆, and
γ have the dimension1/time. The ratiosλ/∆ andγ/∆ are
thus dimensionless parameters characterizing the behavior
of the system. In terms of a free energy or potentialF we
can express Eq. (3) in the form

dx

dt
= −1

2
dF

dx
+ η(t), (4)

whereF is given by

F = γx2 + λ ln |x|. (5)

The free energy has a logarithmic sink and drivesx to the
absorbing statex = 0. For largex the free energy has the
form of a harmonic well potential confining the motion. In
Fig. 1 we have depicted the noiseless solution forη = 0 and
the free energy in the various cases.

In order to model an experimental situation the first-
passage-time distributionW (t) is of direct interest. First-
passage properties in fact underlie a large class of stochastic
processes such as diffusion limited growth, neuron dynam-
ics, self-organized criticality, and stochastic resonance [9].
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Figure 1. In a) we show the time evolution of the single degree of
freedomx. At times shorter than the cross-over time1/γ the vari-
ablex falls off exponentially. At times beyond1/γ the variable
x reaches the absorbing statex = 0 at a finite timet0. In b) we
depict the free energyF (x) driving the equation. Forλ = 0 the
free energy forms a confining harmonic well, forγ = 0 we have
the absorbing state case discussed in ref. [13]. In the general case
the absorbing statex = 0 corresponds to the sink inF (x).

In term of the distribution functionP (x, t) the ab-
sorbing state distributionW (t) is defined asW (t) =
− ∫∞

0
∂P (x, t)/∂tdx. In the absence of noiseP (x, t) =

δ(x − x(t)) andW (t) = δ(t − t0), in accordance with the
finite time singularity att = t0. For weak noise we antic-
ipate thatW (t) will peak aboutt0 with vanishing tails for
smallt and larget.

In an analysis to be detailed elsewhere we have solved
the Fokker-Planck equation associated with the Langevin
equation (3),

∂P

∂t
=

∆
2

∂2P

∂x2
+

(
γx +

λ

2x

)
∂P

∂x
+

(
γ − λ

2x2

)
P, (6)

analytically and have found for the probability distribution
P (x, t)

c

P (x, t) =
x̃

λ/2∆+1/2
0

x̃λ/2∆−1/2

γeγt/2

∆sinh γt
exp

[
−γ(x̃2 + x̃2

0)
2∆ sinh γt

]
I 1

2+ λ
2∆

(
γ

∆
x̃x̃0

sinh γt

)
, (7)

and correspondingly for the first-passage-time distributionW (t)

W (t) =
2∆x̃

1+λ/∆
0

Γ(1/2 + λ/2∆)
exp

[
− γx̃2

0

2∆ sinh γt

]
exp(γt)

(
γ

2∆ sinh γt

) 3
2+ λ

2∆

. (8)

d

In Eq. (7)Iν is the Bessel function of imaginary argument,
Iν(z) = (−i)νJν(iz) [15] and we have introduced the time
scaled variables

x = x̃ exp(−γt/2), (9)

x0 = x̃0 exp(+γt/2). (10)

From an analysis of Eq. (8) it follows that the damping
constant sets an inverse time scale1/γ. At intermediate time
scales forγt ¿ 1 the distribution exhibits the same power

law behavior as in the undamped case given by Eq. (2). At
long times forγt À 1 the distribution falls off exponentially
with time constant1/γ(1 + λ/∆), i.e.,

W (t) ∝ exp[−γ(1 + λ/∆)t]. (11)

In the short time limitW (t) vanishes exponentially and
shows a maximum about the finite-time-singularity. In
Fig. 2 we have depicted the first-passage-time-distribution
as a function of t. In Fig. 3 we illustrate the behavior of
W (t) in a log-log representation.
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Figure 2. We sketch the first-passage-time distributionW (t) as a
function of t. In the limit t → 0 W (t) vanishes exponentially;
about the finite-time-singularityW (t) exhibits a maximum. At in-
termediate times forγt ¿ 1 the distribution exhibits a power law
behavior with scaling exponent3/2+λ/2∆. In the long time limit
for γt À 1 an exponential fall-off with time constantγ(1 + λ/∆)
characterizes the behavior ofW (t).
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Figure 3. In this figure we sketch the behavior ofW (t) in a log-
log plot. At intermediate times earlier that1/γ we have scaling
behavior with exponent3/2 + λ/2∆, corresponding to a constant
negative slope. In the long time limit the curve dips down indicat-
ing the cross-over to exponential behavior.

IV Conclusion

In this paper we have reviewed the problem of the com-
bined influence of white Gaussian noise of strength∆ and
a linear damping of strengthγ on a finite-time-singularity
of strengthλ. We have for simplicity considered only a
single degree of freedom. We find that the first-passage-
time distributionW (t) displays a peak about the finite-time-
singularity and at intermediate times shorter than1/γ a
power law dependence∝ t−α, characterized by the scaling
exponentα = 3/2 + λ/2∆. The exponent is nonuniversal
and depends on the ratio between the singularity strengthλ

and the noise strength∆. In the case where the noise origi-
nates from a thermal environment at temperatureT we have
∆ ∝ T and the scaling exponent depends on the tempera-
ture,α = 3/2 + const./T . At long times later than1/γ the
behavior ofW (t) crosses over to a an exponential fall-off.
To the extent that the character of a finite-time-singularity
in the vicinity of threshold can be modelled by a single de-
gree of freedom the present study should hold as regard the
influence of noise on the time distribution. We note in partic-
ular that in the case of a thermal environment at temperature
T the change of the scaling exponent becomes large in the
limit of low temperatures as the distribution narrows around
the noiseless threshold time. The present study also sug-
gests generalizations to the case of several coupled variable
subject to a finite-time-singularity.
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