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The purpose of this work is to study effects of differential rotation in the lower convective region of the Sun.
Similar to MHD case; the governing equations are separated in variables, allowing numerical integration in
this layer. This algorithm facilitates solutions of more complicated systems, with less computing time. Two
different known rotation profiles are used in order to fit the model. The fitting procedure is accomplished by
making use of sphericity and density shape parameters related to the rotation profiles. It is also shown that the
most important feature of rotation is to break the spherical symmetric distribution of density in this layer. As in
the MHD effects found before, differential rotation changes considerably the density of the reference model for

both cases.
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1. INTRODUCTION

It is well known that similar to other astronomical objects
the Sun also rotates around its axis. However, considering the
Sun as plasma rather than a rigid body, different parts of the
Sun are thought to rotate at different rates. This gives rise to
differential rotation which is mainly caused by the interaction
of rotation and convective motions [1]. In a previous study
magnetic field effects have been investigated in a lower con-
vective region nominated as LCR [2, hereafter Paper I]. LCR
is the region located in the vicinity of the base of convection
zone. Here we provide a two-dimensional (2-D) model for
this layer which can be used in inferring some physical pa-
rameters in the presence of differential rotation.

One of the great achievements of helioseismology was to
map out the internal rotation of the Sun. It revealed that the
convective zone was rotating differentially, with negligible
angular velocity variation in depth, and a radiative interior in
quasi-uniform rotation. These studies had shown the neces-
sity to take rotation into account as an additional parameter in
the solar models. Thus, inference of the solar internal rotation
could be possible by measuring the frequency differences be-
tween the Doppler-shifted sound waves. A detailed review of
recent progress in obtaining the solar rotation can be found in
the work of [3]. Sun spots motions provide another tool about
the rotation rate of the solar surface. It is well known that the
Sun’s rotation rate decreases with increasing latitude, so that
itis slowest at the poles. However, the interior of the Sun does
not spin the same way as the surface. Solar physicists believe
that the Sun’s inner core and the radiative zone rotate more
like a solid body, contrary to the outer convective zone rotat-
ing differentially. The intermediate shear layer with different
rotation properties was named by [4] as the solar tachocline.

On the other hand, physical effects in the overshoot region,
which includes the LCR, are known to play an important role
in solar evolution studies. A uniform rotation rate of Q =
2.7 x 107% 571 of the radiative interior (including part of the
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LCR) corresponds to the sidereal period of 27 days, which
also characterizes the turnover time motions at the base of
convective zone. According to [5] the angular velocity can
be considered almost constant with respect to depth in the
convective region. It decreases by 31 % from the value of 2.9
x 1076 571 at the equator towards the poles. Similarly, [6]
state that besides the lower rotation at the poles, a latitudinal
dependence of Q exists.

From the complete study of a differentially rotating Sun,
[7] concluded that the exact shape critically depends both on
the rotation law from the subsurface to the tachocline. As be-
fore, we have named the study zone extending in the layer
0.703R-0.723R., as LCR, which includes the 10* km deep
overshoot layer [8]. The centre of the solar tachocline is sit-
uated around 0.693R, + 0.002R; [9, hereafter CTST] and
our study area is located above it. Behaviour of this region,
especially near the base of the convective zone (used as r¢),
has been studied vigorously by [10]. In their work radial and
latitudinal variations of the solar rotation rates are obtained
from the observed solar oscillations. They conclude that the
helioseismological inverse models do not possess enough res-
olution for studying the dynamics as well the thickness of
the tachocline. Therefore more elaborate direct models still
need to be developed. [11], considering interaction between
a global rotation profile and Reynolds stresses described the
role of latitudinal shear instabilities in the solar tachocline.
We can cite many authors concerned about influence of rota-
tion (e.g. [6], [12], [13], [14]), as well as the magnetic dy-
namo effects [15].

The main aim of this study was to employ the thin shell
model of the LCR, previously used in the MHD modelling
in Paper I, with regard to the differential rotation effects in-
stead of the magnetic one. By successive transformations,
the governing fluid equations were separable in the spatial
variables for the steady state. This allowed the numerical in-
tegration of physical state variables for parametric values of
differential rotation rates (independent of time). The solar
model of [16, hereafter JCD96], which was calibrated with
respect to the solar oscillations, is used as a reference model.
We have then constructed a 2-D hydrodynamic modelling in-
cluding differential rotation in the LCR. Distributions of the
most important physical parameters related to the rotational
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effects are investigated by the formalism explained in more
detail in the following section. Numerical solutions of den-
sity, shear and vorticity are presented for two rotation profiles.
Results including figures and tables are given in Section 4 and
compared with some research works in Section 5. Different
aspects of the works cited above will be compared in the last
section with our results.

2. PHYSICAL AND MATHEMATICAL METHOD
2.1. Model Assumptions

In the present study, an algorithm suitable for a paramet-
ric representation of a differentially rotating thin LCR model
is developed. Coriolis and centrifugal effects due to rotation
are not considered as a perturbation to any other model rep-
resenting this layer. Rather, we consider a rotation profile in
the poloidal (r 0) direction which introduces azimuthal (¢)
symmetry in the spherical coordinates.

This model is imposed to satisfy the following physical as-
sumptions;

e In the radiative part, resistivity and viscosity are sufficiently
small allowing an ideal hydrodynamical representation.

e Similar to [4] a geostrophic flow is assumed in the upper
part of the LCR, with negligible viscosity. This is true for
sufficiently small Ekman and Rossby numbers, related to vis-
cosity and Coriolis effects in the tachocline [11]. Taking into
account these properties, only rotational terms are to be con-
sidered in the momentum transfer equation.

e On the other hand, slow meridional components driven by
buoyancy could exist ([1], [17]). For the small viscosity val-
ues in our zone of interest, the small meridional flow compo-
nents [18] are disregarded here, as it is also done in the work
of [19].

o Similar to Paper I, the sound speed in the thin LCR being
nearly constant (2.284x10° m/s), isothermality is assumed
for the equation of state.

With these assumptions in mind, we intend to search para-
metric solutions for LCR, which will provide the necessary
initial conditions for the future dynamical modelling.

2.2. Basic Equations

After these assumptions basic formulation of the hydrody-
namical equations used by many authors, is applied to the so-
lar LCR. As explained before the fluid motion is dominated
by the Coriolis and centrifugal forces, since the correspond-
ing Ekman number is asymptotically small. Then, we investi-
gate the influence of differential rotation from the solution of
the fundamental equations described by [20]:

9P

= T V() =0 )

d
pd—:=—Vp+pg—2p(9><V)—pQ><(Q><r) )

The above equations expressing mass continuity and the
momentum transfer are to be solved in the LCR. The phys-
ical parameters p, v, p and Q are used for the mean values
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of density, linear velocity, pressure and angular velocity re-
spectively. With isothermality, the sound speed c; relating
pressure p, to the density p is given by:

2

CS
P=pP 3

v
The ratio of specific heats, y=1.664. Due to nonlinearity, an-
alytical solutions of (1)-(3) being not possible without fur-
ther simplifying assumptions; we proceed with a steady-state

equilibrium case, excluding time.

2.3. Steady-State equilibrium

Introducing an axially symmetric rotation profile to the me-
chanical equilibrium configuration, characteristics of the az-
imuthal flow is investigated in a thin LCR. Assumptions given
above are taken into account for the fluid motion which is
dominated by centrifugal and Coriolis forces. Starting from
the steady-state equilibrium case, special solutions of the mo-
mentum transfer (2) are searched for an axially symmetric
angular velocity in the r and 6 directions of the spherical co-
ordinates [21]:

Q = wcos Be, — wsin Oegy @)

where o indicates the angular speed of the differential rota-
tion. As in Paper I, for a toroidal flow, which is independent of
the azimuthal ¢ direction (i.e. axially symmetric), the above
equations are reduced to a steady-state:

p(v.VIv=—=Vp+pg—2p(Qxv)—pQx (Qx7r). (5

With the use of (4), (5) can be separated in the r and 0 coor-
dinates:

2 9
pv— - +pg—2pvc0sin9—p0)2rsin29 (6)
r or
Zcotd 19
Vi _ 2o 2pvecos® — pw’rsinBcosO.  (7)
r r 00

We should note that v is used for the scalar ¢ components of
the linear velocity.

3. NUMERICAL SOLUTIONS

We use the similar type of separation of variables outlined
in [22] and Paper I, to rewrite (6) and (7) in a dimensionless
form. After some mathematical manipulation, they are com-
bined to a second order differential equation for density, to be
solved by our algorithm developed for MAPLE 9.5 (Maple-
soft, Waterloo, Ontario, Canada).

3.1. Description of the model equations including differential
rotation in the LCR

We consider the hydrodynamical modelling of differential
rotation in the LCR, covering a layer of x= 0.703 to 0.723 of
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the solar radius. Normalising the radial coordinate (r) as in
[23]:

r=R;+z. ®)

The parameters of (8) being selected so that R; is located at
the bottom of the LCR (i.e. z=0), d represents the thickness of
LCR, with z expressing the dimensionless height. The values
of z=0 and 1 correspond respectively to the bottom and top of
this shell as shown in Figure 1.

ml— x-0.723Rg

|e ¢=002Rg £=0713Rg (=0.5)

=) —————— x-R=0703Rg

FIG. 1: Thin shell representation of the LCR in the Sun [2].

The position parameter r¢ indicates the location of the base
of the convective zone. LCR is defined in the vicinity of r¢
as mentioned above. Therefore, its location is chosen at the
midpoint of the LCR, in order to make the problem more
tractable. The relative thickness M in the thin shell approx-
imation is again supposed to be small:

d
n= R << 1. 9)
We can similarly rescale (6) and (7) with the substitution
of the dimensionless variables p’,v',p’, g’ and ®'. These are
related to the physical parameters by the expressions given
in equation 10 of Paper I, with the addition of the rotation
parameter , related to the dimensionless @' by:

u

0= R, 0] (10)
If the maximum magnitude of @’ is set to 1, then the nor-
malisation velocity U can be determined. Finally, rewriting
(6) and (7) in dimensionless form and using the same way
of separation of variable for all physical parameters (v’ ®’,
p’ and v’) as in [2], a general second order equation for R is

obtained:

2 2R R 2 2 2 2
& dR AR, 2w WS R=0. (11
Y dz dz v(1+m32) v(1+m32)

¢\ is the dimensionless sound speed, i.e.c’> = yp'/p’, and
R expresses the radial dependence of density (for details of
derivation see Paper I). This equation will be solved in the
presence of differential rotation after defining the appropriate
boundary conditions.

3.2. Boundary conditions and model parameters including
rotation

A hydrodynamical model of a thin LCR becomes even
more complicated with the inclusion of magnetic and rota-
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tional effects. We attempt to construct a reliable model in this
region with high spatial resolution by imposing the following
boundary condition at the lower boundary z=0:

dR
dz
The constant k, satisfying the correct value of JCD96 (x =
nyg'/ C;Z = 0.222), which describes the hydrostatic equilib-
rium condition and the LCR density value of 203 kg/m> ob-
tained as in Paper 1. Then some parametric solutions of (11)
for two different angular speed profiles, available from helio-
seismology will be obtained as follows.
Case 1:

[25, hereafter WBL] studied the inference of solar internal
rotation from frequency splitting data from the profile of:

R(z) =1, —K. (12)

r

o(r,0) = 21{A — B[l - (7~ sin6)’] ~C[1 - (RL sin©)2)2}
®©

13)

®

with A=462, B=77 and C=42.

Relationship between the rotation rate and the heat bal-
ance, in the upper part of the tachocline is estimated by [25]
asd®/dz =< dT /dB. Since we have assumed that a thin LCR
should act as isothermal, there is no z-dependence of ® in this
region. Further, [6] and [26] have found that the radial depen-
dence of the angular speed has a constant value of 2.6x 107
rad/s in the lower convective region, which is used in our re-
gion of interest. Then, using the rotation rate (13) in the (10)
and Paper I we obtain the values of K(z)=1, U=1272 m/s as
Case 1. The sphericity parameter u and the density shape
parameter 0, described by Paper I. In Figure 2 the angular de-
pendencies of ® for the WBL and our thin shell method are
compared for the parametric values of u=1.20, 6=0.026. It
is seen that there is an acceptable fit between the values of
0.1277 and 0.8707 for®.

25010°
20x16°
o 15008
[radis] 5

10x10 ~wBL !

" : —Thin shell:

0.5x10 : p=1.20 :

; 5=0026

) 05 10 15 20 25 30

B[rad]

FIG. 2: Angular dependence of ® at the base of the convective zone
for u=1.20 and 6=0.026 (vertical dashed line shows the fitting limits)

Case 2:

From the helioseismic inversion of the observed LOWL
data, CTST have derived a solar internal rotation rate for
r>0.55 as below:

r—rc

o(7.0) zu)c—i—%[l—&—erf( )] % (@s(8)+c). (14)

w

The latitudinal differential rotation g in this expression is
defined as:

ws(8) = (DEQ+C100$26+CQCOS46, (15)
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FIG. 3: Angular dependence of ® at the base of the convective zone
for u=1.097 and 6=0.15.

with parameters 0Oc=21x 432.8 nHz, Wgo=21x460.7 nHz,
€1=-62.69 nHz, ¢;=-67.13 nHz; rc=0.713R, and w=0.025R.
This time®(r,0) obtained from this profile has almost a con-
stant value of 2.8x 107° rad/s in the LCR, with respect to
the radial distance. As in Case 1 K(z)=1, but U=1370 m/s.
From the comparison of the angular dependencies of ® given
by CTST and our thin shell method in Figure 3, we observe a
rather well fit between 0.1277 and 0.8707 for the parametric
values of y=1.097 and 6=0.15.

4. RESULTS

Imposing the boundary conditions defined in (12) for the
above two cases, we solve first the general second order dif-
ferential (11) for the radial dependence of density denoted
as R(z). A 4th order Runge-Kutta integration scheme is em-
ployed for a step size of 0.001 for this purpose. After R(z),
dimensionless density distributions in the LCR are obtained
and shown in Figures 4-5. Vorticity (Vo), as well as the linear
and angular velocity shears are drawn as functions of z and
0 in Figures 6-9. All z and angular variations are plotted at
the angular position of 6= 7t/2 and z=0.5, corresponding to the
equator and bottom of the convection zone respectively.

1.00
---JCD96
0.941 — —Thin Shell
_ 0.88;
p = -
0.82 Case 1
Case 2
0.764
0.70 T T T T
0 0.20 0.40 0.60 0.80 1.00

FIG. 4: Variations of the dimensionless density p’, for JCD96 and
the differentially rotating thin shell model.

In Figure 4 radial distribution of p’ is represented for Cases
1, 2 and JCD96. We notice that dimensionless density p’
varies from 1 to 0.795. This corresponds to a change of 20
% from the upper to the lower boundary of the LCR. Effect
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of rotation with respect to JCD96 is about 7 % at the upper
boundary. With the use of (3) and the density profile rep-
resented in this figure, the pressure scale height can also be
found as 6.02x 107 m and 6.04x 107 m for Case 1 and 2 re-
spectively, at the midpoint.

088
Case 1
0.86:
0.84
P
0.82
0.80 Case 2|
05 1.0 2.0 25

15
olrac]

FIG. 5: Comparison of p’ for Case 1, Case 2 at z=0.5 as a function
of 6.

In Figure 5 the angular dependencies of the dimensionless
density is given for the bottom of the convective zone. We
notice that the dimensionless density has the same maximum
value at the equator (6=7/2) but deviates about 8% at the
Polar Regions. In addition, with increasing departures from
sphericity (i.e. greater u), the LCR fluid density is seen to
increase towards the poles.

10

8
av'
dz
6
Case 1
) _’_———/
0 02 04 06 08 1.0

F4

FIG. 6: Linear velocity shear in the LCR with respect to dimension-
less height at 6=m/2.

From Figure 6, distribution of the linear velocity shear
v / dz is seen to increase with z, attaining greater values for
Case 2. In Figure 7 the dlnw/d® variations of the angular
velocity shear, which are related to the rotation rate itself are
given as a function of the co-latitudinal angle (6). For both
cases it is noticed that this ratio is positive for the northern
hemisphere (0<7/2) and negative for the southern one. The
most important result for both cases is that there exists no
shear in the angular velocity at the equator for this type of
differential rotation. There is also a factor of two between the
two cases at the extreme limits of 0.1277 and 0.8707 near the
poles.

Additionally the components of vorticity exhibit an inter-
esting feature. The radial component, shown in Figure 8§,
starts from a positive value in the northern hemisphere, van-
ishes at the equator and becomes negative in the southern
part. This behaviour repeats more abruptly for Case 2. From
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FIG. 7: Change of d/n®/d6 (angular velocity shear) with respect to
6 at at z =0.5.
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FIG. 8: Angular variations of radial component of Vo at z =0.5.

the co-latitudinal component in Figure 9, we observe negative
values for both cases with minima at the equator.

5. DISCUSSIONS AND CONCLUSION

Helioseismology has revealed that the convection zone in
the Sun should be rotating differentially. However, there ex-
ists a thin tachocline layer, separating the radiative interior
from the outer convective one. In this work we have concen-
trated on the hydrodynamical modelling of the LCR, includ-
ing centrifugal and Coriolis terms due to some special rota-
tion profiles. Indeed, viscosity and other secondary effects
being neglected, this is not a differential rotation model ap-

-0 Case 1

-100:
Case 2
-150:
-200
-250

-300

05 1.0 20 25

15
O[rad]

FIG. 9: Angular variations of co-latitudinal component of Vo at
z=0.5.

plicable to the whole convection zone in the Sun. As in Paper
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I, which deals only with the MHD effects, we have developed
an axially symmetric thin shell model, elaborating the pres-
ence of differential rotation for a Coriolis number around 2,
corresponding to a rapid rotation [27].

We modelled effects of Coriolis and centrifugal forces in a
layer of 0.703R-0.723R, and integrated numerically by a
step size of 0.001, for some physical variables. Finally, den-
sity and other parameters related to rotation are obtained in
dimensionless form from the solution of a general differential
(11). Simulations relating effects of rotational forces within
full spherical shells have revealed interesting behaviours for
two known differential rotation profiles. The sphericity (u)
and density shape parameters (8), describing behaviour of
the specific rotation profile in the thin shell method, are cal-
ibrated with two other rotation profiles existing in solar lit-
erature (WBL and CTST). The angular dependencies of our
rotation profiles (Figures 2 and 3) show resemblance with that
of [6] in an outer layer.

With the special rotation profiles, we have found that there
is a 20 % difference in density at the lower and upper limits
of the LCR (see Figure 4). This corresponds to an overall 7
% difference with respect to the non-rotating thin shell in the
reference model (JCD96). This also corresponds to the same
order of magnitude for the magnetised thin shell case (Paper
I). Comparing the pressure scale height values of our model
with that of [28], we find concordances about 99.6 and 99.3
% for Cases 1 and 2 respectively.

The rotation rate, which is found to be slower at the poles
than the equator is comparable in behaviour to that of [6]. As
stated further by [29], the generally cyclonic nature of vor-
ticity is in good accordance with our parametric solutions for
its components. While the radial one decreases from posi-
tive to negative values in both hemispheres, the angular one
is negative, with a minimum at the equator for both cases.
Similarly [11] also had shown that the radial component of
vorticity reaches a maximum near the pole, diminishing to
zero at the equatorial region (i.e. our =m/2). Another impor-
tant result related to vorticity is its conservation [11] at the
outermost boundaries for the angular positions (i.e. 0.1277
and 0.870m) in the Cases I and II. On the other hand, accord-
ing to [12] if the angular velocity shear goes to zero (our case
Figure 7), then the angular velocity should be constant in a
certain region (Figure 2 and 3). These conditions are seen to
be fulfilled from the figures indicated in parenthesis, with ad-
ditionally vorticity transforming smoothly into a rigid body
rotation (see Figure 8).

The changes in the linear velocity shear rate (9v’ / dz) with
respect to dimensionless height have a similar increasing ten-
dency with that of [30] at the equatorial region. In their tur-
bulence modelling, they found a linear change in the shear
rate with respect to radius, corresponding to a maximum of
1.5x107>s~!. Comparing this result to our Case 1 and 2 re-
sults, which are 3.80x 10~* and 8.25x 10~ respectively, we
can conclude that the centrifugal and Coriolis forces are pro-
ducing 10 times greater shear than the linear effects of turbu-
lence with rotation.

We should again emphasize that this is not a perturbation
method, but rather a parametric one, which can provide the
necessary initial conditions for studies including time as an
additional parameter.
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