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This is a pedagogical introduction to the general technique of bosonization of one-dimensional systems starting
from scratch and assuming very little besides basic quantum mechanics and second quantization. The formalism
is developed in a self-contained fashion and applied to the spinless and spin-1

2
Luttinger models, working out

both single and two particle correlation functions. The implications of these results for the specific cases of
the (anisotropic) Heisenberg and the Hubbard models are discussed. Although everything in these notes can be
found in the published literature, detailed and explicit calculations of most of the results are given, which may
prove useful to beginning graduate students or researchers in this area.

I Introduction

These notes formed the basis of a series of lectures given
at the Brazilian Statistical Mechanics School, which took
place from February 18 to 29, 2002, at the Universidade
de São Paulo in São Carlos. While writing them, I had in
mind a beginning graduate student in physics, already famil-
iar with basic Quantum Mechanics, including the formal-
ism of second quantization, but not with very much more.
I follow through the mathematical details necessary to es-
tablish the bosonization technique of one-dimensional sys-
tems, which is by now a rigorous and mature method that
underlies much of our understanding of these systems. It
has found many applications in real quasi-one-dimensional
systems such as quantum wires [1], carbon nanotubes [2]
and edge states of the quantum Hall effect [3]. For the sake
of motivation, I focus on two models: the Hubbard model
of spin- 12 fermions and the anisotropic (XXZ) Heisenberg
spin- 12 model. I should stress that all the material covered in
these lectures can be found in one way or another in the pub-
lished literature, so there is no claim of originality. However,
the detail and care with which some calculations are done
may be useful for the uninitiated, who are the main targets
of these notes.

The topic of bosonization is covered in many review ar-
ticles. Some of then are [4, 5, 6, 7, 8]. Some of the original
articles are [9, 10, 11, 12, 13, 14, 15, 16]. I have drawn ex-
tensively from Haldane [15], von Delft and Schoeller [8],
Voit[7] and Affleck [6].

These notes are organized as follows. Section II in-
troduces the two basic models. The fundamental tools of
bosonization are developed in Sections III to XIII. Sec-
tion XIV focuses on the basic interacting model solved by
bosonization, the Luttinger model. This is then applied to

the XXZ model in Section XV. Section XVI is devoted to
the important Luttinger liquid conjecture by Haldane. The
case of spin- 12 fermions is studied in Section XVII. We end
with a brief discussion of gaps and the sine-Gordon theory
in Section XVIII.

II The Hubbard and the Heisenberg
models

Our aim will be to study strongly correlated systems in one
spatial dimension. These are typically systems of interacting
electrons but we will be interested in spin systems as well.

The prototypical interacting electron system is the Hub-
bard model. This is a lattice model whose Hamiltonian in
one dimension is

HHub = �t
X
j�

�
cyj�cj+1� + h:c:

�
+ U

X
j

cyj"cj"c
y
j#cj#:

(1)
The first term describes the hopping process, in which an
electron can move from one site to the next with ampli-
tude t while preserving its spin projection � (taken arbitrar-
ily along the z-axis). The second term describes the local
Coulomb repulsion (U > 0) between opposite spin electrons
residing on the same site. This is the so-called Hubbard U
interaction term, named after one of the first people to work
on this model in a series of classic papers [17, 18, 19]. This
is one of the simplest interacting fermionic models one can
write and has been extensively studied.

The cj� operators are the usual annihilation operators
with anti-commutation relations
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fcj� ; cj0�0g =
n
cyj� ; c

y
j0�0

o
= 0; (2)n

cj� ; c
y
j0�0

o
= Æj;j0Æ�;�0 : (3)

Another important model is the spin -1/2 XXZ model,

HXXZ = J
X
j

�
Sxj S

x
j+1 + Syj S

y
j+1 +�Szj S

z
j+1

�
: (4)

Here, Saj are spin- 12operators with commutation relations

c
�
Saj ; S

b
j0
�
= iÆj;j0"

abcScj a = x; y; z or equivalently 1; 2; 3; (5)

and
P

a

�
Saj
�2

= 3
4 = 1

2

�
1
2 + 1

�
. The symbol "abc is the totally anti-symmetric Levi-Civita tensor

"abc =

8<
:

0 if there are repeated indices among (a; b; c)
1 if (a; b; c) is an evenpermutation of (1; 2; 3)
�1 if (a; b; c) is an odd permutation of (1; 2; 3)

: (6)

d

J is the exchange coupling and � the anisotropy parameter.
A special important case of (4) is at � = 1, the so-called
isotropic Heisenberg model

HHeis = J
X
j

Sj � Sj+1: (7)

Both models (1) and (4) can be solved exactly in one dimen-
sion (and only in one dimension) by means of the celebrated
Bethe Ansatz [20, 21]. However, though the Bethe Ansatz
can give the spectrum of eigenvalues and eigenvectors (plus
a bit more), there is still a lot of important information that
it cannot give, such as correlation functions.

The technique of bosonization, specially suited for one
spatial dimension, is a powerful field-theoretical tool that
enables one to calculate correlation functions. In fact, it
gives us a very great deal of insight into the physics of one-
dimensional systems by classifying them into “universality
classes” and by characterizing their spectrum of low-lying
excitations.

Getting ahead of ourselves, it consists of a systematic
mapping of a fermionic system (states, operators, Hamilto-
nians, etc.) into an auxiliary bosonic one. It turns out that the
bosonic language is often more suited for the understanding
of the physics of the system, sometimes even allowing for
its exact solution, as we will see.

We will embark on this construction taking the Hubbard
model as a guide and it will become clear how it can be gen-
eralized to other models.

Let us first look at the non-interacting limit (U = 0).
In this case, the Hamiltonian can be easily diagonalized by
means of Fourier transformation. Define (we work with the
lattice spacing a = 1)

cyk� =

LX
j=1

eikjp
L
cyj� , ck� =

LX
j=1

e�ikjp
L
cj� (8)

and the inverse transformation

cyj� =
X
k2BZ

e�ikjp
L
cyk� , cj� =

X
k2BZ

eikjp
L
ck� : (9)

Note that we have “put the system in a box (ring)”, which is
short for working on a finite lattice of L sites, with periodic
boundary conditions

cyj+L;� =
X
k2BZ

e�ikje�ikLp
L

cyk� = cyj� : (10)

The last equality follows if

e�ikL = 1 ) k =
2�

L
n; (11)

where

n = 0;�1;�2; : : : ;�
�
L

2
� 1

�
;
L

2
: (12)

We take even values of L even for simplicity. Higher values
of n are redundant since, if k = 2�

L

�
L
2 + 1

�
, then

eikj = ei
2�
L (L2 +1)j = ei

2�
L (L�L

2
+1)j = e�i

2�
L (L2 �1)j = eik

0j ;
(13)

where k0 = 2�
L

�� �L2 � 1
��

and k is completely equivalent
to k0. The set (12) is called the first Brillouin zone (hence
the k 2 BZ). Note that L

2 and �L
2 are also equivalent (by

a similar argument) and we keep only L
2 . The inverse trans-

formation is now easily proved

cyj� =
X
k2BZ

e�ikjp
L
cyk� =

X
k2BZ

e�ikjp
L

LX
l=1

eiklp
L
cyl�

=
1

L

LX
l=1

X
k2BZ

eik(l�j)cyl� = cyj� ;

where we used (see Appendix A.1 for the proof)X
k2BZ

eikj = LÆj;0: (14)
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It is important to have the anti-commutation relations in k-
space

fck� ; ck0�0g =
n
cyk� ; c

y
k0�0

o
= 0; (15a)

n
ck� ; c

y
k0�0

o
= Æk;k0Æ�;�0 ; (15b)

which are also easily proved.
Taking these expressions into the non-interacting Hamil-

tonian, we have

c

H0 = �t
X
j�

�
cyj�cj+1� + h:c:

�
= �t

X
j�

2
4 X
k2BZ

e�ikjp
L
cyk�

X
p2BZ

eip(j+1)p
L

cp� + h:c:

3
5

= � t

L

X
k;p2BZ

X
j�

eij(p�k)eipcyk�cp� + h:c: = �t
X
k2BZ

eikcyk�ck� + h:c:

= �2t
X
k2BZ

cos (k) cyk�ck� =
X
k2BZ

" (k) cyk�ck� ; (16)

d

where we have used Appendix A.1. The Hamiltonian is now
diagonal in the k-basis and is easily solved,

cyk�ck� � nk� = 0or1 (for each� andk): (17)

The ground state for N electrons corresponds to filling up
all the states, from the lowest energy up, until the N lowest-
energy orbitals are filled up (with due care of spin degen-
eracy). The highest occupied level is the Fermi level, its
energy the Fermi energy EF and its wave-vector the Fermi
wave-vector kF (see Fig. 1). The relation between N and
kF is

N = L

Z kF

�kF

dk

2�
� 2 =

2kFL

�

) n � N

L
=

2kF
�
: (18)

−1 −0.5 0 0.5 1
k/π

−2

−1
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k)
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kF−kF

Figure 1. The non-interacting Fermi sea.

The extra factor of 2 comes from spin degeneracy. We used

the fact that, in the thermodynamic limit (L!1)

X
k

f (k) =

L=2X
n=�L=2+1

f

�
2�n

L

�
� L

2�

Z �

��
dkf (k) ;

(19)
where f (k) is a general function of k. In the example above,
f (k) = � (kF � jkj) ; where � (x) is the usual Heaviside
theta-(step-)function.

III Linearized spectrum

Let us now look at the effect of interactions. If U � t (per-
turbative region), it is natural to assume that only low energy
states will be much affected. This is reasonable within sec-
ond order perturbation theory, where

�E
(2)
0 �

X
n6=0

h0 jHU jni hn jHU j 0i
E0 �En

; (20)

� j0i(2) �
X
n6=0

hn jHU j 0i
E0 �En

jni ; (21)

where HU is the interaction part of Eq. (1). It is clear that
the denominator suppresses corrections coming from higher
energies. We thus can reasonably focus on the low-energy
subspace.

Looking at the dispersion relation, it is reasonable to lin-
earize the spectrum around the two Fermi points (see Fig. 2),
if we are going to be concerned mostly with weakly excited
states. We will choose the zero energy so thatEF = 0. Note
that the reduction of the Fermi sphere to two disconnected
“Fermi points” is a feature specific to one dimension and
central to the upcoming developments.

Now, since the two dispersions, cosine and linear, differ
only at higher excitation energies, we will simply replace
one by the other. But remember that we are effectively re-
stricted to low energies if we want to say something about
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the Hubbard model. Now we have two branches of excita-
tions in the V-shaped spectrum of Fig. 2. Finally, we can ex-
tend each branch so that k runs from �1 to 1, effectively
introducing an infinite number of states in each branch, the
so-called “positron” states, by analogy with the Dirac spec-
trum in one dimension. We therefore abandon for a mo-
ment the Hubbard model and focus on the “linear dispersion
model” of Fig. 3. Because we have an infinite number of
states in each branch, we will have to introduce certain care-
ful “cut-off” procedures to correctly define the theory. We
will call the branches

−1 −0.5 0 0.5 1
k/π

−3

−2

−1

0

1

2

3

ε(
k)

εL(k)=−vF(k+kF)+EF

εR(k)=vF(k−kF)+EF

Figure 2. Linearization of the spectrum.
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−3

−2

−1

0

1

2

3

ε(
k)

−kF
kF

Figure 3. The linear dispersion model.

" (k) = vF (k � kF ) =) Right moving branch;(22)

" (k) = �vF (k + kF ) =) Left moving branch;

(23)

according to the signs of the velocities. The relation between
this spectrum and the lattice one is given by

vF =
@" (k)

@k

����
k=kF

= 2t sin (kF ) : (24)

Let us for now focus on the right movers. We still want
to work “in a box” with periodic boundary conditions so

k =
2�n

L
; (25)

but now

n = 0;�1;�2; : : : ; (26)

since the spectrum is not bounded. This is equivalent to
working in the continuum limit, where the lattice spacing
a ! 0 and the Brillouin zone

���
a ;

�
a

� ! (�1;1). The
creation and annihilation operators still satisfy Eqs. (15). We
now define field operators  (x), operator-valued functions
of the continuous variable x 2 ��L

2 ;
L
2

�
, which are the con-

tinuum limit analogs of cj� (we forget about spin for a mo-
ment)

 (x) � 1p
L

+1X
k=�1

eikxck; (27)

 y (x) � 1p
L

+1X
k=�1

e�ikxcyk: (28)

It is better to think of this as a definition. We will worry
about how to relate  (x) to cj more precisely later. From
now on

P
k =

P+1
k=�1. Note that  (x) is periodic with

period L

 (x+ L) =  (x) : (29)

It follows that

f (x) ;  (y)g = � y (x) ;  y (y)	 = 0; (30)

and

�
 (x) ;  y (y)

	
=

1

L

X
k;p

eikxe�ipy
n
ck; c

y
p

o

=
1

L

X
k

eik(x�y) =
1

L

+1X
n=�1

Æ

�
x� y

L
� n

�

=
+1X

n=�1
Æ (x� y � nL) ; (31)

where we used Eq. (362) of Appendix A.2. If (x; y) 2��L
2 ;

L
2

�) �
 (x) ;  y (y)

	
= Æ (x� y) which is the ana-

logue of
n
cj ; c

y
j0

o
= Æj;j0 in the continuum. Furthermore

ck =
1p
L

Z L
2

�L
2

dxe�ikx (x) (32)

is the inverse transformation.
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IV Hilbert space

In field theory, where we have an infinite number of degrees
of freedom, it is important to be specific about the Hilbert
space we are working with, as this is not always obvious
from the Hamiltonian. Let us do that for our linearized
branch.

First, let’s imagine that kF = 0, for simplicity. Then
we start from a vacuum state j0i0, which is the “Dirac sea”
of an infinite number of fermions occupying all states with
k 2 (�1; 0] or

k =
2�n

L
; n = 0;�1;�2; : : : ; (33)

as depicted in Fig. 4.

k=0

Figure 4. The vacuum state j0i
0

of the right moving branch.

Thus,

ck j0i0 = 0; k > 0; (34a)

cyk j0i0 = 0; k � 0: (34b)

The Hilbert space H is spanned by all the states that can be
generated by acting with a finite number of ck or cyk on j0i0,
see Fig. 5. It is useful to classify these states according to
the total number of fermions. Since this is an infinite num-
ber, we use instead the difference between the total number
of fermions of the state and that of j0i0, which is a finite
number. In other words, we use the number operator

N̂ =
X
k

h
cykck �

D
cykck

E
0

i
; (35)

where h�i0 = 0 h0 j�j 0i0 : It is also customary to de-
fine the operation of normal-ordering a string of creation
and annihilation operators ABCD : : :, usually denoted by
: ABCD : : : :. It amounts to moving all operators that de-
stroy the vacuum (Eq. (34)) to the right by doing transpo-
sitions and multiplying by -1 each time. For example, if
k1 � 0; k2 > 0; k3 > 0; k4 � 0; then

: cyk1c
y
k2
ck3ck4 := �cyk2ck4c

y
k1
ck3 : (36)

It is equivalent to the above subtraction of the vacuum ex-
pectation value when there are only two operators involved

N̂ =
X
k

: cykck : : (37)

Besides, the two operations are equivalent when taking av-
erages in the vacuum (though this is sometimes omitted),
since

h: ABCD : : : :i0 = 0: (38)

Thus, we can group all states of H according to N ,
eigenvalues of N̂ . It is clear that N 2 Z.. For fixed N ,
the lowest-energy state, the one with no particle-hole ex-
citations, will be called the N -particle ground state (see
Fig. 5(a) for an example)

cyNc
y
N�1 � � � cy1 j0i0 � jNi0 (N > 0); (39)

cN+1cN+2 � � � c�1c0 j0i0 � jNi0 (N < 0): (40)

The Hilbert space with fixed number of particles HN is
spanned by all numbers of particle-hole excitations on the
corresponding N -particle ground state (see Fig. 5(b) for an
example). It follows that

H = H0 �H1 �H2 � � � � : (41)

(b)(a)

Figure 5. Examples of states that generate the Hilbert space H.
(a) The four highest energy particles of j0i

0
have been removed.

This is the �4-particle ground state j�4i
0

; (b) Two particle-hole
excitations have been created on j0i

0
.

V Density operators

We now define an important linear combination of operators
that create particle-hole excitations, the density fluctuation
operators, or simply density operators, for q 6= 0 only

� (q) �
X
k

cyk+qck (42)

Note that � (�q) = �y (q) : The reason why they are called
density (fluctuation) operators becomes clear from
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:  y (x) (x) :=
1

L

X
kp

ei(k�p)x : cypck : =
1

L

X
kq

e�iqx : cyk+qck :

=
1

L

X
q 6=0

e�iqx
X
k

: cyk+qck : +
1

L

X
k

: cykck : =
N̂

L
+

1

L

X
q 6=0

e�iqx� (q) : (43)

In the last step, we removed the normal-ordering sign in the first term, because it is redundant when the two fermion operators
have different k-indices. Let’s calculate its commutators (we make use of [A;BC] = fA;BgC �B fA;Cg)

[� (p) ; � (q)] =
X
kk0

h
cyk0+pck0 ; c

y
k+qck

i
=
X
kk0

n
cyk0+p

h
ck0 ; c

y
k+qck

i
+
h
cyk0+p; c

y
k+qck

i
ck0
o

=
X
kk0

n
cyk0+pÆk0;k+qck � cyk+qck0Æk0+p;k

o
=
X
k

h
cyk+p+qck � cyk+qck�p

i
: (44)

If p 6= �q,
[� (p) ; � (q)] = � (p+ q)� � (p+ q) = 0: (45)

If, however, p = �q,

[� (p) ; � (�p)] =
X
k

h
: cykck : +

D
cykck

E
0
� : cyk�pck�p : �

D
cyk�pck�p

E
0

i
: (46)

d

We can now make the shift k� p! k within the normal or-
dering sign because it does not introduce infinite quantities.
The two terms cancel. We are left with

[� (p) ; � (�p)] =
X
k

hD
cykck

E
0
�
D
cyk�pck�p

E
0

i

= � L

2�
p: (47)

Note the importance of the presence of the infinite Dirac sea.
Thus

[� (p) ; � (q)] = �Lp
2�
Æp;�q : (48)

This is an example of a current algebra. It almost looks like
a bosonic commutation relation. We can make it precisely
that by defining

bq =

r
2�

Lq
� (�q) (q > 0); (49)

byq =

r
2�

Lq
� (q) (q > 0); (50)

such that

h
bq ; bq0

i
=

h
byq ; b

y
q0

i
= 0; (51)h

bq ; b
y
q0

i
= Æq;q0 : (52)

These are bona fide bosonic creation and annihilation oper-
ators. We can write

� (q) =

8<
:
q

Lq
2� b

y
q q > 0;q

Ljqj
2� b�q q < 0;

(53)

and

c

:  y (x) (x) : =
N̂

L
+

1

L

X
q>0

�
e�iqx� (q) + eiqx� (�q)� (54)

=
N̂

L
+

1p
2�L

X
q>0

p
q
�
eiqxbq + e�iqxbyq

�
: (55)
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It is quite easy to show thath
bq; N̂

i
=
h
byq;; N̂

i
= 0: (56)

Finally, note that

bq jNi0 = 0; 8 q;N: (57)

Physically, this means that the N -particle ground state con-
tains no particle-hole excitations.

Normal ordering bosons (also denoted by : ABC : : : :)
means transposing bq’s to the right and byq’s to the left, with
no accompanying sign. Likewise, it is equivalent to subtract-
ing the vacuum expectation values (when taking averages
with respect to the vacuum state) and for two operators

: AB := AB � hABi0 : (58)

VI Completeness of the bosonic rep-
resentation

There is an important theorem, due to Haldane [15], that
shows that the N -particle Hilbert spaceHN , spanned by all
possible particle-hole excitation of jNi0, is also spanned by
applying byq’s on jNi0 any number of times

jNi 2 HN ) jNi = f
��
byq
	� jNi0 ; (59)

where we denoted a general ket inHN by jNi and f
��
byq
	�

is an general function of the bosonic creation operators.
Therefore, we have a faithful representation ofHN in terms
of bosons.

VII Klein factors

Hilbert spaces with different numbers of particles, however,
cannot be connected with byq’s, bq’s or N̂ . But, fermionic
creation and annihilation operators do just that. Therefore,
to complete the bosonic prescription we need to define new
operators, called Klein factors, that change N by one. We
will call it F , with the following defining properties

(i)
�
F; byq

�
=
�
F; bq

�
=
�
F y; byq

�
=
�
F y; bq

�
= 0;

(ii) F y jNi0 = jN + 1i0 ;
(iii) F jNi0 = jN � 1i0 :

(60)

It follows that, for a general N -particle state jNi =
f
��
byq
	� jNi0

F y jNi = f
��
byq
	�
F y jNi0 = f

��
byq
	� jN + 1i0 ; (61)

F jNi = f
��
byq
	�
F jNi0 = f

��
byq
	� jN � 1i0 : (62)

In other words F y jNi (F jNi) contains the same particle-
hole excitations as jNi, but created on a different, (N + 1)-
((N � 1)-) particle ground state. It is clear from its defini-
tion that F is unitary F�1 = F y. Also,

h
F; N̂

i
= F; (63)h

F y; N̂
i

= �F y: (64)

We can now, with the help of F; F y, and byq’s, acting on j0i0
generate the whole Hilbert space H.

VIII Fermionic creation and
annihilation operators

We now establish one of the most important building
blocks of the bosonization dictionary: the expression of the
fermionic annihilation operator (x) in terms of bosons, N̂ ,
and Klein factors. For that, we first derive the commutators
of  (x) with the bosons

�
bq;  (x)

�
=

r
2�

Lq

1p
L

X
kp

eipx
h
cyk�qck; cp

i

= �
r

2�

Lq

e�iqxp
L

X
k

eikxck

= �
r

2�

Lq
e�iqx (x) ; (65)

�
byq;  (x)

�
=

r
2�

Lq

1p
L

X
kp

eipx
h
cyk+qck; cp

i

= �
r

2�

Lq
eiqx (x) : (66)

Applying Eq. (65) on the N -particle ground state jNi 0
c

�
bq ;  (x)

� jNi0 = bq (x) jNi0 = �
r

2�

Lq
e�iqx (x) jNi0 � �q (x) (x) jNi0 : (67)

d

Thus,  (x) jNi0 is an eigenstate of bq, with eigenvalue
�q (x), for any q > 0. Eigenstates of bosonic annihilation
operators are called coherent states (See Appendix B, for a

brief discussion). Since  (x) jNi0 2 HN�1

 (x) jNi0 / exp

"X
q>0

�q (x) b
y
q

#
jN � 1i0 ; (68)
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or

 (x) jNi0 = �(x) exp

"X
q>0

�q (x) b
y
q

#
F jNi0 ; (69)

where � (x) is a c-number. It can be determined by

0 hN jF y (x) jNi0 = �(x)0 hN j exp
"X
q>0

�q (x) b
y
q

#
jNi0 ;

(70)

and since exp
hP

q>0 �
�
q (x) bq

i
jNi0 = jNi0 ; the right-

hand side is � (x). The left-hand side can be calculated

0 hN � 1j 1p
L

+1X
k=�1

eikxck jNi0 =
1p
L
ei

2�Nx
L = �(x) ;

(71)
since only the value of k = 2�N

L is left of the sum. Thus,

 (x) jNi0 =
Fp
L
ei

2�N̂x
L exp

"X
q>0

�q (x) b
y
q

#
jNi0 :

(72)

We would like to generalize this to any ket jNi 2 HN . For
that, the result of Section VI comes in handy

jNi = f
��
byq
	� jNi0 : (73)

We have

 (x) jNi =  (x) f
��
byq
	� jNi0 : (74)

Using Eq. (66),

 (x) byq =
�
byq � ��q (x)

�
 (x) (75)

)  (x)
�
byq
�n

=
�
byq � ��q (x)

�n
 (x) (76)

)  (x) f
��
byq
	�

= f
��
byq � ��q (x)

	�
 (x) : (77)

Then,

c

 (x) jNi = f
��
byq � ��q (x)

	�
 (x) jNi0

= f
��
byq � ��q (x)

	� Fp
L
ei

2�N̂x
L exp

"X
q>0

�q (x) b
y
q

#
jNi0

=
Fp
L
ei

2�N̂x
L exp

"X
q>0

�q (x) b
y
q

#
f
��
byq � ��q (x)

	� jNi0 (78)

Making use of the identity 1 in Appendix C,

exp

"
�
X
q>0

��q (x) bq

#
byq exp

"X
q>0

��q (x) bq

#
= byq � ��q (x) (79)

) exp

"
�
X
q>0

��q (x) bq

#
f
�
byq
�
exp

"X
q>0

��q (x) bq

#
= f

��
byq � ��q (x)

	�
: (80)

Finally,

 (x) jNi =
Fp
L
ei

2�N̂x
L exp

"X
q>0

�q (x) b
y
q

#
exp

"
�
X
q>0

��q (x) bq

#
f
�
byq
�
exp

"X
q>0

��q (x) bq

#
jNi0

 (x) jNi =
Fp
L
ei

2�N̂x
L exp

"X
q>0

�q (x) b
y
q

#
exp

"
�
X
q>0

��q (x) bq

#
jNi : (81)

This is one of the most important results of bosonization: the expression of the fermionic annihilation operator in terms of the
bosons, F and N̂ . It is called the Mattis-Mandelstam formula, after some of its discoverers [11, 13, 22, 23].
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IX Bosonic field operators

It will prove useful to define bosonic field operators by

' (x) = � ip
2�

X
q>0

��q (x) e
��q=2bq =

ip
L

X
q>0

eiqxp
q
e��q=2bq (82)

'y (x) =
ip
2�

X
q>0

�q (x) e
��q=2byq = � ip

L

X
q>0

e�iqxp
q
e��q=2byq (83)

� (x) = ' (x) + 'y (x) = � ip
2�

X
q>0

e��q=2
�
��q (x) bq � �q (x) b

y
q

�

=
ip
L

X
q>0

1p
q
e��q=2

�
eiqxbq � e�iqxbyq

�
: (84)

The “converging factor” e��q=2 is important in defining a proper bosonic theory in 1D. These equations should always be
viewed as having e��q=2 to ensure convergence at intermediate steps, but final results should be written taking �! 0+.

A useful result is

@x� = � 1p
L

X
q>0

p
qe��q=2

�
eiqxbq + e�iqxbyq

�

):  y (x) (x) : =
N̂

L
� 1p

2�
@x�: (85)

We leave as exercises the following relations, where the � sign means we have taken the limit jx� yj � L.

[' (x) ; ' (y)] =
�
'y (x) ; 'y (y)

�
= 0: (86)

�
' (x) ; 'y (y)

�
= � 1

2�
ln

�
1� exp

�
2�i

L
(x� y + i�)

��
� � 1

2�
ln

�
�2�i

L
(x� y + i�)

�
� i

2L
(x� y + i�) : (87)

[� (x) ; � (y)] = � 1

2�
ln

(
1� exp

�
2�i
L (x� y + i�)

�
1� exp

�� 2�i
L (x� y � i�)

�
)
� i

�
arctan

�
x� y

�

�
� i

L
(x� y)

�!0�! i

2
sgn (x� y)� i

L
(x� y) : (88)

�
' (x) ; @y'

y (y)
�
=

i

L

1

1� exp
�� 2�i

L (x� y + i�)
� � 1

2�

1

x� y + i�
+

i

2L
: (89)

�
@x' (x) ; 'y (y)

�
= � i

L

1

1� exp
�� 2�i

L (x� y + i�)
� � � 1

2�

1

x� y + i�
� i

2L
: (90)

[� (x) ; @y� (y)] =
i

L

(
1

1� exp
�� 2�i

L (x� y + i�)
� + 1

1� exp
�
2�i
L (x� y � i�)

�
)
� � i

�

�

(x� y)
2
+ �2

+
i

L

�!0�! �iÆ (x� y) +
i

L
: (91)

Prove also that, as �! 0+ and for any jx� yj

[� (x) ; @y� (y)] =
i

L
� i

1X
n=�1

Æ (x� y � nL) : (92)

Using identity 2 of Appendix C, we can write Eq. (81) as

 (x) =
Fp
L
ei

2�N̂x
L exp

h
�i
p
2�'y (x)

i
exp

h
�i
p
2�' (x)

i
(93)

 (x) =
Fp
2��

ei
2�N̂x
L exp

h
�i
p
2�� (x)

i
: (94)
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Note that Eq. (93) is normal-ordered, whereas Eq. (94) is
not. As a result, a diverging factor 1p

2��
appears in the lat-

ter.

As another exercise, prove that

 y (x+ a) (x)
�!0�! i

2�a
+
N̂

L
� 1p

2�
@x�; (95)

to first sub-leading order in a=L. If

:  y (x+ a) (x) :=  y (x+ a) (x)�
 y (x+ a) (x)
�
0
;

(96)
then we recover Eq. (85).

X Hamiltonian with a linear disper-
sion

We saw that, for low energies, one can linearize the disper-
sion. For right-movers we get " (k) = vF k so that

H0 = vF
X
k

k : cykck : : (97)

The normal ordering sign ensures the subtraction of the di-
verging ground state energy. We would like to find an ex-
pression for H0 in terms of bosons. There is a quick and
physically transparent way of arriving at the final result [15].
First, we look at theN -particle ground state jNi0. It is clear

that it is an eigenvector of H0 with eigenvalueE(0)
N

c

E
(0)
N

vF
=

8><
>:
P2�N=L

k=2�=L k = 2�
L

PN
n=1 n = �

LN (N + 1) for N > 0;

0 for N = 0;P2�N=L
k=2�=L�k = � 2�

L

PN
n=1 n = �

LN (N + 1) for N < 0;

(98)

=
�

L
N (N + 1) : (99)

It is clear that H0 conserves the number of particles, so we can try to find its action within a givenHN . From the commutators
of H0 with the bosons �

H0

vF
; byq

�
=
X
kp

k

r
2�

Lq

h
: cykck :; cyp+qcp

i
: (100)

However, h
: cykck :; cyp+qcp

i
=
h
cykck; c

y
p+qcp

i
= cyk

h
ck; c

y
p+qcp

i
+
h
cyk; c

y
p+qcp

i
ck = Æk;p+qc

y
kcp � Æk;pc

y
p+qck:

Therefore, �
H0

vF
; byq

�
=
X
kp

k

r
2�

Lq

�
Æk;p+qc

y
kcp � Æk;pc

y
p+qck

�

=
X
p

(p+ q)

r
2�

Lq
cyp+qcp �

X
p

p

r
2�

Lq
cyp+qcp = q

X
p

r
2�

Lq
cyp+qcp = qbyq: (101)

d

If jN;EN i is an eigenstate ofH0 with eigenenergyEN , then
from Eq. (101), byq jN;EN i is also an eigenstate with

H0b
y
q jN;EN i = (EN + vF q) b

y
q jN;EN i : (102)

In other words, the bosonic quanta added by b yq have ener-
gies vF q. Now, by acting with byq’s on jNi0 we can generate
the N -particle Hilbert space HN as we saw

jNi = f
��
byq
	� jNi0 : (103)

Thus, the only possible form for H0 is

H0 = vF
X
q>0

qbyqbq +
�

L
vF N̂

�
N̂ + 1

�
: (104)

The term in �vF N̂=L is often dropped in the thermody-
namic limit. In position space, we can also write, using
Eq. (27), (28), and (84)

H0 = vF

Z L=2

�L=2
dx :  y (x) (�i@x) (x) : ; (105)
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H0 =
vF
2

Z L=2

�L=2
dx : (@x�)

2 : +
�

L
vF N̂

�
N̂ + 1

�
;

(106)
which we leave as an exercise. Prove also that Eq. (106) can
be obtained directly from Eq. (105) by using the bosoniza-
tion formula, Eq. (93). But be careful: you will have to find
first  y (x+ a) (�i@x) (x), normal-order it, expand to
sub-leading order in a (why?), subtract the vacuum expecta-
tion value and integrate, just like you did for :  y (x) (x) :
before. Also, if you want to get the sub-leading term of or-
der N̂=L in Eq. (106), you will have to work to sub-leading
order in 1=L . This is a pretty long calculation.

XI From the lattice to the linearized
model

We now want to make contact with the lattice model defined
in the introduction. If we continue to forget about spin we

have

cj =
X
k2BZ

eikjp
L
ck: (107)

First note that the continuum limit (a ! 0, where a is the
lattice spacing we set to 1) extends the Brillouin zone to
(�11) : We can then identify the continuous variable x
with aj, x ! aj, to have the physical field fermionic oper-
ator

 phys (x) =
X
k

eikxp
L
ck: (108)

By “physical” we mean that it relates to the long-wavelength
part of the original fermions of, say, the Hubbard model. We
can split this sum in two parts, corresponding to k > 0 and
k < 0, and then shift each sum by �kF , respectively, so
that k = 0 corresponds to the Fermi points

c

 phys (x) =
X
k>0

eikxp
L
ck +

X
k<0

eikxp
L
ck =

1X
k=�kF

ei(k+kF )xp
L

ck+kF +

kFX
k=�1

ei(k�kF )xp
L

ck�kF

= eikFx

 1X
k=�kF

eikxp
L
ck+kF

!
+ e�ikF x

 
kFX

k=�1

eikxp
L
ck�kF

!
� eikF x R�phys (x) + e�ikF x L�phys (x) ;(109)

d

where we introduced physical field operators for right- and
left-movers.

We now make the jump of identifying the lattice model,
at low energies, with the linearized dispersion model of Sec-
tion III. The first thing to do is to let kF !1 in both terms
above. We then have two branches of fermions, labeled 1
and 2, corresponding to each term in Eq. (109), and we make
the identification

1 �! R

2 �! L:

The first operation (1 ! R) is quite straightforward. We
define the species 1 of fermions by

c1k = ck+kF (110)

 1 (x) =
X
k

eikxp
L
c1k =  R (x)!  R�phys (x) ;

(111)

where, in the last equation, we dropped the “phys” label to
show when we are working with the linear dispersion model.
The second term above needs more care because, if we de-
fine p = k+kF , then, for p > 0 the states are filled, whereas
for p < 0, the states are empty in the ground state. This is
reversed when compared with our previous definition. So

we define instead

�k = � (k + kF ))
�

�k � 0 ! �lled
�k > 0 ! empty

Then

X
k

eikxp
L
ck�kF

k!�k�!
X
k

e�ikxp
L
c�k�kF :

We define a second species (2) of fermions such that

c2k = c�k�kF (112)

 2 (�x) =
X
k

e�ikxp
L
c2k =  L (x)!  L�phys (x) :

(113)

Note the change of sign of x for going from the 2-fermions
to the left-moving fermions. The two kinds of fermions have
the same dispersion

"R (k) = vF (k � kF ) �! "1 (k) = vF k; (114)

"L (k) = �vF (k + kF ) �! "2 (k) = vF k; (115)

because of the definitions (110) and (112). We thus see that
both 1 and 2 fermions are bona fide right-movers! We must
attach the label L or R, or 1 or 2 to each operator now. But,
because of the sign change x ! �x when 2 ! L, we
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must make the same sign change in previous definitions if
we want to work withR andL, instead of 1 and 2 (which we
do). So we list all the previous important formulas, for both

R andL, with the appropriate changes and labels (c2k ! cLk ).
Note that only the expressions that contain x are modified,
since in k-space, both species are right-movers.

c

 R;L (x) =
X
k

e�ikxp
L
cR;Lk ; (116)

f R;L (x) ;  R;L (y)g =
n
 yR;L (x) ;  yR;L (y)

o
= 0; (117)

n
 R;L (x) ;  yR;L (y)

o
=

+1X
n=�1

Æ (x� y � nL) ; (118)

�R;L (q) =
X
k

cR;Lyk+q c
R;L
k ; (119)

�R;L (q) =

8<
:
q

Lq
2� b

R;Ly
q q > 0;q

Ljqj
2� b

R;L
�q q < 0;

(120)

:  yR;L (x) R;L (x) : =
N̂R;L

L
+

1

L

X
q>0

�
e�iqx�R;L (q) + e�iqx�R;L (�q)� ; (121)

=
N̂R;L

L
+

1p
2�L

X
q>0

p
q
�
e�iqxbR;Lq + e�iqxbR;Lyq

�
; (122)

 R;L (x) =
FR;Lp
L
e�i

2�N̂R;L
L x exp

"X
q>0

�q (�x) bR;Lyq

#
exp

"
�
X
q>0

��q (�x) bR;Lq

#
; (123)

'R;L (x) = � ip
2�

X
q>0

��q (�x) e��q=2bR;Lq =
ip
L

X
q>0

e�iqxp
q
e��q=2bR;Lq ; (124)

'yR;L (x) =
ip
2�

X
q>0

�q (�x) e��q=2bR;Lyq = � ip
L

X
q>0

e�iqxp
q
e��q=2bR;Lyq ; (125)

�R;L (x) = 'R;L (x) + 'yR;L (x) = � ip
2�

X
q>0

e��q=2
�
��q (�x) bR;Lq � �q (�x) bR;Lyq

�
(126)

=
ip
L

X
q>0

1p
q
e��q=2

�
e�iqxbR;Lq � e�iqxbR;Lyq

�
; (127)

 R;L (x) =
FR;Lp
L
e�i

2�N̂R;L
L x exp

h
�i
p
2�'yR;L (x)

i
exp

h
�i
p
2�'R;L (x)

i
; (128)

 R;L (x) =
FR;Lp
2��

e�i
2�N̂R;L

L x exp
h
�i
p
2��R;L (x)

i
; (129)

:  yR;L (x) R;L (x) : =
N̂R;L

L
� 1p

2�
@x�R;L; (130)

H0 = vF
X
q>0

X
�=R;L

qb�yq b
�
q +

�

L
vF N̂�

�
N̂� + 1

�
; (131)

H0 = vF

Z L=2

�L=2
dx
h
:  yR (x) (�i@x) R (x) : + :  yL (x) (i@x) L (x) :

i
; (132)

H0 =
vF
2

X
�=R;L

"Z L=2

�L=2
dx : (@x��)

2
: +

�

L
N̂�

�
N̂� + 1

�#
: (133)

The commutation relations of the bosonic field operators are (where� means that we consider jx� yj � L)
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['R;L (x) ; 'R;L (y)] =
h
'yR;L (x) ; 'yR;L (y)

i
= 0; (134)h

'R;L (x) ; 'yR;L (y)
i

= � 1

2�
ln

�
1� exp

�
�2�i

L
(x� y � i�)

��
(135)

� � 1

2�
ln

�
�2�i

L
(x� y � i�)

�
� i

2L
(x� y � i�) ; (136)

[�R;L (x) ; �R;L (y)] = � 1

2�
ln

(
1� exp

�� 2�i
L (x� y � i�)

�
1� exp

�� 2�i
L (x� y � i�)

�
)

(137)

� � i

�
arctan

�
x� y

�

�
� i

L
(x� y) (138)

�!0�! � i
2
sgn (x� y)� i

L
(x� y) ; (139)h

'R;L (x) ; @y'
y
R;L (y)

i
= � i

L

1

1� exp
�� 2�i

L (x� y � i�)
� � � 1

2�

1

x� y � i�
� i

2L
; (140)

h
@x'R;L (x) ; 'yR;L (y)

i
= � i

L

1

1� exp
�� 2�i

L (x� y � i�)
� � � 1

2�

1

x� y � i�
� i

2L
; (141)

[�R;L (x) ; @y�R;L (y)] = � i

L

(
1

1� exp
�� 2�i

L (x� y � i�)
� + 1

1� exp
�� 2�i

L (x� y � i�)
�
)

(142)

� � i

�

�

(x� y)
2
+ �2

� i

L
(143)

�!0�! �iÆ (x� y)� i

L
: (144)

d

XII Klein factors for more than one
species

There is one small modification we have to make in the de-
velopments of Sections III to X if we want to work with
more than one species of fermions. That has to do with
the Klein factors. The other operators, namely b�q ’s and N̂�

(� = R;L) all commute between different branches so, for
instance h

b�q ; b
�0y
p

i
= Æp;qÆ�;�0 ; (145)h

N̂� ; N̂�0

i
= Æ�;�0 : (146)

Remember how the Klein factors were defined. When acting
on the N -particle ground state jNi0, we have

F jNi0 = jN � 1i0 ; (147)

F y jNi0 = jN + 1i0 : (148)

But, if there are two species of fermions, the correspond-
ing (NR; NL)-particle ground states are tensor products (as-
sumingNR and NL are both positive, the other case is anal-
ogous)

c

jNR; NLi0 � jNRi0 
 jNLi0 = cRyNR
cRyNR�1 � � � c

Ry
1 j0i0 
 cLyNL

cLyNL�1 � � � c
Ly
1 j0i0 : (149)

Thus, to preserve the “fermionic” character of the annihilation/creation operators that makes them anti-commute between
species, we have to define FL so that it picks up the sign coming from anti-commuting it past the right-moving fermionic
operators

FL jNR; NLi0 � (�1)NR jNRi0 
 jNL � 1i0 ; (150)

F yL jNR; NLi0 � (�1)NR jNRi0 
 jNL + 1i0 : (151)

If there are more than two, say M , species, then one must define a particular order for the species (N 1; N2; � � � ; NM ) such
that

jN1; N2; � � � ; NM i0 � jN1i0 
 jN2i0 
 � � � jNM i0 (152)
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and pick up the total sign change from the preceding fermionic operators

F� jN1; N2; � � � ; NM i0 � (�1)
P��1

�=1 N� jN1; N2; � � � ; N� � 1; � � � ; NM i0 ; (153)

F y� jN1; N2; � � � ; NM i0 � (�1)
P��1

�=1 N� jN1; N2; � � � ; N� + 1; � � � ; NM i0 : (154)

This situation is common when we add spin (M = 4) : Naturally, the Klein factors still commute with b �q ’s. The main
consequence of definitions (153) and (154) is that the Klein factors anti-commute with one another

h
b�q ; F�0

i
=

h
b�yq ; F�0

i
=
h
b�q ; F

y
�0

i
=
h
b�yq ; F

y
�0

i
= 0; (155)n

F y� ; F�0
o

= 2Æ�;�0 ; (156)n
F� ; F�0

o
=

n
F y� ; F

y
�0

o
= 0; (if � 6= �0)���� (157)h

F� ; N̂�0

i
= Æ�;�0F� ; (158)h

F y� ; N̂�0

i
= �Æ�;�0F y� : (159)

I draw attention to the starred equation above. Klein factors are not like fermionic creation/annihilation operators: their
repeated action is not zero!

XIII The dual fields

It is also very common in the field theory literature to define new so-called dual fields, even and odd combinations of � R;L

� = 1p
2
(�L � �R)

� = 1p
2
(�L + �R)

=) �R = 1p
2
(� � �)

�L = 1p
2
(� + �)

(160)

such that

 R;L (x) =
FR;Lp
2��

e�i
2�N̂R;L

L x exp
��ip� [� (x) � � (x)]

�
; (161)

:  yR;L (x) R;L (x) : =
N̂R;L

L
+

1

2
p
�
@x�� 1

2
p
�
@x�; (162)

:  yR R : + :  yL L : =
N̂R + N̂L

L
+

1p
�
@x�; (163)

:  yR R : � :  yL L : = � 1p
�
@x�; (164)

[� (x) ; � (y)] = [� (x) ; � (y)] = 0; (165)

[� (x) ; � (y)] = � i
2
sgn (x� y) +

i

L
(x� y) ; (166)

[� (x) ; @y� (y)] = iÆ (x� y)� i

L
: (167)

H0 =
vF
2

Z L=2

�L=2
dx
h
: (@x�)

2
: + : (@x�)

2
:
i
+
�

L
vF

X
�=R;L

N̂�

�
N̂� + 1

�
(168)

Note the similarity of the second to last equation (when L!1) with a canonical commutation relation. Because of this, and
because each of � and � commutes with itself at any x and y, we define a canonical momentum field conjugate to � (x)

� (x) = @x� (x) : (169)

The Hamiltonian can now be written in the canonical form

H0 [� (x) ; � (x)] =
vF
2

Z L=2

�L=2
dx
h
: (�)

2
: + : (@x�)

2
:
i
+
�

L
vF

X
�=R;L

N̂�

�
N̂� + 1

�
: (170)



Brazilian Journal of Physics, vol. 33, no. 1, March, 2003 17

It is interesting to consider the Mattis-Mandelstam for-
mula in terms of the dual fields (161). The exponential of
� (x) can be written

e
�ip� R x

�L=2
dy�(y)

; (171)

which, in light of the behavior of �(x) as a canonical mo-
mentum, can be viewed as a displacement operator for the
� field. In other words, it shifts the �-field configuration
by a fixed amount of

p
� from �L=2 to x. This is a kink

configuration. It is clear that the x derivative of the kink
is a delta function of strength

p
� at x, which is consistent

with the expression (163) of the fermionic density in terms
of @x�. Now, the other exponential in (161), e�i

p
��(x) is

simply responsible for the transmutation of statistics. With-
out it, (171) is a bosonic operator and commutes with itself
at different spatial points. The exponential e�i

p
��(x) en-

sures, through (167), that the combination anti-commutes at
different locations, as can be easily checked.

XIV An interacting spinless model

XIV.1 The model and its solution

We would now like to apply these ideas to a specific
case. First recall that the fermionic operator is written as

 (x) = eikF x R�phys (x) + e�ikF x L�phys (x) (172)

� eikF x R (x) + e�ikF x L (x) : (173)

A general local electron-electron interaction  y y  
will generate terms like  yR R 

y
R R;  yL L 

y
L L;

 yR R 
y
L L; e

�2ikFx yR L 
y
R R; and e�4ikF x yR L 

y
R L;

and their Hermitian conjugates. Terms that contain oscillat-
ing exponentials, called Umklapp terms, average to zero
and are usually neglected (unless kF commensurates with
the underlying lattice and the exponential disappears; these
cases will be dealt with later). We therefore focus on a
“bare-bones” model that contains only the following inter-
action part

c

Hint =

Z L=2

�L=2
dx

"
g4
2

X
�

:
�
:  y� � :

�2
: +g2 :

�
:  yR R ::  yL L :

�
:

#
: (174)

d

Note that we have to normal-order after multiplying two
normal-ordered operators. This operation will not be usually
indicated in what follows but is always implied. The inter-
acting Hamiltonian (174) is known as the Luttinger model.
Luttinger was the first to propose and solve it, albeit incor-
rectly [9]. Mattis and Lieb gave the correct solution shortly

afterwards [10]. The nomenclature in terms of g2 and g4 is
standard in the literature and is amusingly called “g-ology”
[5, 4]. The Hamiltonian (174) assumes a delta-function type
of interaction. A more general longer range interaction can
be used, but we will not do it here (see Ref. [15]). In terms
of the bosonic field operators

c

Hint = Ha
int +Hb

int; (175)

Ha
int =

1

L

hg4
2

�
N̂2
R + N̂2

L

�
+ g2N̂RN̂L

i
; (176)

Hb
int =

Z L=2

�L=2

dx

2�

"
g4
2

X
�

: (@x��)
2
: �g2 : (@x�R) (@x�L) :

#
: (177)

The terms linear in @x�� integrate to zero. The non-interacting part is

H0 =
vF
2

Z L=2

�L=2
dx
X
�

: (@x��)
2
: +

�vF
L

X
�

N̂2
� : (178)

We immediately see, in bosonic language, that the g4-term only renormalizes the Fermi velocity

H = H0 +Hint =
vF
2

(1 + �g4)

Z L=2

�L=2
dx

"X
�

: (@x��)
2 : �2 �g2

(1 + �g4)
: (@x�R) (@x�L) :

#

+
�vF
L

(1 + �g4)

"X
�

N̂2
� + 2

�g2
(1 + �g4)

N̂RN̂L

#
; (179)
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where

�g2 =
g2

2�vF
; (180)

�g4 =
g4

2�vF
: (181)

In k-space the Hamiltonian reads
H = Hb +HN ; (182a)

Hb = vF (1 + �g4)
X
q>0

q

"X
�

b�yq b
�
q + �

�
bRyq bLyq +H: c:

�#
; (182b)

HN =
�vF
L

(1 + �g4)

"X
�

N̂2
� + 2�N̂RN̂L

#
; (182c)

d
where � = �g2

(1+�g4)
: The astonishing feature of one-

dimensional systems is the fact that the interacting Hamil-
tonian (182) can be diagonalized exactly! This is achieved
by the so-called Bogoliubov transformation. We will just
state the results and leave the details for the Appendix D. In
terms of new bosonic operators (we will use indices 1 and
2 instead of R and L for the new fields; not to be confused
with the labels in Section XI)

d1q = cosh  bRq + sinh  bLyq ; (183)

d2yq = sinh  bRq + cosh  bLyq ; (184)

bRq = cosh  d1q � sinh  d2yq ; (185)

bLyq = � sinh  d1q + cosh  d2yq ; (186)

such that

tanh 2 = �)  =
1

4
ln

�
1 + �

1� �

�
; (187)

then Hamiltonian (182b) becomes

Hb = vF (1 + �g4)
p
1� �2

X
�=1;2

X
q>0

qd�yq d
�
q + const:

(188)
The constant above is actually infinite but is subtracted out
by normal ordering. It is convenient to define

g �
r

1� �

1 + �
=

r
1 + �g4 � �g2
1 + �g4 + �g2

; (189)

u � vF (1 + �g4)
p
1� �2 = vF

q
(1 + �g4)

2 � �g22 :

(190)

In the literature, one also finds K = g: It follows that

Hb = u
X
�

X
q>0

qd�yq d
�
q ; (191)

and

c

d1q =
1

2

��
1p
g
+
p
g

�
bRq +

�
1p
g
�pg

�
bLyq

�
; (192)

d2yq =
1

2

��
1p
g
�pg

�
bRq +

�
1p
g
+
p
g

�
bLyq

�
: (193)

The inverse transformation is

bRq =
1

2

��
1p
g
+
p
g

�
d1q �

�
1p
g
�pg

�
d2yq

�
; (194)

bLyq =
1

2

�
�
�

1p
g
�pg

�
d1q +

�
1p
g
+
p
g

�
d2yq

�
: (195)

It is sometimes convenient to realize that the above transformation can be generated canonically with the unitary operator

UB = exp

"

X
q>0

�
bRyq bLyq � bRq b

L
q

�#
; (196)

U�1B = U yB; (197)

UBb
R
q U

�1
B =

1

2

��
1p
g
+
p
g

�
bRq �

�
1p
g
�pg

�
bLyq

�
; (198)

UBb
Ly
q U�1B =

1

2

�
�
�

1p
g
�pg

�
bRq +

�
1p
g
+
p
g

�
bLyq

�
: (199)
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After the canonical transformation, we must identify bR;Lq ! d1;2q to make contact with Eqs. (183-195). Besides, the fact that
the transformation is canonical guarantees that the new operators d �q obey bosonic commutation relations. It is convenient to
define new bosonic field operators (though we still use ' and �, the indices 1 and 2 will distinguish them from the ones related
to bR;Lq ),

'1;2 (x) =
ip
L

X
q>0

e�iqxp
q
e��q=2d1;2q ; (200)

'y1;2 (x) = � ip
L

X
q>0

e�iqxp
q
e��q=2d1;2yq ; (201)

�1;2 (x) = '1;2 (x) + 'y1;2 (x) (202)

=
ip
L

X
q>0

1p
q
e��q=2

�
e�iqxd1;2q � e�iqxd1;2yq

�
: (203)

For future use, take note of the following commutators, analogous to (134-136)

['1;2 (x) ; '1;2 (y)] =
h
'y1;2 (x) ; '

y
1;2 (y)

i
= 0; (204)h

'1;2 (x) ; '
y
1;2 (y)

i
= � 1

2�
ln

�
1� exp

�
�2�i

L
(x� y � i�)

��
(205)

� � 1

2�
ln

�
�2�i

L
(x� y � i�)

�
� i

2L
(x� y � i�) (206)

d

From (183) and (184),

�1;2 (x) = cosh  �R;L � sinh  �L;R; (207)

and in terms of the canonical pair � and �, by using (192)
and (193)

�1;2 =
1p
2

�p
g� (x)� � (x)p

g

�
; (208)

� (x) =
1p
2g

[�1 (x) + �2 (x)] ; (209)

� (x) =

r
g

2
[�2 (x)� �1 (x)] : (210)

In terms of these new fields, the diagonalized Hamiltonian
is

Hb =
u

2

X
�=1;2

Z L=2

�L=2
dx : (@x��)

2
: (211)

=
u

2

Z L=2

�L=2
dx

�
g : (@x�)

2
: +

1

g
: (@x�)

2
:

�
(212)

Now, the reason for calling � and � as dual fields be-
comes transparent. The pairs [� (x) ;�� (y) = @y� (y)] and
[� (x) ;�� (y) = @y� (y)] are both canonically conjugate
and give equivalent, �- or �-representations of (212), like

the x- and p-representations in quantum mechanics. If we
define the coefficient of the squared derivative of the field in
a given representation as the “coupling constant” (1=g in the
�-representation, for example), then a weak coupling theory
in one representation is “dual” (equivalent) to a strong cou-
pling theory in the other and vice-versa. From (189), we see
that g < 1 corresponds to repulsive interactions and g > 1
to attractive ones, g = 1 being the non-interacting point.
Thus, the above duality links repulsive and attractive cases
and the non-interactive theory is self-dual.

Finally, the HN part is diagonalized by defining�
N̂

Ĵ

�
= N̂R � N̂L; (213)

HN =
�vF
2L

(1 + �g4)
h
(1 + �) N̂2 + (1� �) Ĵ2

i
=

�

2L

up
1� �2

h
(1 + �) N̂2 + (1� �) Ĵ2

i

=
�

2L

�
u

g
N̂2 + ugĴ2

�
: (214)

XIV.2 Correlation functions of the spinless
model

We will now calculate some important correlation func-
tions of Hamiltonian (179) at T = 0. We start with the
smooth part of the density (charge)
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Ôc (x) =:  yR (x) R (x) : + :  yL (x) L (x) : =
N̂R + N̂L

L
+

1p
2�

[@x�L (x)� @x�R (x)]

=
N̂

L
+

r
g

2�
[@x�2 (x)� @x�1 (x)] =

N̂

L
+

r
g

2�L

X
q>0

p
qe��q=2

�
e�iqx

�
d2q + d1yq

�
+ eiqx

�
d2yq + d1q

��
:(215)

where we used the inverse of Eq. (207). If we focus on the fluctuation part (second term), we write

Dc (x; y) �
D
ÆÔc (x) ÆÔc (y)

E
(216)

=
g

2�L

X
p;q

p
pqe��(p+q)=2

h
e�i(qx�py)



d2qd

2y
p + d1yq d

1
p

�
+ ei(qx�py)



d2yq d

2
p + d1qd

1y
p

�i

=
g

2�L

X
q

qe��q
h
e�iq(x�y) + c: c:

i
= � g

2�2 (x� y)
2 : (217)

d

We stress a few aspects of the above result. First, the ex-
pectation value is calculated with respect to the interact-
ing ground state of Hamiltonian (191). Second, the crossed
terms are obviously zero and only q = p terms survive.
Besides, we see that the power law decay of the correla-
tion function occurs with exponent 2, which is also the non-
interacting value. Therefore, there is no renormalization by
interactions of the power-law exponent of this correlation

function. This will not occur in general, as we will see.
Finally, the interactions only change the pre-factor of the
power law. This actually gives the q ! 0 limit of the Fourier
transform of the Dc correlation function, which is related to
the compressibility of the system.

We now focus on a different correlation function. The
staggered part of the density is

c

ÔCDW (x) � e�2ikF x
e�i

2�
L N̂RxF yRFLe

�i 2�L N̂Lx

L
ei
p
2�'yR(x)ei

p
2�'R(x)e�i

p
2�'yL(x)e�i

p
2�'L(x)

= e�2ikF xe�i
2�
L (N̂R+N̂L+1)xF

y
RFL
L

ei
p
2�['yR(x)�'yL(x)]ei

p
2�['R(x)�'L(x)]; (218)

which is now normal-ordered. We want to calculate the expectation value in the interacting ground state

DCDW (x� y) =
D
ÔCDW (x) ÔyCDW (y) + H: c:

E
: (219)

The non-fluctuating part (Klein and number factors) is

e�2ikF (x�y)
D
e�i

2�
L (N̂R+N̂L+1)xF yRFLF

y
LFRe

i 2�L (N̂R+N̂L+1)y
E
= e�2ikF (x�y)

D
e�i

2�
L (N̂R+N̂L+1)(x�y)

E
= e�2ikF (x�y)

D
e�i

2�
L (N̂+1)(x�y)

E
L!1�! e�2ikF (x�y); (220)

where we assumed the number eigenvalue is not extensive. If we define �' (x) � p
2� ['R (x)� 'L (x)], we can simplify the

notation to (we will suppress the oscillating exponential in intermediate steps)

ÔCDW (x) ÔyCDW (y) =
1

L2
ei �'

y(x)ei �'(x)e�i �'
y(y)e�i �'(y): (221)

Using identity 2 of Appendix C, we can normal-order this expression

ei �'(x)e�i �'
y(y) = e�i �'

y(y)ei �'(x)eC ; (222)

C =
�
�' (x) ; �'y (y)

�
= 2 ln

8<
: L

2�

q
(x� y)

2
+ �2

9=
; ; (223)
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) ÔCDW (x) ÔyCDW (y) =
1

4�2 (x� y)
2 e

i[ �'y(x)� �'y(y)]ei[ �'(x)� �'(y)]: (224)

We now use the following strategy. By definition,

�' (x) = i

r
2�

L

X
q>0

1p
q
e��q=2

�
eiqxbRq � e�iqxbLq

�
; (225a)

�'y (x) = i

r
2�

L

X
q>0

1p
q
e��q=2

�
eiqxbLyq � e�iqxbRyq

�
: (225b)

In terms of the d1;2q bosons we have

�' (x) = i

r
2�

L

X
q>0

1p
q
e��q=2

�
eiqx

�
cosh  d1q � sinh  d2yq

�� e�iqx
�� sinh  d1yq + cosh  d2q

��
= cosh  � (x) � sinh  �y (x) ; (226)

�'y (x) = cosh  �y (x)� sinh  � (x) ; (227)

where, by analogy with Eqs. (225), we defined

� (x) = i

r
2�

L

X
q>0

1p
q
e��q=2

�
eiqxd1q � e�iqxd2q

�
; (228a)

�y (x) = i

r
2�

L

X
q>0

1p
q
e��q=2

�
eiqxd2yq � e�iqxd1yq

�
: (228b)

We define now V (x; y) � � (x)� � (y) and find

�' (x)� �' (y) = cosh  [� (x)� � (y)]� sinh 
�
�y (x)� �y (y)

�
= cosh  V (x; y)� sinh  V y (x; y) : (229)

Inserting into Eq. (224),

ÔCDW (x) ÔyCDW (y) =
1

4�2 (x� y)
2 e

i[cosh  V y�sinh  V ]ei[cosh  V�sinh  V
y]

=
1

4�2 (x� y)2
ei[(cosh �sinh)V

y+(cosh �sinh)V ]e�X=2; (230)

where

X =
�
cosh  V y � sinh  V; cosh  V � sinh  V y

�
= � �V; V y� : (231)

We can normal order (230)

: ÔCDW (x) ÔyCDW (y) :=
1

4�2 (x� y)
2 e

i(cosh �sinh)V y

ei(cosh �sinh)V e�Y=2e�X=2; (232)

with
Y = (cosh  � sinh )2

�
V; V y

�
: (233)

Since X and Y are c-numbers

X + Y = (cosh 2 � sinh 2 � 1)
�
V; V y

�
= (g � 1)

�
V; V y

�
: (234)
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Now �
V; V y

�
=

�
� (x)� � (y) ; �y (x)� �y (y)

�
=

�
� (x) ; �y (x)

�
+
�
� (y) ; �y (y)

�� �� (x) ; �y (y)�� �� (y) ; �y (x)�
= 4 ln

�
L

2��

�
� 4 ln

0
@ L

2�

q
(x� y)

2
+ �2

1
A ! 4 ln

����x� y

�

���� : (235)

We made use of the fact that the commutator of � (x) is the same as the commutator of �' (x), Eq. (223). Finally, inserting into
Eq. (234) and Eq. (232), we have

: ÔCDW (x) ÔyCDW (y) : =
1

4�2 (x� y)
2

���� �

x� y

����
2(g�1)

ei(cosh �sinh)V
y

ei(cosh �sinh)V

=
1

4�2�2

���� �

x� y

����
2g

ei(cosh�sinh )V
y

ei(cosh �sinh)V (236)

Since the expression is now normal ordered, its vacuum expectation value is 1. Putting back in the oscillating exponential and
adding the Hermitian conjugate

DCDW (x) / cos (2kFx)

jxj2g : (237)

Here there is a non-trivial renormalization of the power law exponent by interactions. Half the exponent is called the anomalous
dimension of the operator ÔCDW . It is anomalous because dimensional analysis would lead to the value of 2, as can be seen
from the prefactor ��2 of Eq. (236).

We leave as an exercise the calculation of the following correlation functions, which correspond to 4k F density oscillations
and pairing (superconducting) correlations

Ô4kF � e�4ikF x yR L 
y
R L )

D
Ô4kF (x) Ôy4kF (x) + H: c:

E
/ cos (4kFx)

jxj8g ; (238)

Ôp �  y
R  L )

D
Ôp (x) Ô

y
p (x) + H: c:

E
/ 1

jxj2=g
: (239)

It is actually more convenient to set up the Mattis-Mandelstam formula directly in terms of the “new” bosons. Thus, prove
first that

 R;L (x) =
FR;Lp
2��

e�i
2�N̂R;L

L x

�
2��

L

� 1
4 (

1
g+g)

exp
n
�i
p
2�
h
cosh  'y1;2 (x) + sinh  'y2;1 (x)

io
�

exp
n
�i
p
2�
h
cosh  '1;2 (x) + sinh  '2;1 (x)

io
: (240)

Also, calculate the single-particle Green’s function

iG (x; tx; y; ty) =


T (x; tx) 

y (y; ty)
�
0
�
� 


 (x; tx) 
y (y; ty)

�
0

if tx > ty;

� 
 y (y; ty) (x; tx)
�
0

if tx < ty:
: (241)

The time dependence is introduced by means of the evolution operator Ô (t) = eiHtÔe�iHt. The time dependence of the
“new” bosons is obtained easily

d1q (t) = eiuqtd
1y
q d1q d1qe

�iuqtd1yq d1q = e�iuqtd1q ; (242)

d2q (t) = e�iuqtd2q : (243)

It follows that the “new” bosonic field operators depend on time in a very special manner

'1;2 (x; t) =
ip
L

X
q>0

e�iqxp
q
e��q=2d1;2q e�iuqt

=
ip
L

X
q>0

e�iq(x�ut)p
q

e��q=2d1;2q = '1;2 (x� ut) � '1;2 (x�) : (244)
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We thus see that the complete time dependence of the bosonic operators can be introduced by making x ! x + in the “1”
boson and x! x� in the “2” boson. It is also quite clear why they are called chiral: they correspond to right- and left-moving
waves, respectively. The Klein factors also acquire a time dependence, because the Hamiltonian contains number operators.
They can be conveniently written together with the number phases as

eiHtFR;Le
� 2�i

L N̂R;Lxe�iHt = FR;L exp

�
��i
L

�
N̂

�
x� u

g
t

�
� Ĵ (x� ugt)

��
: (245)

Finally, by using the fact that



 (x; tx) 

y (y; ty)
�
0
= eikF (x�y)

D
 R (x; tx) 

y
R (y; ty)

E
0
+ e�ikF (x�y)

D
 L (x; tx) 

y
L (y; ty)

E
0
; (246)

since the cross-term is zero, show that G (x; tx; y; ty) = ~G (x� y; tx � ty), where (neglecting the number eigenvalues in the
thermodynamic limit)

~G (x; t) =

�
eikF x

2� (x� ut)
� e�ikF x

2� (x+ ut)

��
�2

x2 � u2t2

� 1
4 (

1
g+g�2)

: (247)
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We give a derivation of (247) for the more general case of
electrons with spin in Appendix E. Two immediate and im-
portant consequences of Eq. (247) are the form of the local
density of states and the momentum distribution of a one-
dimensional system

�local (!) �
Z 1

�1

dt

2�
ei!t ~G (x = 0; t)

/
Z 1

�1

dt

2�
ei!t

1

t�
/ !��1; (248)

nR (k) �
Z L=2

�L=2
dxe�ikx ~GR

�
x; t = 0�

�
� 1

2
� C sgn (k � kF ) jk � kF j��1 ;(249)

where C is a constant, � = 1
2

�
g + 1

g

�
� 1; and the equal-

ity holds at the non-interacting point g = 1: We see that the
local density of states is suppressed to zero as ! ! 0, a
result peculiar to one dimension. Also, the momentum dis-
tribution function does not have a jump at kF as it does in
higher dimensions, but shows a power law non-analyticity
at the Fermi wave-vector.

XV The anisotropic Heisenberg
(XXZ) model

The XXZ spin- 12 Hamiltonian has already appeared in
Eq. (4) of Section II. We will set J = 1 as the energy scale.
There is a clever trick, due to Jordan and Wigner [24], that
maps spin- 12 operators to spinless fermions (it only works

for S = 1
2 ). We introduce fermionic operators cj and cyj ,

with the usual anti-commutation relationsn
cj ; cl

o
=

n
cyj ; c

y
l

o
= 0; (250)n

cj ; c
y
l

o
= Æj;l : (251)

If we focus on one site only, then we can make the following
mapping (nj � cyjcj)

Szj ! nj � 1

2
; (252a)

S+j � Sxj + iSyj ! cyj ; (252b)

S�j � Sxj � iSyj ! cj ; (252c)

for it reproduces the usual spin- 12 commutation relations�
S+j ; S

z
j

�
= �S+j ; (253a)

�
S�j ; S

z
j

�
= S�j ; (253b)�

S+j ; S
�
j

�
= 2Szj ; (253c)

and
P

a

�
Saj
�2

= 3
4 ; as can be readily checked. However,

we run into trouble if we try to directly generalize (252) to
different sites because, whereas spin operators belonging to
different sites commute, fermionic operators anti-commute.
We can cure that by attaching a string operator that changes
the statistics! We write

Szj ! nj � 1

2
; (254a)

S+j ! cyje
i��j ; (254b)

S�j ! cje
�i��j ; (254c)

�j �
j�1X
l=1

nl: (254d)

Obviously, the string operators leave (253) unchanged, since
they introduce number operators of different sites. For the
same reason, Eqs. (253a) and (253b) are immediately gen-
eralized to different sites
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�
S+j ; S

z
l

�
= �Æj;lS+j ; (255)�

S�j ; S
z
l

�
= Æj;lS

�
j : (256)

The generalization of Eq. (253c) depends crucially on the
string operators

c�
S+j ; S

�
l

�
= cyje

i��je�i��lcl � cl e
�i��lei��j cyj = �

�
cyjcl + cl c

y
j

�
ei��je�i��l = 0 (j 6= l) ; (257)

where the upper (lower) sign occurs if l > j (l < j). The string operators are able to introduce the appropriate sign change
that turns a commutator into an anti-commutator, thus correcting for the different statistics.

We can now use the mapping (254) in the Hamiltonian (4). The XY part is

Sxj S
x
j+1 + Syj S

y
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�
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2

�
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i�nj cyj+1

�
=

1

2

�
cyjcj+1 � cjc

y
j+1

�
=

1

2

�
cyjcj+1 +H: c:

�
; (258)

where we used cje
i�nj = �cj and cyje

i�nj = cyj . This is like a hopping term. Thus,

HXXZ =
1

2

X
j

�
cyjcj+1 +H: c:

�
+�

X
j

�
nj � 1

2

��
nj+1 � 1

2

�
: (259)

If we use periodic boundary conditions, we must identify SL+1 with S1: The end term will be

SxLS
x
L+1 + SyLS

y
L+1 =

1

2

�
S+LS

�
1 + S�LS

+
1

�
=

1

2

�
cyLe
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�i��Lcy1
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=
exp
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2
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cyLc1 � cLc

y
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�
=
ei�(N+1)

2

�
cyLc1 + cy1cL

�
; (260)
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where N is the total number of fermions. A phase is there-
fore left at the chain end. It is also convenient to transform
the hopping term by doing a gauge transformation

cj ! ei�jcj ; (261)

ck !
LX
j=1

e�i(k��)jcj = ck��; (262)

such that

cyjcj+1 ! cyje
�i�jei�(j+1)cj+1 = �cyjcj+1; (263)

cyLc1 ! cyLe
�i�Lei�c1 = ei�(1�L)cyLc1: (264)

The effect of the transformation is to change the sign of
the hopping term while shifting the momenta by �. The
chain end hopping has a phase ei�(N�L): Consequently, the
physics of the model is invariant if we change the sign of
the hopping term, which corresponds to J ! �J; � !
�� in the original model (up to a momentum shift of �).
Physically, this corresponds to a rotation of the spins by �
around the z-axis at every other site. The above choice of
a negative sign is convenient because then the dispersion is
" (k) = � cosk, like we had in Section II of these lectures.

Note that the total z-axis magnetization is

M =

LX
j=1

Szj = N � L

2
: (265)

We will mostly be working in sectorM = 0, whereN = L
2 :

The end phase is then ei�L=2 and we choose L even, so that
the phase disappears. The Fermi wave vector is

kF = �n =
�

2
; (266)

which corresponds to a half-filled band. The Fermi velocity
will be vF = sin kF = 1:

The first thing we notice is that the model at � = 0 is
trivially solved by the Jordan-Wigner transformation, since
we end up with non-interacting fermions. This is the so-
called XY model. We will not dwell further on it. When
� 6= 0, we get an interacting fermionic system.

We are now in a position to apply the bosonization tech-
nique to attack the model at � 6= 0. We first linearize around
�kF to get two branches of fermions which we let run from
�1 to 1: The fermionic field operator is

 (x) � eikF x R (x) + e�ikF x L (x) : (267)
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c
The XY part is by now familiar

HXY �
X
k;�

k : cyk�ck� :=

Z L=2

�L=2
dx
h
:  yR (x) (�i@x) R (x) : + :  yL (x) (i@x) L (x) :

i
: (268)

In order to bosonize the interaction, we need an expression for S z
j = cyjcj � 1

2 . First note that in the zero magnetization sector
hnji0 = 1=2, so that

Szj �:  y (x) (x) : : (269)

Using Eq. (267),
Szj �

X
�

:  y� (x) � (x) : +e
�2ikFx yR (x) L (x) + H: c: (270)

The crucial thing to notice is that S zj has a smooth and a rapidly oscillating part. The latter oscillates like

e�2ikFx = e�i�x = (�1)j : (271)

The interaction term is (�� (x) �:  y� (x) � (x) :)

Szj S
z
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h
�R + �L + (�1)j  yR L +H: c:

i h
�R + �L + (�1)j+1  yR L +H: c:

i
= (�R + �L)
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L R �  yL R 

y
R L �

�
 yR L

�2
+H: c:

= �2R + �2L + 4�R�L �
�
 yR L

�2
+H: c: (272)

The first two terms correspond to the kind of interaction we dealt with before. The last term is an Umklapp term and we will
ignore it for now. Thus, we get an effective model which is just the Luttinger model. The g-ology is

g2 = 4�; (273)

g4 = 2�: (274)

Remembering the whole procedure is only valid when �� 1, we get

g =

r
1 + �g4 � �g2
1 + �g4 + �g2

=

s
1 + �

� � 2�
�

1 + �
� + 2�

�

� 1� 2�

�
; (275)

u =

q
(1 + �g4)

2 � �g22 � 1 +
�

�
: (276)

In order to calculate correlation functions we also need an expression for S �
j ; which means we have to bosonize the string

operator

�j =

j�1X
l=1

nl �
Z x

�L=2
dy

"X
�

:  y� (y) � (y) : +
1

2

#
; (277)

where we have neglected the rapidly oscillating term in the integration. Using the expression of the density in terms of bosonic
field operators, we obtain

�j ! x

2
+

1p
�
� (x) + const: =

x

2
+

1p
2�

[�L (x)� �R (x)] + const; (278)

which is conveniently local. We will neglect the constant as it is a boundary effect that goes away in the thermodynamic limit.
By symmetrizing the string operator to make it hermitian and remembering k F = �

2
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; (279)
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where we have been cavalier about normalization factors which do not affect the long distance physics.
We will simply state the results of and leave as an exercise the calculation of the following correlation functions [12]

Gzz (x; t) = hSz (x; t)Sz (0; 0)i0 ; (280)

G+� (x; t) =


S+ (x; t)S� (0; 0)

�
0
: (281)

Each one consists of a smooth and a rapidly oscillating part. Let us start by G zz

Gzz (x; t) =
1

�
h@x� (x; t) @x� (0; 0)i0 + (�1)j

D
 yR (x; t) L (x; t) yL (0; 0) R (0; 0)

E
0

+(�1)j
D
 yL (x; t) R (x; t) yR (0; 0) L (0; 0)

E
0
: (282)

We have already calculated the static limit of the first term. Its dynamic generalization is straightforward and gives

G1
zz (x; t) = � g

4�2

"
1

(x� ut)
2 +

1

(x+ ut)
2

#
: (283)

The second term was also calculated in the static limit when we found DCDW (x) . The dynamical result is

G2
zz (x; t) /

(�1)j
jx2 � u2t2jg : (284)

Collecting everything

Gzz (x; t) = � g

4�2

"
1

(x� ut)2
+

1

(x+ ut)2

#
+ const:

(�1)j
jx2 � u2t2jg : (285)

The transverse part also has two contributions due to the smooth and oscillating parts of S � (Eq. (279)) given by

G+� (x; t) =
const:

jx2 � u2t2j1=4g
+

(�1)j const:
jx2 � u2t2j(�1+g+1=4g)

"
1

(x� ut)
2 +

1

(x+ ut)
2

#
: (286)
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We note in passing that restoring the initial sign of the XY
Hamiltonian results in multiplying Eq. (279) by (�1) j and
the consequent transfer of the same factor from the second
to the first term of Eq. (286).

XVI Haldane’s Luttinger liquid con-
jecture

Everything we have said is valid perturbatively � � 1:
Haldane has conjectured [15, 16], based on renormalization
group arguments, that the Luttinger model Hamiltonian we
analyzed in the Section XIV is valid even away from the
perturbative region, although the values of the interaction
constants g2 and g4 have a different expression in terms of
�. In fact, his conjecture should be valid for just about any
one-dimensional interacting gapless system. This is almost
universally believed to be true and has been checked for sev-
eral models. In the case of the XXZ model in Eq. (4), the
system is gapless for �1 < � � 1 and the conjecture is
believed to hold in this interval. Actually, it is known from

the exact solution that [12]

g =
�

2 (� � arccos�)
: (287)

It reduces to the perturbative result (275) when � � 1.
Haldane’s conjecture is actually a bit more predictive since
the low energy effective model involves three parameters,
namely the velocities u; vN = u

g and vJ = ug,

Heff = u
X
�

X
q>0

qd�yq d
�
q +

�

2L

h
vNN̂

2 + vJ Ĵ
2
i
; (288)

but the bosonization produced only two parameters u and g.
Thus, the three velocities bear a fixed relation

u2 = vNvJ : (289)

Conversely, the correlation exponent g can be obtained if the
velocities are known

g2 =
vJ
vN

: (290)

One-dimensional gapless systems whose low-energy prop-
erties can be described by the Hamiltonian (288) such that
(289) holds are called Luttinger liquids. This is because they
bear a relation with the Luttinger model that is analogous to
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the one between the free Fermi gas and Landau’s Fermi liq-
uid theory [25, 26, 27] of a higher dimensional (D > 1)
interacting fermionic system.

It is interesting to note that the isotropic point � = 1
corresponds to g = 1=2, where the two correlation func-
tions (285) and (286) coincide (after transferring the (�1) j
from the second to the first term of (286)), as they should.

XVII An interacting model of spin-12
fermions

XVII.1 The model and its solution

We now want to generalize what we have been doing to
electrons with spin S = 1

2 :With the knowledge that we have
accumulated the task is quite straightforward. We introduce
the following interacting Hamiltonian

c

Hint =

Z L=2

�L=2
dx

(
1

2

X
���0

h�
g4kÆ��0 + g4?Æ�;��0

�
:
�
:  y�� �� :

� �
:  y��0 ��0 :

�
:
i

+
X
��0

�
g2kÆ��0 + g2?Æ�;��0

�
:
�
:  yR� R� ::  yL�0 L�0 :

�
:

)
; (291)

d

where �, �0 = � now label spin projections along an arbi-
trary z-axis and we have for generality introduced different
coupling constants for parallel (k) and anti-parallel (?) spin
interactions. The SU(2) symmetric model has g ik = gi?.
This is a Luttinger model for spin- 12 electrons. It can be
solved by bosonization. One simply introduces bosons bR;Lq� ,

number operators N̂R;L
� , and Klein factors FR;L� with ad-

ditional spin indices, but with completely analogous defini-
tions and properties (see Sections III to XIII). Obviously,
operators with different spin indices commute, except for
Klein factors, which anti-commute (Section XIII).

First, if we write

��� �:  y�� �� :; (292)

then we can define charge and spin combinations

�c� � 1p
2
(��+ + ���) ; (293)

�s� � 1p
2
(��+ � ���) ; (294)

such that

��� =
1p
2
(�c� + ��s�) : (295)

It is easy to show thatX
�

�����0� = �c��
c
�0 + �s��

s
�0 ; (296)

X
�

�����0�� = �c��
c
�0 � �s��

s
�0 : (297)

Inserting into the interacting Hamiltonian (291) results in

c
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�L=2
dx
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�c��
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�cR�

c
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�
�sR�

s
L

�	
: (298)
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We can define the charge and spin combinations of the cou-
pling constants

gic � �
gik + gi?

�
; (299)

gis � �
gik � gi?

�
: (300)

In the presence of SU(2) symmetry, g is = 0: The interacting

Hamiltonian now reads

Hint =

Z L=2

�L=2
dx
X
�=c;s

"
g4�
2

X
�

����
�
� + g2��

�
R�

�
L

#
:

(301)
Obviously, definitions (293) and (294) induce analogous
combinations of number and bosonic operators, both in q
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and x space

N̂�(c;s) � 1p
2

�
N̂�+ � N̂��

�
; (302)

b�q(c;s) � 1p
2

�
b�q+ � b�q�

�
; (303)

etc., such that operators with different � labels commute.

After bosonization Eq. (291) reads

c

Hint = Ha
int +Hb

int; (304)

Ha
int =

X
�

�
1

L

hg4�
2

�
N̂2
R� + N̂2

L�

�
+ g2�N̂R�N̂L�

i�
; (305)

Hb
int =

X
�

Z L=2

�L=2

dx

2�

"
g4�
2

X
�

: (@x���)
2
: �g2� : (@x�R�) (@x�L�) :

#
: (306)

The non-interacting part can also be written in terms of charge and spin sectors as can be easily checked

H0 =
X
�

(
vF
2

Z L=2

�L=2
dx
X
�

: (@x���)
2 : +

�vF
L

X
�

N̂2
��

)
: (307)
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We now have two decoupled sectors corresponding to
charge and spin excitations whose solution in terms of ro-
tated bosons is analogous to what has already been done be-
fore for spinless fermions.

Let us briefly list a few of the important aspects of the
full solution. There will now be a velocity u� and a coupling
constant g� (or alternatively K�) for each sector � = c; s
given by

g� �
r

2�vF + g4� � g2�
2�vF + g4� + g2�

; (308)

u� � vF

s�
1 +

g4�
2�vF

�2

�
�
g2�
2�vF

�2

: (309)

Note that the SU(2) symmetric case is characterized by
gs = 1 and us = vF . The diagonalized Hamiltonian is
given

H =
X
��

u�
X
q>0

qd�yq�d
�
q� +

�

2L

h
vN�N̂

2
� + vJ�Ĵ

2
�

i
;

(310)
where the new bosons are defined in an obvious manner and

N� � NR� +NL�; (311)

J� � NR� �NL�; (312)

vN� � u�
g�
; (313)

vJ� � u�g�: (314)

Note the same fixed relation between velocities

u2� = vN�vJ�: (315)

That the dynamics of the Luttinger model can be writ-
ten in terms of decoupled charge and spin sectors, together

with Haldane’s conjecture that the universality class of gap-
less systems in one dimension is given at low energies by
the Luttinger model dynamics, leads to the phenomenon of
spin-charge separation, an important feature of fermionic
systems in one spatial dimension. An electron that is in-
troduced into an interacting system will rapidly decay into
its constituent elementary excitations: charge and spin den-
sity modes that propagate at different velocities (uc and us)
and that will spatially separate with time. This phenomenon
is completely absent in higher dimensions, at least in so far
as they are described by Landau’s Fermi liquid theory.

We note in passing that the Hubbard model, discussed at
the beginning of these lectures has

g2k = g2? = g4k = g4? = U (316)

at weak coupling U � t, such that

gc � 1� U

�vF
; (317)

uc � vF

�
1 +

U

�vF

�
; (318)

gs = 1; (319)

us = vF < uc: (320)

At strong and intermediate couplings, the full dependences
of both gc, uc, and us on U and the electron density n can
be obtained from the exact solution [28]. Although g s = 1
exactly, due to spin rotation invariance, us is not given by
vF . The reason for this lies in the renormalization group
flow from high to low energies and is outside the scope of
these lectures.
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XVII.2 Correlation functions of the spin-1/2
model

The stage is now set for the calculation of any correla-
tion functions we would like. We are aided by the fact that
the spin and charge dynamics decouple and so do the fac-

tors that involve only spin and charge fields. As this is fairly
analogous to the spinless case and poses no new conceptual
difficulty we will skip the calculational details. We will only
give the normal ordered form of the Mattis-Mandelstam for-
mula in terms of the new bosons

c

 R;L� (x) =
FR;L�p
2��

e�
2�i
L N̂R;L�x

�
2��

L

� 1
8 (gc+gs+

1
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+ 1
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)
�

exp�ip�
n
cc'

y
1;2c (x) + sc'

y
2;1c (x) + �

h
cs'

y
1;2s (x) + ss'

y
2;1s (x)

io
�

exp�ip�
n
cc'1;2c (x) + sc'2;1c (x) + �

h
cs'1;2s (x) + ss'2;1s (x)

io
; (321)

where we used the short notation

c� � cosh �; (322)

s� � sinh �: (323)

The definition of the new bosonic operators '1;2� (x) is induced by (293) and (294) and is quite obvious.
We can then define operators analogous to the spinless case

Ôc (x) =
X
��

:  y�� (x) �� (x) :; (324)

ÔCDW (x) =
X
�

e�2ikF x yR� (x) L� (x) ; (325)

Ô4kF (x) =
X
�

e�4ikF x yR� (x) 
y
R�� (x) L�� (x) L� (x) ; (326)

and others unique to the spin- 12 case, describing the smooth and oscillating parts of the spin density

Ôs (x) =
X
���

�3�� :  y�� (x) �� (x) :; (327)

Ôa
SDW (x) =

X
��

e�2ikFx�a�� 
y
R� (x) L� (x) ; (328)

where �a�� is the �; � element of the a-th Pauli matrix (�; � = �1, a = 1; 2; 3). Finally, pairing operators can be defined with
specific spin symmetries,

ÔS
p (x) = i

X
��

�2�� R� (x) L� (x) ; (329)

ÔT0
p (x) = i

X
��

�
�2�3

�
��
 R� (x) L� (x) ; (330)

ÔT�1
p (x) = i

X
��

�
�2
�
�1 � i�2

��
��
 R� (x) L� (x) : (331)

d

Eq. (329) corresponds to singlet superconductivity (like the
usual BCS pairing) while Eqs. (330) and (331) describe
triplet superconducting correlations with total pair spin pro-
jection Sz = 0 and Sz = �1, respectively. The correlation
functions are defined in the usual way

Dj (x) �
D
Ôj (x) Ô

y
j (0)

E
0
: (332)
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They are

Dc (x) =
gc

(�x)
2 ; (333)

DCDW (x) � cos (2kFx)

xgc+gs
; (334)

D4kF (x) � cos (4kFx)

x4gc
; (335)

Ds (x) =
gs

(�x)
2 ; (336)

Dz
SDW (x) � cos (2kFx)

xgc+gs
; (337)

Dx;y
SDW (x) � cos (2kFx)

x(gc+
1
gs
)
; (338)

DS
p (x) = DT0

p (x) � 1

x(
1
gc

+gs)
; (339)

DT�1
p (x) � 1

x(
1
gc

+ 1
gs
)
: (340)

The q ! 0 limits of the Fourier transforms of Eqs. (333)
and (336) give the bulk charge and spin susceptibilities of
the system, the former being related to the compressibility.

When the system is SU(2) symmetric and gs = 1, all three
components of Da

SDW (x) are equal and so are the singlet
and triplet pairing correlation functions, as it should be.

The above correlation functions give information about
the tendency of the system to show long range order. The
latter is forbidden in one dimension when the operator in
question has a continuous symmetry such as happens for the
spin (SU(2)) and the pairing (U(1)) correlations. Neverthe-
less, the correlations that decay slowest are the dominant
ones. Remembering that gc < 1 for repulsive interactions
and gc > 1 for attractive ones and focusing on the SU(2)
symmetric case, we see that attraction favors pairing (super-
conducting) correlations, whereas repulsion favors CDW or
SDW correlations. Still in the SU(2) symmetric case, 4kF
correlations dominate over CDW ones when gc < 1

3 : The
degeneracy between singlet and triplet pairing when there is
attraction and between SDW and CDW when there is repul-
sion is lifted by sub-leading logarithmic corrections to these
correlation functions, which we will not discuss [29, 30].

Finally, it is interesting to look at the single particle
Green’s function, defined in Section XIV. It is diagonal in
spin indices and is given by

c

~G� (x; t) =
sgn (t)

2�

"
eikF xp

(x� uct) (x� ust)
� e�ikFxp

(x+ uct) (x+ ust)

#�
�2

x2 � u2ct
2

� 1
8 (gc+

1
gc
�2)� �2

x2 � u2st
2

� 1
8 (gs+

1
gs
�2)

:

(341)

This is derived in Appendix E. Note, once again that the anomalous dimension is 1
8

�
g� +

1
g�
� 2
�
: As a consequence,

there will be is the usual anomalous power laws in the momentum distribution and local density of states, characteristic of
one-dimensional systems

~G (x; t = 0) � 1

x�
) nR (k) =

1

2
� C sgn (k � kF ) jk � kF j��1 ; (342)

~G (x = 0; t) � 1

t�
) �local (!) � !��1; (343)

d

where

� =
1

4

X
�

�
g� +

1

g�

�
: (344)

XVIII Gaps and the sine-Gordon the-
ory

We will now only mention an important aspect of the
bosonized theories we have treated so far. Let us start with
the XXZ model. In the bosonization of the Hamiltonian, we
ignored the Umklapp terms

HUmklapp =

Z
dx

��
 yR L

�2
+H: c:

�
: (345)

To leading order (forgetting Klein and number factors),

the bosonization version is given by

HUmklapp =
�

4�2�2

Z
dx
h
e�i4

p
��(x) +H: c:

i
(346)

� �

2�2�2

Z
dx cos

�
4
p
�� (x)

�
: (347)

The second form is rather cavalier with respect to Klein fac-
tors but is frequently used and contains the important part of
the physics. Similar terms occur in the Hubbard model. For
instance, we could write

Hback = g1?
X
�

Z
dx :  yR� L� 

y
L�� R�� :; (348)

or
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c

HUmklapp = g3?
X
�

Z
dxe�4ikF x :  yR� 

y
R�� L�� L� +H: c: : : (349)

d

(Here, we finally see where the other indices 1 and 3 have
gone!) Eq. (348) corresponds to a scattering event across
the Fermi surface with an accompanying spin flip and is
called a spin backscattering or simply backscattering term.
Eq. (349), an Umklapp term involving different spins, has an
oscillating factor, but at half-filling in the Hubbard model,
for example, this factor disappears (the factor of two comes
from the spin)

kF =
�n

2
=
�

2
! e�4ikF x = 1: (350)

When bosonized Eqs. (348) and (349) become

Hback � g1?
Z
dx cos

h
2
p
2��s (x)

i
; (351)

HUmklapp � g3?
Z
dx cos

h
2
p
2��c (x)

i
; (352)

which are quite similar to (347).
Let us look at the effect of such cosine terms. We fo-

cus on Eq. (347). We saw in Section XIV that the theory
in the absence of this term is described by the Hamiltonians
(211) or (212), where � and @x� are canonically conjugate
variables

[� (x) ; @y� (y)] = iÆ (x� y) : (353)

We can make the following canonical transformation

� ! p
g�; (354)

� ! �p
g
; (355)

which leaves (353) unchanged. In this case, the Umklapp
term becomes

HUmklapp ! �

2�2�2

Z
dx cos [4

p
�g� (x)] : (356)

It is known from renormalization group arguments that for
g > gcrit = 1=2; the Umklapp term is irrelevant: its ef-
fect on the low-energy sector is simply to renormalize the
effective parameters u and g but, other than this, it can be
ignored. However, if g < 1=2, then the Umklapp term is rel-
evant: it is responsible for the opening of a gap in the spec-
trum. In this case, a Luttinger liquid description is no longer
valid. The case g = gcrit = 1=2 (which coincides with the
isotropic Heisenberg model as we saw) is a marginal case.
The most important effect of (356) is the generation of loga-
rithmic corrections to the power laws of the spin correlation
functions [29, 30]. Thus, for the Heisenberg model

hS0 � Sji / (�1)j
p
ln jjj
jjj : (357)

From the exact expression of g in terms of � of the XXZ
model given in Eq. (287) of Section XV, we can see that
g 2 (1=2;1) if �1 < � < 1, and the system is a Luttinger
liquid. For � > 1, g < 1=2 and (356) opens a gap in the
spectrum. All this is corroborated by the exact solution.

This discussion can be easily generalized to the spinful
case. Indeed, the terms in Eqs. (351) and (352) are relevant
and generate a gap in the spin or charge spectra if g s < 1 or
gc < 1, respectively. Let us discuss the physics of each of
these cases separately. In a model with on-site interactions
only, the Umklapp term occurs only at half-filling because
of the commensurability condition (350). Then, for repul-
sive interactions (gc < 1), there is a gap in the charge sector.
Indeed, this is observed in the Hubbard model, in which any
finite U opens a gap at half-filling [20]. The spin sector re-
mains gapless and is a Luttinger liquid.

On the other hand, spin backscattering (Eq. (351)) is rel-
evant in the negative U Hubbard model, which describes
attractive on-site interactions. This is a spin-rotationally in-
variant model, so gik = gi?. Thus, there is a g1k term in
addition to (351). It is fairly easy to show that this kind
of term can be incorporated into a g2-type interaction by
g2k ! g2k � g1k; such that both g2c ! g2c � g1k, and
g2s ! g2s � g1k; effectively generating a gs < 1: This is
what is needed for (351) to be relevant and open a spin gap.
Indeed, the negative-U Hubbard model is known to possess
a spin gap at any filling. The charge sector remains gapless
with gc > 1;with dominant superconducting (singlet) corre-
lations. This is the closest to a superconductor we can get in
a one-dimensional system, since true long-range supercon-
ducting order is rigorously forbidden in 1D. There is a par-
ticular case of the sine-Gordon model, the value gs = 1=2,
where one can refermionize the system (i.e., map it back
to a different fermionic system) and solve it exactly [31]!
Because this solution was found by Luther and Emery, this
spin-gapped quasi-superconducting phase is commonly re-
ferred to as the Luther-Emery phase.

A Useful formulas

A.1 Sums in the first Brillouin zone

X
k2BZ

eikj =

L�1X
n=0

ei
2�
L nj

=

L�1X
n=0

xn =

(
L if x = 1;
1�xL
1�x if x 6= 1:
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where x = ei
2�j
L . It follows thatX

k2BZ
eikj = LÆj;0: (358)

Analogously

LX
j=1

eikj =

LX
j=1

ei
2�
L nj

=

(
L if x = 1;
1�xL
1�x if x 6= 1:

It follows that
LX
j=1

eikj = LÆk;0: (359)

A.2 Periodic delta-function

Consider the following “saw-tooth” function, defined on the
real axis

f (x) = n� 1

2
� x if x 2 (n� 1; n) ; (360)

where n 2 Z (see Fig. 6).

0 1 2 3 4
x

−0.8
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−0.4

−0.2

0

0.2

0.4

0.6

0.8

f(
x)

Figure 6. “Saw-tooth” function, defined in Eq. (360).

Its Fourier series can be written

f (x) =

1X
k=�1

ei2�kxfk;

where

fk =

Z 1

0

e�i2�kxf (x) dx

=

Z 1

0

e�i2�kx
�
1

2
� x

�
dx =

�
0 if k = 0;
1

2�ik if k 6= 0:

So

f (x) =
1

2�i

1X
k=�1
k 6= 0

ei2�kx

k
: (361)

Taking its derivative

@f

@x
=

1X
k=�1

ei2�kx � 1:

But from its definition

@f

@x
= �1 +

1X
n=�1

Æ (x� n) :

Thus,
1X

k=�1
ei2�kx =

1X
n=�1

Æ (x� n) : (362)

B Bosonic coherent states

Suppose there is only one boson b (
�
b; by

�
= 1). Then, the

state e�b
y j0i is an eigenstate of b, since from identity 1 of

Appendix C

e��b
y

be�b
y

= b+ � (363)

) be�b
y

= e�b
y

(b+ �) (364)

) be�b
y j0i = �e�b

y j0i : (365)

Note that e�b
y j0i is not normalized. Actually, using identity

2 of Appendix C

e�
�be�b

y

= e�b
y

e�
�bej�j

2

; (366)

and

h0j e��be�by j0i = ej�j
2 h0j e�bye��b j0i = ej�j

2

: (367)

Thus
j�i = e�

j�j2

2 e�b
y j0i (368)

is normalized. For different bosons labeled by q the coherent
states are

jf�qgi = exp

"X
q

 
�j�q j

2

2
+ �qb

y
q

!#
j0i : (369)

C Useful operators identities

1. Baker-Hausdorff formula

e�BAeB =

1X
n=0

1

n!
[A;B]n

= A+ [A;B] +
1

2!
[[A;B] ; B] + � � � ; (370)

where [A;B]n =
�
[A;B]n�1 ; B

�
and [A;B]0 = A.

2. If C � [A;B] and [A;C] = [B;C] = 0, then
eAeB = eA+BeC=2 and eAeB = eBeAeC .



Brazilian Journal of Physics, vol. 33, no. 1, March, 2003 33

D Bogoliubov transformation

Consider the following Hamiltonian, involving two bosons
R and L

H = RyR+ LyL+ �
�
RyLy + LR

�
: (371)

Define two new bosons S and T given by

S = �R + �Ly; (372a)

T y = �R+ �Ly; (372b)

whose inverse transformation is

R = �S � �T y; (373a)

Ly = ��S + �T y: (373b)

For S and T to obey canonical bosonic commutation rela-
tions we must have�

S; Sy
�
= �2 � �2 = 1:

Assuming � and � to be real, they can be parametrized by a
number  2 R

� = cosh ; (374a)

� = sinh : (374b)

Plugging (373) into (371), we get

H =
�
�2 + �2 � 2���

� �
SyS + T yT

�
+
�
�
�
�2 + �2

�� 2��
� �
SyT y + TR

�
+ 2� (� � ��) :

(375)
By choosing

tanh 2 = �; (376)

we can eliminate the crossed terms of Eq. (375) to get (we
also drop the constant term)

H =
1

cosh 2

�
SyS + T yT

�
: (377)

We can solve explicitly for  in terms of �

 =
1

4
ln

�
1 + �

1� �

�
: (378)

Note the condition that j�j < 1. For later use, we also quote

cosh 2 =
1p

1� �2
; (379)

sinh 2 =
�p

1� �2
; (380)

cosh  =
1

2

"�
1 + �

1� �

�1=4

+

�
1� �

1 + �

�1=4
#
;(381)

sinh  =
1

2

"�
1 + �

1� �

�1=4

�
�
1� �

1 + �

�1=4
#
:(382)

We thus get

H =
p
1� �2

�
SyS + T yT

�
: (383)

The spectrum of (383) is now trivial since S yS and T yT are
the number operators.

The transformation (373) can also be obtained canoni-
cally. The corresponding unitary operator is

U = exp
�

�
RyLy � LR

��
; (384)

U�1 = Uy; (385)

such that

URU�1 = �R� �Ly; (386a)

ULyU�1 = ��R+ �Ly: (386b)

The above formula can derived by means of the Baker-
Hausdorff formula of Appendix C. The transformed oper-
ators should now be read as R;L ! S; T in order to make
contact with (373).

E Single-particle Green’s function

In this Appendix, we calculate the single-particle Green’s
function for spin- 12 fermions. Since it is diagonal both in the
branch (“chirality”) and spin indices we need to find

c

 R;L� (x; t) 
y
R;L� (0; 0) =

1

2��

�
2��

L

� 1
4 (gc+gs+

1
gc

+ 1
gs
)
�

exp
�
�ip�

n
cc'

y
1;2c

�
xc�
�
+ sc'

y
2;1c

�
xc�
�
+ �

h
cs'

y
1;2s

�
xs�
�
+ ss'

y
2;1s

�
xs�
�io�

exp
�
�ip�

n
cc'1;2c

�
xc�
�
+ sc'2;1c

�
xc�
�
+ �

h
cs'1;2s

�
xs�
�
+ ss'2;1s

�
xs�
�io�

exp
�
i
p
�
n
cc'

y
1;2c (0; 0) + sc'

y
2;1c (0; 0) + �

h
cs'

y
1;2s (0; 0) + ss'

y
2;1s (0; 0)

io�
exp

�
i
p
�
n
cc'1;2c (0; 0) + sc'2;1c (0; 0) + �

h
cs'1;2s (0; 0) + ss'2;1s (0; 0)

io�
;

(387)
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where we have used (321) and already dropped the phase factors in N̂R;L. The time dependence, discussed in Section XIV.2
for the spinless case, is easily generalized for electrons with spin through the new entities x �� = x � u�t (� = c; s). We can
normal order the exponentials by using identity 2 of Appendix C eAeB = eBeAeC , where C = [A;B] and

C = �
n
c2c

h
'1;2c

�
xc�
�
; 'y1;2c (0; 0)

i
+ c2s

h
'1;2s

�
xs�
�
; 'y1;2s (0; 0)

i
+s2c

h
'2;1c

�
xc�
�
; 'y2;1c (0; 0)

i
+ s2s

h
'2;1s

�
xs�
�
; 'y2;1s (0; 0)

io
� �1

2

�
c2c ln

�
�2�i

L
xc�

�
+ c2s ln

�
�2�i

L
xs�

�
+ s2c ln

�
�2�i

L
xc�

�
+ s2s ln

�
�2�i

L
xs�

��
; (388)

where we used (205) and (206) generalized to the spinful case and the limits L ! 1 and � ! 0+ have already been taken.
The expectation value of Eq. (387) can now be easily calculated since the expectation value of the normal-ordered sequence
of exponentials is equal to 1

D
 R;L� (x; t) 

y
R;L� (0; 0)

E
0
=

1

2��

�
2��

L

� 1
4 (gc+gs+

1
gc

+ 1
gs
) � �iL

2�xc�

� c2c
2
� �iL
2�xs�

� c2s
2
�

L

�i2�xc�

� s2c
2
�

L

�i2�xs�

� s2s
2

:

(389)
Using

c� =
1

2

�
1p
g�

+
p
g�

�
; (390)

s� =
1

2

�
1p
g�
�pg�

�
; (391)

c2� + s2� =
1

2

�
1

g�
+ g�

�
; (392)

and c2� = 1 + s2�, we have

D
 R;L� (x; t) 

y
R;L� (0; 0)

E
0

=
�i
2��

�
�

xc�

� c2c
2
�
�

xs�

� c2s
2
�
�

xc�

� s2c
2
�
�

xs�

� s2s
2

=
�i
2�

1p
xc�xs�

�
�2

x2 � u2ct
2

� s2c
2
�

�2

x2 � u2st
2

� s2s
2

=
�i
2�

1p
xc�xs�

�
�2

x2 � u2ct
2

� 1
8 (

1
gc

+gc�2)� �2

x2 � u2st
2

� 1
8 (

1
gs

+gs�2)
: (393)

Analogously,

D
 yR;L� (0; 0) R;L� (x; t)

E
0
=
�i
2�

1p
xc�xs�

�
�2

x2 � u2ct
2

� 1
8 (

1
gc

+gc�2)� �2

x2 � u2st
2

� 1
8 (

1
gs

+gs�2)
: (394)

Thus,

GR;L� (x; t) =
�sgn (t)

2�

1p
(x� uct) (x� ust)

�
�2

x2 � u2ct
2

� 1
8 (

1
gc

+gc�2)� �2

x2 � u2st
2

� 1
8 (

1
gs

+gs�2)
; (395)

and

~G� (x; t) =
sgn (t)

2�

"
eikF xp

(x� uct) (x� ust)
� e�ikFxp

(x+ uct) (x+ ust)

#�
�2

x2 � u2ct
2

� 1
8 (gc+

1
gc
�2)� �2

x2 � u2st
2

� 1
8 (gs+

1
gs
�2)

:

(396)
The spinless case simplifies to

~G (x; t) =
sgn (t)

2�

�
eikF x

(x� ut)
� e�ikF x

(x+ ut)

��
�2

x2 � u2t2

� 1
4 (g+

1
g�2)

: (397)
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