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The Broad Histogram is a method allowing the direct calculation of the energy degeneracy g(FE).
This quantity is independent of thermodynamic concepts such as thermal equilibrium. It only de-
pends on the distribution of allowed (micro) states along the energy axis, but not on the energy
changes between the system and its environment. Once one has obtained g(F), no further effort is
needed in order to consider different environment conditions, for instance, different temperatures, for
the same system. The method is based on the exact relation between g(E) and the microcanonical
averages of certain macroscopic quantities N"P and N9*. For an application to a particular prob-
lem, one needs to choose an adequate instrument in order to determine the averages < N"P(E) >
and < Nd“(E) >, as functions of energy. Replacing the usual fixed-temperature canonical by the
fixed-energy microcanonical ensemble, new subtle concepts emerge. The temperature, for instance,
is no longer an external parameter controlled by the user. Instead, the microcanonical temperature
T (F) is a function of energy defined from g(E) itself, being thus an internal (environment inde-
pendent) characteristic of the system. Accordingly, all microcanonical averages are functions of E.
The present text is an overview of the method. Some features of the microcanonical ensemble are
also discussed, as well as some clues towards the definition of efficient Monte Carlo microcanonical
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sampling rules.

I Introduction

The practical interest of equilibrium statistical physics
is the determination of the canonical average
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of a macroscopic quantity . The system is kept at a
fixed temperature 7', and the Boltzmann constant is set
to unity. Both sums run over all possible microstates
available for the system, and Eg (Qg) is the value of
its energy (quantity @) at the particular microstate S.
The exponential Boltzmann factors take into account

the energy exchanges between the system and its envi-
ronment, in thermodynamic equilibrium.

An alternative is to determine the microcanonical
average
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of the same quantity ). In this case, the energy is
fixed. Accordingly, the system is restricted to the g(F)
degenerate microstates corresponding to the same en-
ergy level £, and the sum runs over them.

The canonical average (1) can also be expressed as
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where now the sums run over all allowed energy levels

E.
Both ¢(E) and < Q(F) > depend only on the
energy spectrum of the system. They do not vary

for different environment conditions. For instance, by
changing the temperature 7', the canonical average
< @ >r varies, but not the energy functions g(F)
and < Q(F) > which remain the same. Canonical
Monte Carlo simulations are based on equation (1), de-
termining < () >p: one needs another computer run
for each new fixed value of T'. Instead of this repeti-
tive process, it would be better to determine g(F) and
< Q(F) > once and forever: canonical averages can
thus be calculated from (3), without re-determining
¢(F) and < Q(F) > again for each new temperature.
The Broad Histogram method [1] (hereafter, BHM)
is based on the exact relation (4), to be discussed
later on. This equation allows one to determine g(E)
from the knowledge of the microcanonical averages
< NYP(E) > and < N4 (E) > of certain macroscopic
quantities: by fixing an energy jump AFE, the num-
ber Ng¥ (Nd") counts the possible changes one could
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perform on the current microstate S, yielding an en-
ergy increment (decrement) of AE. Adopting a mi-
crocanonical computer simulator in order to determine
these averages, and also < Q(F) >, one can calculate
canonical averages through (3) without further com-
puter efforts for different temperatures. As the Broad
Histogram relation (4) is exact and completely general
for any system [2], the only possible source of inaccura-
cies resides on the particular microcanonical simulator
chosen by the user.

BHM does not belong to the class of reweighting
methods [3-7]. These are based on the energy probabil-
ity distribution measured from the actual distribution
of visits to each energy level: during the computer simu-
lation, a visit counter V(F) is updated to V(F)+1 each
time a new microstate is sampled with energy E. At
the end, the (normalized) histogram V() measures the
quoted energy probability distribution. It depends on
the particular dynamic rule adopted in order to jump
from one sampled microstate to the next. One can,
for instance, adopt a dynamic rule leading to canonical
equilibrium at some fixed temperature Ty. Then, the
resulting distribution can be used in order to infer the
behaviour of the same system under another tempera-
ture 7' [3]. As canonical probability distributions are
very sharply peaked around the average energy, other
artificial dynamic rules can also be adopted in order to
get broader histograms [4-7], i.e. non-canonical forms
of VI(E).

BHM is completely distinct from these methods, be-
cause it does not extract any information from V(F).
The histograms for N'P(E) and N9*(E) are updated
to NU'P(E) + Ng¥ and N (E) 4+ N¢» each time a new
microstate .S 1s sampled with energy E. Thus, the in-
formation extracted from each sampled state S is not
contained in the mere upgrade V(E) — V(E) + 1, but
in the macroscopic quantities Ng" and Nd® carrying
a much more detailed description of S. In this way, nu-
merical accuracy is much higher within BHM than any
other method based on reweighting V(E). Moreover,
the larger the system size, the stronger is this advan-
tage, due to the macroscopic character of Ng" and Ngn.

A second feature distinguishing BHM among all
other methods 1s its flexibility concerning the partic-
ular way one uses in order to measure the fixed-F£ av-
erages < N'(E) > and < N(E) >. Any dynamic
rule can be adopted in going from the current sam-
pled state to the next, provided it gives the correct
microcanonical averages at the end, i.e. a uniform vis-
itation probability to all states belonging to the same
energy level E. The relative visitation frequency be-
tween different energy levels ' and E’ does not matter.
Any transition rate definition from level E to E’ can
be chosen, provided it does not introduce any bias in-
side each energy level, separately. In this way, a
more adequate dynamics can be adopted for each differ-
ent system, still keeping always the full BHM formal-
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ism and definitions. On the other hand, multicanon-
ical approaches [5-T] are based on a priori unknown
transition rates: they are tuned during the simulation
in order to get a flat distribution of visits at the end,
i.e. a uniform V(F) for which the visiting probability
per state is inversely proportional to ¢(F). By mea-
suring the actually implemented transition rates from
F to E’, which has been tuned during the computer
run and must be proportional to g(E)/g(E’), one can
finally obtain g(Z). Thus, multicanonical approaches
are strongly dependent of the particular dynamic rule
one adopts. Within BHM, on the other hand, all pos-
sible transitions between E and E’ are exactly taken
into account by the quantities NP and N9 themselves,
not by the particular dynamic transition rates adopted
during the computer run.

This text is divided as follows. Section Il presents
the method, while some available microcanonical sim-
ulation approaches are quoted in section III. In section
IV, some particularities of the microcanonical ensemble
are discussed. Possible improvements in what concerns
microcanonical sampling rules are presented in section
V. Conclusions are in section VI.

IT The Method

Consider a system with many degrees of freedom, de-
noting by S its current microstate. The replacement of
S by another microstate S’ will be denoted a move-
ment in the space of states. The first concept to be
taken into account is the protocol of allowed move-
ments. Each movement S — S’ can be considered al-
lowed or forbiden, only, according to some previously
adopted protocol. Nothing to do with the probability
of performing or not this movement within some partic-
ular dynamic process: BHM is not related to the partic-
ular dynamics actually implemented in order to explore
the system’s space of states. We need to consider the
potential movements which could be performed, not
the particular path actually followed in the state space,
during the actual computer run. Mathematically, the
protocol can be defined as a matrix P(S,S’) whose el-
ements are only 1 (allowed movement) or 0 (forbiden).
The only restriction BHM needs is that this matrix
must be symmetric, i.e. P(S,5) = P(5,S5), corre-
sponding to microscopic reversibility: if S — S’ is an
allowed movement according to the adopted protocol,
so 1s the back movement S — S. Given a system, one
needs first to define this protocol. For an Ising mag-
net, for instance, one can define that only single-spin
flips will be considered. Alternatively, one can accept
to flip any set of spins up to a certain number, or to
flip clusters of neighbouring spins, or any other proto-
col. BHM does not depend on which particular proto-
col 18 adopted. This free choice can be used in order to
improve the efficiency of the method for each particu-
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lar application (besides the already quoted freedom in
choosing the simulational dynamics, which has nothing
to do with this protocol of virtual movements).

Consider now all the g(E) microstates S belong-
ing to the energy level E [8], and some energy jump
AFE > 0 promoting these states to another energy
level B/ = E' 4+ AFE. For each S, given the previously
adopted protocol, one can count the number Ng¥ [1]
of allowed movements corresponding to this particu-
lar energy jump. The total number of allowed move-
ments between energy levels £ and E’, according to
the general definition (2) of microcanonical average, is
¢(F) < NUP(E) >. On the other hand, one can con-
sider all the g(FE’) microstates S belonging to the en-
ergy level E’ and the same energy jump —AFE < 0,
now in the reverse sense. For each S’ one can count the
number N3 [1] of allowed movements decreasing its
energy by AF. Due to the above quoted microscopic
reversibility, the total number g(E’) < N9(E’) > of
allowed movements between energy levels E’ and F is
the same as before. Thus, one can write

9(E) < N'P(E) >= g(E+AE) < N™(E+AE) > |

(4)
which 1s the fundamental BHM equation introduced
in [1]. The method consists in: a) to measure the
microcanonical averages < N (E) >, < N¥(E) >
corresponding to a fixed energy jump AFE, and also
< Q(F) > for the particular quantity @ of interest,
storing the results in E-histograms; b) to use (4) in or-
der to determine the function g(E); and ¢) to determine
the canonical average < ) > from (3), for any temper-
ature. Step a) could be performed by any means. Step
b) depends on the previous knowledge of, say, ¢(0), the
ground state degeneracy. However, this common factor
would cancel in step ¢).

There is an alternative formulation of BHM [9],
based on a transition matrix approach [10]. Other al-
ternatives can be found in [11-14]. Interesting origi-
nal analyses were presented in those references. All
of them differ from each other only on the particular
dynamics adopted in order to measure the BHM av-
erages < N'P(E) > and < N9(E) >. The common
feature is the BHM equation (4). For multiparametric
Hamiltonians, the energy E can be replaced by a vec-
tor (F1, F2...): in this way the whole phase diagram
in the multidimensional space of parameters can be ob-
tained from a single computer run [15], representing an
enormous speed up.

Besides the freedom of choosing the protocol of al-
lowed movements, the user has also the free choice of
the energy jump AE. In principle, the same g(E) could
be re-determined again for different values of AE. Con-
sider, for instance, the uniform Ising ferromagnet on
a L x L square lattice with periodic boundary condi-
tions, and only nearest-neighbour links, for an even
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L > 2. The total energy can be computed as the
number of unsatisfied links (pairs of neighbouring spins
pointing in opposed senses), i.e. EF = 0, 4, 6, 8, 10
...2L%—6,2L% —4, and 2L? [16]. Adopting the single-
spin-flip protocol of movements, there are two possi-
ble values, namely AF = 2 and AF = 4, for the en-
ergy jumps. Thus, one can determine the same g(F)
twice, within BHM. For that, one could store four dis-
tinct E-histograms: NYP(AE = 4), N¥®(AE = 4),
NY(AE = 2), N®(AE = 2). The first one corre-
sponds, for each microstate, to the number of spins sur-
rounded by four parallel neighbours, whereas the sec-
ond to the number of spins surrounded by four neigh-
bours pointing in the opposed sense: together, they
determine ¢(F) through (4), with AE = 4, from the
previous knowledge of ¢(0) = 2 and ¢(6) = 4L%. The
third and fourth histograms correspond, for each mi-
crostate, to the number of spins surrounded by just
three or just one parallel neighbours, respectively. To-
gether, they can be used, with AE = 2, in order to de-
termine g( ) also through (4), from the previous knowl-
edge of g(4) = 2L2.

In practice, when Monte Carlo sampling is used as
the instrument to measure the microcanonical averages,
this freedom on the choice of AE can also be used
in order to improve the statistical accuracies [1,2,17-
19], by taking all the possible values of AF simultane-
ously. Provided one has always AE << E (hereafter
the ground state energy will be considered as F = 0),
one can store only two E-histograms, with the combi-
nations

NP =Y [NGP(AE)AE (5a)
AE
and
NI =S INEQARYAE (s
AE

counted at each averaging state. This trick 1s an ap-
proximation very useful in order to save both memory
and time. However, it could, in principle, introduce sys-
tematic errors, depending on the particular application,
and should be avoided in those cases.

IIT Some Microcanonical Simu-
lation Approaches

The averaged value defined by equation (2) refers to
all microstates S[F] corresponding to the same energy
level E, each one being counted just once. For large
systems, their number ¢(E) is normally very large (ex-
cept, in most cases, near the ground state). In order
to obtain a Monte Carlo (random sampling) approxi-
mation for < Q(F) >, one actually averages only over
a restricted number of microstates, much smaller than
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g(E). So, these selected averaging states must repre-
sent the whole set without any bias, besides the normal
statistic fluctuations. The dynamic rule must prescribe
exactly the same sampling probability for each state.
The appropriate selection of these unbiased averaging
states within the same energy level is not an easy task.
It depends on the particular system under study, and
also on the particular set of allowed movements one
adopts. There 1s no general criterion available in or-
der to assure the uniform sampling probability among
fixed-F microstates.

One possible microcanonical simulation strategy is
to perform successive random movements, always keep-
ing constant the energy. For instance, the Q2R cellular
automaton follows this strategy concerning Ising-like
models [20]. Each movement consists in: a) to choose
some spin at random; b) to verify whether the energy
would remain the same under the flipping of this partic-
ular spin; and ¢) to perform the flip in this case. There
is no proof that this strategy is unbiased. Numerical ev-
idences support this possibility, although good averages
are obtained only after very, very long transients [21].
On the other hand, these enormous transient times can
be avoided [22] by starting the Q2R dynamics from a
previously thermalized state, i.e. by running first some
canonical steps under a well chosen temperature cor-
responding to the desired energy. One interpretation
of these findings is the following. Combined with the
single-spin-flip protocol, the fixed-energy dynamics is a
very restrictive strategy in what concerns a fast spread
over the whole set of microstates with energy E. In-
deed, numerical evidences of non ergodicity were found
[23]. Nevertheless, either by waiting enormous transient
times or by preparing the starting states, Q2R remains
a possible choice for microcanonical simulator of Ising
systems. However, it will not give good averages at all
for very small energies.

An alternative strategy is to relax a little bit the
fixed-energy constraint. This idea was introduced [24]
by allowing only small energy deviations along the path
through the space of states: successive random move-
ments are accepted and performed, provided they keep
the energy always inside a small window, i.e. always
within a pre-defined set of few adjacent energy lev-
els. Although sampling different energy levels during
the same run, the visits to each one are taken into ac-
count separately by storing the data in cummulative
E-histograms. Even so, each energy level could not
be completely free of influences from the neighbouring
ones. Nevertheless, this strategy could be a good ap-
proximation provided: a) the energy window width AE
is very small compared with the energy E itself; and b)
the final average < Q(E) > is a smooth function of
E. Again, the method does not work very well for very
low energies, where the condition AE << F cannot be
fulfilled. This problem could be partially minimized by
adopting some smart tricks [25], although the very low
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energies would never be well described [18].

A third strategy is to relax completely the fixed-
energy constraint, by accepting any energy jump. Now,
as g(F) is a fast increasing function of F, one is more
likely to toss an energy increment than a decrement.
The result of accepting any tossed movement would be
a fast and irreversible arrival at the maximum entropy
region corresponding to infinite temperature, sampling
energies only near the maximum of g(F). In order to
avold this, one needs to introduce some acceptance re-
striction for energy-increasing movements, trying to get
a uniform sampling along the whole energy axis. This
was first introduced [26] within the distinct context of
finding optimal solutions (energy minima) in complex
systems. The idea is to divide all the possible move-
ments one could perform, starting from the current mi-
crostate, in two classes: increasing or decreasing the
energy. First, one of these two classes is randomly
tossed. Then, a random movement belonging to the
tossed class is performed. This strategy corresponds to
an energy random walk, and assures a uniform sampling
along the whole energy axis, on average. In spite of this
very useful feature in what concerns the search for op-
timum states in complex systems, this strategy cannot
provide correct thermal averages because different en-
ergy jumps are mixed together, violating the relative
Boltzmann weights between different energy levels. In
order to obtain correct thermal averages, one needs to
divide the possible movements not in two, but in as
many classes as different allowed energy jumps exist:
for each fixed positive AF, one counts the number of
increasing-energy movements (F — E 4+ AFE) and the
number of decreasing-energy ones (F — E — AFE), the
same AF for both, in order to accept or not the cur-
rently tossed movement. In other words, one needs to
consider precisely the AF-dependent BHM quantities
NgP and N defined in [1].

Many variants of this energy random walk dynamics
can be defined, the best one [27] being a direct conse-
quence of the BHM equation (4) itself, as follows. In
order to obtain a flat distribution of visits along the
energy axis, one needs: a) to toss a random movement
starting from the current microstate with energy F; b)
to perform it whenever the energy decreases; and ¢)
to perform it only with probability ¢(E)/¢(F + AFE),
whenever the energy increases (AFE > 0 being the incre-
ment). From the exact relation (4), once one has some
previous estimate of the energy functions < NP (F) >
and < Ndn(E) >g, this probability is also equal to

< N™(E+ AE) > (©)
Pep = TN () >, '

The dynamic rule proposed in [27] is then based on
a two-step computer simulation. First, one obtains
an estimate of < NY(E) > and < NY(E) >,
by any means. Then, using this first estimate in a
further, independent computer run, one performs the
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above defined dynamics, energy-increasing movements
(F — E + AFE) being accepted only according to the
probability (6). From this second run, one measures
accurate (according to [27]) averages < N"P(FE) > and
< N4 (E) > from which g(F) can be finally obtained
from the BHM relation (4).

This flat histogram dynamic recipe was proposed
[27] in order to solve some numerical deviations ob-
served in previous versions which could be viewed as
approximations to it. As discussed in section IV, un-
fortunately things are not so easy. These problems are
not merely related to particular dynamic approximate
recipes, but to another characteristic of the system it-
self: the discreteness of the energy spectrum. All fun-
damental concepts leading to the microcanonical en-
semble are based on the supposition that all energy
changes AE are much smaller than the current energy
E. In other words, microcanonical ensemble is defined
by disregarding the energy spectrum discreteness. That
is why conceptual problems appear: a) at very low ener-
gies, for any system; b) at any energy, for tiny systems.
A better understanding of these subtle concepts cannot
be obtained by simple improvements of the dynamic
recipe: a new conceptual framework allowing to treat
also discrete spectra is needed (and lacking).

On the other hand, excepting for the two situations
quoted in the above paragraph, the various approxi-
mations to the acceptance rates (6) are not so bad as
supposed in [27], according to the evidences shown also
in sections IV and V. Thus, let’s quote these approx-
imations which make things easier. First, instead of
performing two computer runs in order to obtain the
transition rates (6) from the first and averages from the
second, one can perform a single one gradually accumu-
lating < N'P(E) > and < N9(E) > in E-histograms.
At each step, in order to decide whether the currently
tossed movement must be performed or not, one uses
the already accumulated values themselves, by read-
ing both the numerator and the denominator of (6)
from the corresponding histograms at the proper en-
ergy channels £ and F + AF. Actually, this trick was
already introduced (and used) in the original publica-
tion [1]. This approximation will be denoted by Al.
It follows the same lines of real-time-defined transition
rates of the multicanonical sampling methods [5-7]. A
further approximation, hereafter called A2, consists in
ignoring the AFE appearing in the numerator of (6),
reading both the numerator and the denominator from
the same energy channel £. This saves two real divi-
sion operations by the current number of visits V(E)
and V(E 4+ AFE). The third additional approximation
consists in taking together all possible energy jumps
AFE through equations (5a) and (bb), hereafter called
A3. This saves computer memory, because only a pair
of histograms, one for < N"P(E) > and the other for
< N(E) > are needed, instead of a pair for each
different possible value of AFE. Also, this approxima-
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tion saves time because the statistic fluctuations are not
spread over many histograms, the whole available data
being superimposed in only two.

A further yet approximation is simply to replace the
numerator and the denominator of (6) by the current
values Ng¥ and Nd" corresponding to the current mi-
crostate S, instead of reading previously averaged val-
ues. In theory, for large systems, this replacement could
be justified if N'P and N9 are shown to be self aver-
aging quantities, in spite of the further fluctuations it
introduces. However, contrary to the cases Al, A2 and
A3 (described in the last paragraph and actually tested
[1,2,17-19]), this procedure does not save any computer
time or memory, being useless in practice.

On the other hand, the procedure [28] of counting
Ng¥ and Nd® at the current microstate S, without
classifying them according to different values of
AF is no longer an approximation: it is wrong in what
concerns the measurement of averages, because the rel-
ative Boltzmann probability for different energies would
be violated. It corresponds to the mistake of missing
the exponent 1/AFE in equations (5a) and (5b). Only
when applied to the completely different context of find-
ing optimal solutions in complex systems [26], without
performing averages, this procedure is justifiable.

The original multicanonical approach [5] can be re-
formulated according to the entropic sampling dynam-
ics [6]. The degeneracy function g(F) is gradually con-
structed during the computer run. It is based on an
acceptance probability g(E)/g(E’) for each new tossed
movement from the current energy E to another value
E’. After some steps, the whole function g(E) is up-
dated according to the new visit trials, and so on. How-
ever, this method is yet based exclusively on the his-
togram for V(E). Another possibility [29] is to adopt
exactly this same dynamic rule in order to sample the
averaging states, measuring also the microcanonical av-
erages < N'P(E) > and < N4 (E) > during the com-
puter run. At the end, ¢(F) is obtained through the
BHM equation (4), instead of the values updated dur-
ing the simulation: the results [29], of course, are much
more accurate. Note that, in this case, exactly the
same microstates are visited, i.e. the same Markovian
chain of averaging states. In this way, the better BHM
performance is explicitly shown to be a consequence of
the more detailed description of each averaging state,
compared with reweighting, multicanonical approaches.

Uniform probability distributions along the energy
axis may be not the best strategy. Being independent of
the particular simulation dynamics, BHM allows one to
get better sampling statistics in some energy regions. In
[19] the Creutz dynamics [24,18] is combined with the
energy random walk [1]. First, one chooses a window
corresponding to few adjacent energy levels. Then, the
energy random walk dynamics is applied inside this
window up to a certain predefined number of averaging
states were sampled. After that, the window is moved
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one energy level up, by including the next allowed en-
ergy level at right and removing the leftmost. Then,
the same procedure is repeated inside this new window
up to a slightly larger number of averaging states, and
so on. Reaching the critical region, this number is kept
fixed at its maximum value, before to go down again for
energies above the critical region. In this way, BHM al-
lows the user to design the profile of visits along the en-
ergy axis, according to the numerical accuracy needed
within each region.

IV  Canonical x Microcanonical
Simulations

The equivalence between the various thermodynamic
ensembles (canonical and microcanonical, for instance)
1s a widespread belief. However, this is true only in the
so-called thermodynamic limit N — oo, where N is the
number of components forming the system under study.
For finite systems, and thus for any computer simula-
tional approach, the lack of this equivalence [30] poses
serious conceptual as well as practical problems.

Canonical computer simulation approaches were
very well developed since the pioneering work [31], half
a century ago. By following some precise recipes (ran-
dom movements transforming the current microstate
into the next one) a Markovian chain of averaging states
is obtained, from which thermodynamic canonical aver-
ages are calculated. As a consequence of this conceptual
development, particular recipes were shown to provide
unbiased canonical equilibrium. On the other hand, mi-
crocanonical simulation has never attracted the atten-
tion of researchers during this same half century (with
some few exceptions). That is why some fundamental
concepts concerning this subject are misunderstood in
the literature.

The direct way to construct a fixed-FE, microcanon-
ical simulator would be to accept a new randomly
tossed movement only if it does not change the energy.
However, this constraint could introduce non-ergodicity
problems, depending on the particular set of movements
one adopts. For the Ising model, for instance, this prob-
lem seems to occur by adopting only one-spin flips [21-
23]. In order to minimize it, one needs to allow more-
than-one-spin flips [32]. However, by flipping only two
spins far away from each other, after each whole-lattice
one-spin-flip sweep, the magnetic order is destroyed be-
low the critical energy [32]. Thus, the strictly fixed en-
ergy approach is problematic, and the alternative is to
relax it, allowing some energy changes. However, this
also poses troubles, once the equilibrium features (mag-
netization, correlations, etc.) of the system at some en-
ergy level F are not exactly the same at another level
E'. By travelling from E to F’ without time enough
for equilibration, one could introduce biases from E-
states into F’ averages: the multiple-energy dynamics
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could distort the strictly uniform probability distribu-
tion inside each energy level. In short, the construction
of a good microcanonical simulator is not a simple sub-
ject.

If you have not enough conceptual understanding
about some particular subject, a good idea is to resort
to another similar subject for which your conceptual
understanding is already firmly stablished. Let’s define
a particular microcanonical simulator by using well sta-
blished canonical rules, for which the temperature 7' is
fixed since beginning, being an external control pa-
rameter. The canonical average of any macroscopic
quantity @@ becomes a function of T, as < @ >r in
equations (1) or (3). Let’s consider some finite system
with N components, and its average energy < E >rp.
Although the energy spectrum is discrete [8], < E >
is a continuous function of T' (except for a possible iso-
lated temperature where a first order transition may oc-
cur). Thus, one can tune the value of T"in order to have
< E >7 coincident with some previously chosen energy
level E: let’s call this tuned temperature T(E). Then,
a correct microcanonical simulator recipe is: a) to run
some of the many known canonical recipes with fixed
temperature T(E); b) to measure the quantity Qg of
interest, for each averaging state S whose energy
is F; ¢) to accumulate Qg as well as the number of vis-
its to the particular energy level F, during the run; and
d) to calculate the microcanonical average < Q(FE) >
at the end, by dividing the accumulated sum of Q)5 by
the number of visits to level . This recipe, of course,
may not be very efficient, once one will visit many en-
ergy levels, others than the previously fixed value F,
storing data concerning only this particular level. Also,
the precise temperature T(F) must be known a priori,
and perhaps this knowledge could be achieved only by
performing some previous runs. Moreover, the whole
process must be repeated for each different energy level.
Nevertheless, this recipe is perfectly correct, and will be
the basis for our reasonings hereafter.

Table I shows the exact data for a square 4 x 4 lat-
tice Ising ferromagnet, obtained by direct counting all
the 215 = 65.536 possible microstates. The adopted
protocol of (virtual) movements is the set of all pos-
sible one-spin flips. From the first two columns, the
exact temperatures T(F) can be obtained for each en-
ergy level E, by analytically calculating < £ >7 as
a function of T' from equation (3), and then imposing
< FE >p= E. Table II shows the data obtained from
canonical simulation with fixed T'(8) = 3.02866216 (in
the usual units where the energy corresponding to each
bond is £/, instead of 0 or 1), 10% whole lattice sweeps,
and 32 independent samples. Thus, the total number
of averaging states is 3.2 x 10°. For all averaged values
displayed, statistical fluctuations occur at most on the
two rightmost digits. The second column shows the ac-
tual number V(F) of visits to each energy level. The
expected statistical relative deviations are, thus, of the
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order of V(F)~/? in each case, in agreement with the
ones actually obtained (roughly 1 part in 10*). Within
this statistical accuracy, the coincidence between the
first line in Table IT and the corresponding exact values
for ¥ = 8, in Table I, is a further evidence confirming
that the microcanonical simulator defined in the above
paragraph is indeed correct: it does not introduce any
bias besides the normal statistical numerical fluctua-
tions.

Tables IIT to V show data obtained from canon-
ical simulations with fixed temperatures 7'(10) =
3.57199419, T(12) = 4.66862103 and T(14) =
8.33883787, respectively. These values were tuned in
order to give the exact average energies < F >p = 10,
12 and 14, respectively. Note again the coincidence of
the second line in Table III, the third line in Table IV as
well as the fourth line in Table V with the exact values
presented in Table I, within the numerical accuracy.

Level E = 16 is just the center of the energy spec-
trum, corresponding to T(16) = co. In order to simu-
late this situation, we adopted a very high temperature,
namely 7"= 100, in Table VI. Its fifth line i1s supposed
to be compared with the corresponding exact values in
Table I.

The other lines in Tables II to VI also coincide
with the corresponding exact values in Table I, within

E 9(E)
(AE=4) (AE=2)

0 2 16 0

4 32 11 4

6 64 8 6

8 424 6.11321 6.33962
10 1728 3.55556 7.03704
12 6688 231101 5.97129
14 13568  1.13208 5.58491
16 20524  0.75307 3.69207
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the numerical accuracy. However, these further coinci-
dences are not completely trustable, because Table II,
for instance, was obtained by fixing the simulational
temperature T'(8) tuned in order to give the average
energy < E >p= 8. Thus, this Table II is out of
tune for the other energy levels £ # 8. Accordingly,
Tables III, TV, V and VI are out of tune for ener-
gles £ # 10, £ # 12, E # 14 and F # 16, respec-
tively. Indeed, considering for instance the simulations
at fixed T(E = 14), the relative deviation obtained for
N4(E = 8) with AE = 2 and 4 are respectively 14
or 18 times larger than the expected 1 part in 10%.
In principle, only data obtained from canonical sim-
ulations performed at the right temperature T(F)
(i.e. the one for which < F >p = E) could be taken
as microcanonical averages for this particular energy
level E/. However, the systematic deviations induced
by taking also data corresponding to neighboring en-
ergy levels others than E seem to be very small. In
particular, for larger systems, and near the crit-
ical region, justifying the simple approach of adding
histograms obtained at different temperatures [17,9]: in
those cases, the temperature is a slowly varying func-
tion of £ (dT/dE = 0 at the critical point, in the ther-
modynamic limit).

< N"(E)> < N"(E)> <NUY(E)> <NIE)> <N™E)>

(AE=0) (AE=2) (AE=4)

0 0 0

0 0 1

0 2 0
1.81132 0.90566 0.83019
3.55556 1.55556 0.29630
5.51196 1.81818 0.38756
5.88679 2.94340 0.45283
7.10973 3.69207 0.75307

Table I Exact data concerning the 4 x 4 square lattice Ising ferromagnet. The second half of
the spectrum (E = 18...32) is symmetric the to first half (£ = 14...0). NUe 5 the
number of potential movements (one-spin flips) keeping the energy unchanged.

E  V(E)
x102 (AE=4) (AE=2)
8 5.62 6.1145 6.3376
10 6.11 3.5565 7.0366
12 6.32 2.3111 5.9711
14 3.42 1.13151 5.5851
16 1.38 0.75302 3.6916

< N'P(E)> < N"P(E)> < NU(E)> <N¥E)> <N™ME)>

(AE=0) (AE=2) (AE=4)
1.81155 0.90606 0.83028
3.5540 1.55630 0.29665
5.5119 1.81843 0.38744
5.8879 2.9429 0.45259
7.1109 3.6913 0.75315

Table IT Canonical simulation for the 4 x 4 square lattice Ising ferromagnet, with a fixed
temperature T(8) = 3.02866216 for which the exact energy average is < E >7 = 8.
For all averaged values, statistical fluctuations fall on the two last digits, at most.
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E V(E)
x108  (AE=4) (AE = 2)
8 4.68 6.1123 6.3410
10 6.22 3.5559 7.0367
12 7.85 2.3113 5.9713
14 5.20 1.13148 5.5858
16 2.57 0.75274 3.6914

Paulo Murilo Castro de Oliveira

< N"(E)> < N'(E)> <NU(E)> <N®E)> <N®E)>

(AE=0) (AE=2) (AE=4)
1.81107 0.90577 0.82989
3.5552 1.55578 0.29639
5.5115 1.81836 0.38771
5.8870 2.9426 0.45307
7.1116 3.6917 0.75257

Table III The same as Table II, now with a fixed temperature T(10) = 3.57199419 for which
the exact energy average is < £ >7=10.

E V(B
x10° (AE=4) (AE=2)
8 3.08 6.1122 6.3404
10 5.34 3.5550 7.0372
12 8.78  2:31065 5.9707
14 756  1.13206 5.5846
16 485  0.75310 3.6023

< N"W(E)> < N'(E)> <NUY(E)> <N®E)> <N"E)>

(AE=0) (AE=2) (AE=4)
1.8116 0.90667 0.82909
3.5552 1.55529 0.29597
5.5138 1.81777 0.38711
5.8872 2.9436 0.45255
7.1091 3.6924 0.75303

Table IV The same again, now with a fixed temperature T(12) = 4.66862103 for which the

exact energy average is < E > =12.

E  V(E)
x10° (AE=4) (AE=2)
8 1.30 6.1137 6.3404
10 3.27 3.5550 7.0379
12 7.84  2.31063 5.9716
14 90.83 113243 5.5845
16 9.20  0.75357 3.6916

< N"(E)> < N'P(E)> < NU(E)> <NINE)> <N™E)>

(AE=0) (AE=2) (AE=4)
1.8098 0.90444 0.83169
3.5554 1.55540 0.29628
5.5123 1.81816 0.38735
5.8866 2.9436 0.45291
7.1094 3.6920 0.75339

Table V. The same once more, now with a fixed temperature T'(14) = 8.33883787 for which the

exact energy average is < E >7=14.

< N"(E)> < N'"(E)> <NUE)> <NIE)> <NI®E)>

E V(B
x10° (AE=4) (AE=2)
8 035 61132 6.3405
10 140  3.5560 7.0366
12 522 231103 5.9717
14 1017 113244 5.5847
16 1477 0.75265 3.6922

(AE=0) (AE=2) (AE=4)
1.8106 0.90464 0.83108
3.5552 1.55577 0.29642
5.5112 1.81838 0.38769
5.8863 2.9436 0.45298
7.1102 3.6922 0.75266

Table VI Again, now with a fixed temperature T' = 100, mimicking T'(16) = oo.

In the thermodynamic limit, the canonical temper-
ature can be obtained by the statistical definition

1 d Ing(Ne)

T de Noo — N @
where ¢ = E/N is the energy density, and coincides
perfectly with the value T'(E) quoted before, for which
< E >p= E. However, for finite systems, both the

thermodynamic limit N — oo as well as the derivative
limit Ae = AE/N — 0 cannot be performed. A palia-

tive procedure is simply to forget them, transforming
equation (7) in
I Ing(E+AFE)—Ing(E) 8
T(E) AL o (8

where the subscript m means “microcanonical tempera-
ture” defined just now for finite systems, and AF is the
energy gap between level £ and some other level above
it. Of course, in principle, T,,, (F) also depends on AFE,
which indicates a first difference between this and the
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true canonical temperature. Moreover, contrary to the
real, canonical temperature T(E), this T,,(F) is not
an external parameter depending on the system’s en-
vironment and equilibrium conditions: it is simply an
alternative formulation for the energy spectrum g¢(F)
itself, being thus environment-independent. Note also
that 7T),(E) is defined only at the allowed energies be-
longing to the discrete spectrum, whereas the real tem-
perature T(F) (the one for which < £ >p = FE) can be
defined for any value F, continuously. An alternative
formula is

1 _ Ing(£ + AE) —Ing(E)
Tm(E+AE/2) AFE - (8b)

The most famous canonical recipe [31] is: a) to
toss some random movement, starting from the cur-
rent state; b) to calculate the energy variation AFE
this movement would promote if actually implemented;
¢) to perform the movement, whenever AE < 0,
counting one more step; and d) to perform the move-
ment only with the Boltzmann acceptance probability
exp(—AE/T), if AE > 0, counting one step anyway.
Normally, one takes a new averaging state after N suc-
cessive steps (one MC step). Let’s stress that, here,
the temperature T is the real, canonical one: in or-
der to use this recipe to measure microcanonical aver-
ages at some fixed energy F, one must take T'= T'(F),
the temperature for which < £ >p = FE. Instead, by
taking 7' = T,,(F) in equation (8a), it is an easy exer-
cise to show that the Boltzmann acceptance probability
exp(—AE/T) would be equal to ¢(E)/¢(E+ AFE). But
this is just the acceptance probability adopted within
the flat histogram dynamics [27].

4x4
12 4 o DE=2
microcanonical
7 o DE=14
7 canonical ——— o

temperature

0 T T T | T | T 1
0 4 8 12 16
energy

Figure 1. Exact canonical temperature as a function of the
energy (continuous line), for a 4 x4 square lattice Ising ferro-
magnet. Symbols correspond to the microcanonical version
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of the temperature, equation (8a), with energy gaps AE = 2
(circles) or 4 (diamonds).

Fig. 1 shows T,,,(F) calculated from equation (8a),
for a 4 x 4 square Ising ferromagnet. The exact val-
ues of g(F) were used. The open circles correspond to
AF = 2, and the diamonds to AF = 4. The contin-
uous line is the exact T(F), also calculated from the
exact values of g(F). The deviations between T,,(E)
and T(F) are very strong. Note that there is no ap-
proximation at all, neither in T,,, (F) nor in T(F). The
deviations represent true differences between canonical
and microcanonical ensembles, which are indeed very
strong for this tiny system. Obviously, the condition
AFE << FE is not fulfilled, and the discreteness is in-
evitable along the whole energy spectrum.

Fig. 2 reports the same data as Fig. 1, with the
same symbols, now for a 32 x 32 lattice, and using
equation (8b). The exact values for g(E) were taken
from [33]. The same strong deviations occur again, but
now only at the very beginning of the energy spectrum,
where the condition AF << F does not hold, as can
be seen in the upper inset. However, near the critical
region, the deviations become much smaller, as can be
seen in the lower inset where the vertical scale is 100
times finer than the upper one. For F > 64, the energy
spectrum discreteness can be neglected within a very
good approximation, even with N = 1024 being still
very far from the thermodynamic limit in equation (7).
The larger the system size, the better becomes the sit-
uation, because the relation AE << E becomes more
and more fulfilled. However, at the very beginning of
the spectrum this relation will never be fulfilled, even
for large systems.

Both limits in equation (7), namely the thermody-
namic one N — oo and AE — 0 corresponding to
the energy derivative, were neglected in equation (8a).
However, only the latter seems to have disastrous con-
sequences when one uses T, (F) as an approximation
for T(FE). Indeed, even for very small systems like the
32 x 32 square lattice (not so tiny as 4 x 4), the devia-
tions are very small, provided the condition AE << FE
holds. In other words, the deviations between the mi-
crocanonical temperature T, (F) and the true canonical
value T(F) comes almost exclusively from the break-
down of the condition AF << F, not from finite size
effects. Even in the thermodynamic limit, 7,,,(E)
will differ from T'(F) near the ground state, due
to the discretness of the energy spectrum. On the
other hand, to take T,,,(F) instead of T(F) is a very,
very good approximation far from the ground state: we
have seen before that microcanonical averages obtained
from canonical simulations are not sensitive to temper-
atures out of tune for a given energy, moreover when
the deviations are of the order of that shown in the
lower inset of Fig. 2.
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32 x 32
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energy

Figure 2. The same as figure 1, now for a 32 x 32 lattice,
with the same symbols, and equation (8b). Note that the
deviations between the true canonical temperatures and the
microcanonical versions are now restricted to the very be-
ginning of the energy spectrum (upper inset). At the critical
region these deviations are much smaller (lower inset, with
a 100 times finer scale). The deviations become smaller yet
for larger systems.

exact o 32 x 32
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Figure 3. Specific heat for the 32 x 32 lattice Ising ferromag-
net, adopting the random walk dynamics within restricted
energy windows [19]. Circles show the exact values [33].

g(F)

Paulo Murilo Castro de Oliveira

Tables IT to VI present good numerical accuracies
not only for the tuned temperatures, but also when
out-of-tune values for 1" were considered. Moreover,
based on the reasonings above, this feature will be even
improved for larger and larger systems. The imediate
consequence is the possibility of adding different his-
tograms for < NUP(E) > and < N9(E) >, obtained
from distinct canonical simulations with different tem-
peratures, as already tested in [17,9]. Of course, this
approach is much more efficient than to take a different
canonical simulation with fixed temperature T(F) for
each different energy level E, without superimposing
the histograms. However, it still needs many computer
runs, one for each fixed temperature.

In order to improve even more the efficiency, one
can try the following strategy. First, one defines the
Boltzmann acceptance probability exp[-AE/T(E)] for
each energy level E and each possible energy jump
AFE. Note that this is not the same as canonical simu-
lations where the acceptance probability exp(—AE/T)
depends only on AFE but not on £. Then, by follow-
ing this non-canonical, E-dependent acceptance proba-
bility, one runs a single computer simulation, visiting
the whole energy axis, accumulating the histograms for
< NU"P(E) > and < N9 (E) >. This approach is sim-
ilar to the flat histogram dynamics [27], using the true
temperature T(F) instead of the microcanonical value
Tm(E). Table VII shows the results for the same tiny
system already considered before. Surprisingly, strong
deviations appear. In order to analyse the source of
these deviations, let’s introduce another very similar
alternative, adopting a different acceptance probabil-
ity exp[-AE/T(F + AFE/2)]. The canonical Boltz-
mann probability is taken at the center E 4+ AFE/2
of the interval correponding to the energy jump from
E to E+ AFE, not at the current energy E. This sym-
metrization trick is supposed to diminish the numerical
deviations due to impossibility of performing the limit
AFE — 0,1.e. the derivative in equation (7), for this tiny
system. The results are shown in Table VIII, in com-
plete agreement with the exact results, Table I. Thus,
the source of the deviations in Table VII is the lack
of the condition AE << FE. By taking into account
both the current energy level E as well as the (would-
be) next energy £ + AF in a symmetric way, the
numerical deviations were eliminated. Of course, for
larger systems and far from the ground state, where
the condition AE << F holds, the differences between
Tables VII and VIIT would also disappear.

The flat histogram dynamics uses another accep-
tance probability, namely

< N(E4AE) >

expl= A/ T(E)] =

g(E+ AE)

< Nw(E) > ’ )
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where F and E + AFE also play a symmetric role.
Simulational results are shown in Table IX, where the
exact values for g(E) (or, alternatively, < Nyp(E) >
and < Ngn(F) >) were adopted in order to determine
the acceptance probabilities (9). The results are again
coincident with the expected ones, Table I [34]. On the

E  V(E)
x108 (AE=4) (AE=2)
8 3.91 6.1075 6.3168
10 411 3.5647 7.0105
12 496  2.32037 5.9336
14 399 113602 5.5671
16 3.55  0.73739 3.6917
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other hand, if one tries to break the quoted symmetry,
ignoring AF in the numerator of the right-hand-side
term in (9), i.e. approximation A2, numerical devia-
tions similar to Table VII would appear, for this tiny
system.

< N'(E)> < N'P(E)> < NUY(E)> < N®E)> < NNE)>

(AE=0) (AE=2) (AE=4)
1.8413 0.93716 0.79731
3.5752 1.55047 0.29019
5.5420 1.83372 0.37031
5.8935 2.9675 0.43584
7.1232 3.7290 0.71873

Table VII Random walk, pseudo-canonical simulation with asymmetric E-dependent Boltzmann
acceptance probability exp[-AE/T(E)], to be compared with the exact values in

Table L.
E V()
x108 (AE=4) (AE=2)
8 325 61134 6.3392
10 387  3.5571 7.0343
12 548  2.31315 5.9677
14 557  1.13256 5.5833
16 6.56  0.75220 3.6018

< N*(E)> < N'"(E)> < NUY(E)> <N®E)> <N™NE)>

(AE=0) (AE=2) (AE=4)
1.81132 0.90608 0.82998
3.5561 1.55637 0.29609
5.5123 1.81968 0.38715
5.8871 2.9458 0.45130
7.1109 3.6939 0.75118

Table VIII Random walk, pseudo-canonical simulation with symmetric E-dependent Boltzmann
acceptance probability exp[—AE/T(E+AE/2)], to be compared with the exact values

in Table L.

As one does not know a priori g(F) (or, alterna-
tively, < Nuyp(E) > and < Ngn(E) >), one can use some
previous estimates < Nyp(E) >p and < Nan(E) >,
and adopts the acceptance probability (6). In order
to follow this recipe [27], one needs to determine the
quoted estimates from a previous computer run. Ac-
cording to [27], these previous estimates do not need to
be very accurate. However, actual numerical tests [29]
show results for < Nyp(E) > and < Ngn(E) > worse
than the inputs < Nyp(E) >g and < Nan(E) >¢ them-
selves! A better possibility is the random walk dynam-
ics originally used in order to test the broad histogram
method [1]. Tt is the same as the flat histogram, equa-
tion (6) or (9), with the approximation Al (optionally,
also A2 and A3) quoted in last section. Al consists
in taking the current, already accumulated values of
the histograms NYP(E) and N4 (E+ AFE), in real time
during the computer run itself, instead of the true av-
erages at the right-hand side of equation (6) or (9). Re-
sults for the same tiny system treated before are shown
in Table X. This approach is the same as the multi-
canonical real-time-measured transition probability al-
ready adopted in other earlier methods, for instance

the entropic sampling [6]. A criticism to this approach
is 1ts non-strictly-Markovian, history-dependent char-
acter. According to [29], it is actually better than the
fixed transition probability proposed in [27]. Approxi-
mation A2 consists in neglecting AFE in the numerators
of equation (6) or (9), breaking the symmetry between
levels ¥ and E + AFE, and cannot be applied to this
tiny system due to the spectrum discretness. This ap-
proach A2 1s also shown to violate a particular detailed
balance condition [27]. A3 consists in taking all pos-
sible values for AFE together, by using equations (5ba)
and (5b). Both approximations A2 and A3 (but not
Al) are bad: a) at very low energies, for any system;
b) at any energy, for tiny systems.

The difference between the dynamics adopted in Ta-
bles VII to X and the true canonical rule adopted in
Tables IT to VI is the following. Canonical simulations
adopt the same acceptance probability exp(—AFE/T)
for any tossed movement increasing the energy by AFE,
no matter which is the current energy F. As a conse-
quence, the energies visited during the run became re-
stricted to a narrow window around the canonical aver-
age < E >p. The larger the system size, the narrower
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is this window. On the other hand, within the non-
canonical rules adopted in Table VII to X, the accep-
tance probabilities depend also on F (and E4+AFE). As
a consequence, instead of a narrow distribution of visits,
one gets a broad distribution covering the whole energy
axis. This feature is, of course, a big advantage over
canonical rules, because only one run would be enough
to cover a large temperature range. Nevertheless, the
numerical results could be wrong, depending on the ac-

E V()
x10] (AE=4) (AE=2)
8 4.53 6.1123 6.3407
10 4.53 3.5553 7.0376
12 4.53 2.3112 5.9704
14 453 1.13190 5.5848
16 453  0.75283 3.6920

Paulo Murilo Castro de Oliveira

tual dynamic rule one adopts (Table VII, for instance).
A better conceptual, theoretical understanding of these
and other F-dependent dynamic rules is needed, and
lacking. Concerning BHM, the only constraint to be
considered 1s the uniform probability visitation inside
each energy level, separately. For other, reweighting
methods based on the actual visitation profile V(F),
also the detailed relative distribution between different
energy levels must be considered.

< N"(E)> <N'"(E)> <N"(E)> <N®™E)> <N"E)>

(AE=0) (AE=2) (AE=4)
1.81151 0.90579 0.82973
3.5552 1.55561 0.29630
5.5130 1.81807 0.38733
5.8873 2.9432 0.45272
7.1108 3.6912 0.75321

Table IX Flat histogram [27] simulation with symmetric E-dependent Boltzmann acceptance
probability exp[—AE/Tm(E)], equation (9), to be compared with the exact values in

Table I.
E V(E)
x10®8  (AE =4) (AE =2)

8 3.51 6.1131 6.3399
10 4.65 3.5553 7.0372
12 17.03 2.3106 5.9717
14 3.81 1.13212 5.5850
16 2.13 0.75298 3.6917

< NW(E)> <N"(E)> <NU(E)> <N®E)> <N®E)>

(AE=0) (AE=2) (AE=4)
1.81121 0.90558 0.83023
3.5561 1.55532 0.29619
5.5124 1.81788 0.38749
5.8865 2.9434 0.45296
7.1108 3.6915 0.75305

Table X Random walk dynamics [1] simulation with approximation A1l (see text), to be com-

pared with the exact values in Table 1.

Up to now, we have tested many different dynamic
rules in order to measure the microcanonical averages
< Nyp(E) > and < Ngn(E) > from which one can
determine the desired quantity ¢(£) by BHM equation
(4). The most efficient approaches are the E-dependent
rules (Tables VIII, IX and X), where a single computer
run 1s enough. Among them, under a practical point of
view, the random walk dynamics [1] corresponding to
Table X is the best choice, once one does not need any
previous knowledge about the quantities < Nyp(E) >
and < Ngp(F) > to be measured. This approach cor-
responds to approximation Al. The other two further
approximations A2 and A3 [1] improve even more the
efficiency. However, due to the energy spectrum dis-
creteness, they are limited by the constraint AF << E:
one needs to avoid them for tiny systems, or very near
the ground state even for large systems, where this con-
straint cannot be fulfilled. All this matter corresponds
to the subject discussed in reference [27]. Let’s now

discuss another, subtle, further possible source of unac-
curacies, which may appear when one abandon the safe
canonical dynamical rules and adopts non-canonical,
FE-dependent dynamics in order to sample the whole
energy axis during the same computer run.

In order to introduce the subject, let’s resort again
to canonical simulations, where some temperature value
T is fixed since beginning. Imagine one starts such a
simulational process from a randomly chosen microstate
St its energy Eg would be in general far from the av-
erage value < E >p, as well as many other features of
this microstate which would be far from their equilib-
rium counterparts. By plotting the energy of each suc-
cessive averaging microstate as a function of the time,
one would get a curve fluctuating around an exponen-
tial decay to the final value < E >7p: at the end, only
statistical fluctuations around this constant value re-
main. Thus, the very beginning of the Markovian chain
of states will give wrong (biased) contributions to the
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final averages < () >p. These are the so-called ther-
malization transient steps. Nevertheless, they represent
no problem at all, because one can always take an enor-
mous number of microstates after this transient bias is
already over, pushing the systematic deviations to be-
low any predetermined tolerance. Better yet, one can
simply discard the contribution of these initial states,
by starting the averaging procedure only after the tran-
sient is over. In the statistical physicists’ jargon, one
can assert that “the system is already thermalized”, af-
ter these initial out-of-equilibrium, transient steps.

As quoted in [27], detailed balance is a delicate mat-
ter. Detailed balance conditions are useful only in or-
der to ensure that the final distribution, chosen by the
user, will be the correct one, for instance the Gibbs
distribution for equilibrium canonical averages. How-
ever, these conditions do not ensure this final distri-
bution will be reached within a finite time. In our
case of interest, i.e. the F-dependent, broad-energy,
non-canonical dynamics, the system never reaches
canonical equilibrium inside each energy level. All
these dynamic rules correspond to generalized Boltz-
mann factors exp[—AFE/O(F)], where the “tempera-
ture” O(F) varies from one microstate to the next,
along the Markovian chain. Concerning the energy, for
instance, instead of an exponential decay to the canoni-
cal equilibrium situation, one gets a random walk visit-
ing all energies, with fluctuations covering the whole
energy axis all the time. The same large fluctua-
tion behaviour holds also for other quantities, in par-
ticular the one for which the microcanonical averag-
ing is in progress. This dynamics follows an eternal
transient in what concerns the safe canonical frame-
work. This feature may introduce systematic numerical
deviations. Although those possible out-of-canonical-
equilibrium problems cannot be observed in our Tables
VIII, IX and X, they could be crucial for larger systems
where large energy jumps in few steps become possible:
features of a particular far energy region which the sys-
tem recently cames from could introduce biases in the
current energy averages. In this eternal-transient case,
detailed balance conditions and all the related theorems
give little help. To construct a good, efficient micro-
canonical simulator, by visiting the whole energy axis
during a single computer run, seems to be a much more
delicate matter. How to assure a uniform probability
distribution inside each energy level also covering
broad regions of the energy spectrum? This problem is
open to new insight, new ideas.

Exemplifying how difficult would be to analyse the
uniformity of visits within each energy level, let’s take
a simple example: a L X L square lattice Ising magnet
(L >4, N = L? spins), with £ = 8. Considering the
magnetization density m, level E = 8 is divided into
three classes. The first one contains ¢;(8) = N(N — 5)
states with only two non-neighbouring spins pointing
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down (all other spins up, or vice-versa), correspond-
ing to m = 1 —4/N. The second class consists of
¢2(8) = 12N states with a 3-site cluster of neighbour-
ing spins pointing down, with m = 1 —6/N. The third
class has g3(8) = 2N states presenting a plaquette of
four spins pointing down, and m = 1 —8/N. No single-
spin flip can transform a state with # = 4 or £ = 6
into another state belonging to this third class, for in-
stance. In order to assure a uniform distribution of
visits, this lack must be compensated by other possi-
ble single-spin flips from £ = 10 and £ = 12. On
the other hand, the visitation frequency to each one
of these higher-energy states depends on feeding rates
from higher yet energies, and so on. One must prescribe
adequate transition probabilities to each such move-
ment, taking into account all its consequences on the
next, next-next step, and so on. Chessboard is an eas-
ier game. Fortunately, the first class containing ~ N2
states dominates the counting for large lattice sizes. For
L = 32, for instance, ¢1(8) = 1,043,456 states are in
the first class, representing 99% of the whole number
g(8) = 91(8) + ¢2(8) + ¢3(8) = 1,057,792. Similar
behaviours also occur for higher energies, giving us a
solace: we remain with the hope that single-spin flips
may lead to the desired uniformity for large enough sys-
tems. For a tiny 4 x 4 lattice, on the other hand, things
go worse, once two further classes must be added to
F = 8 level: g4(8) = 16 states with a single line of spins
down, corresponding to m = 1/2; and ¢5(8) = 8 states
with two neighbouring lines of spins down, with m = 0.
Then, only ¢1(8) = 176 states out of ¢g(8) = 424, i.e.
42%, belong to the first class. This feature, of course,
partially explains the bad results in Table VII. However,
a detailed explanation for the good results obtained in
Tables VIII, IX and X, following the same reasonings,
is not easy.

V Improved Microcanonical

Simulators

While we have not yet a perfect and efficient micro-
canonical simulator, the advantages of the Broad His-
togram method, 1.e. the exact and completely general
equation (4), are already in hands. The only problem is
to obtain good estimates for the averages < N'P(FE) >
and < N9%(E) > as functions of £. One paliative solu-
tion is to use the available, not-yet perfect microcanoni-
cal simulators, perhaps with some repairing procedures.
Even without any repair, the random walk naive ap-
proach introduced in [1] can be useful. First, observing
Tables IT to VI, one notes that some (large) degree of
inaccuracy on the temperature can be tolerated still
within very good precision on the final results. Second,
comparing figures 1 and 2, one can note that larger
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systems present a plateau of almost constant tempera-
tures covering a large energy range. This range is just
the interesting one, namely the critical region where
the specific heat diverges for N — oo. Third, with
small variations of the temperature from one microstate
to the next, within this region, the out-of-canonical-
equilibrium problems should be strongly diminished.
Anyway, we can try to introduce some repairing pro-
cedures into the random walk dynamics [1] (or into any
other E-dependent transition rate dynamics). The first
idea is to equilibrate the system before measuring any
averaging quantity at the current microstate. This can
be acomplished by running some canonical steps just
before the measuring procedure. Suppose one gets some
microstate with energy F, during the random walk
dynamics. As this microstate comes from other en-
ergy levels, submitted to acceptance probabilities oth-
ers than the currently correct value exp[—AE/T(E)],
it 1s supposed to carry some undesired biases. Then,
one can simply include some canonical steps with fixed
temperature 7' = T(E), in order to let the system re-
lax to E-equilibrium, before taking the averages. T(E)
can be estimated at each step from the current, already
accumulated histograms for N'P(E) and N9*(E) (ap-
proximation Al), and the further approximations A2
and A3 can also be adopted. All these tricks were al-
ready introduced in the original publication [1].
Another repairing procedure is simply to forbid
large energy jumps. The simplest way to perform this
task 1s to count a new averaging state after each single-
spin-flip trial. Normally, one adopts N trials, 1.e. a
whole lattice sweep, before counting a new averaging
state, in order to avoid possible correlations along the
Markovian chain of states. In our microcanonical case,
however, different energy levels correspond to indepen-
dent averaging processes, and one can try to abandon
this precaution. Of course, this approach also saves
a lot of computer time. Table XI shows the results
obtained for a 32 x 32 lattice, where approximation
Al (real-time measurement of the transition rates) was
adopted, with 10° averaging states per energy level.
The expected relative error due to finite statistics is
thus 3 x 107°. Indeed, the observed deviations coincide
with this, in spite of the figure 0.008 [27] predicted by
detailed balance arguments. Even adopting the further
approximations A2 (which explicitly violates detailed
balance) and A3, the errors remain the same (last col-
umn). Once more, the possible source of unaccuracies
has nothing to do with detailed balance dictating the
relative frequency of visits between different energy
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levels. On the contrary, the only crucial point is the
uniformity of visits inside each energy level, sepa-
rately.

Perhaps the procedure of measuring averages after
each new single-spin-flip trial could indeed introduce
some bias, through some undesirable correlations along
the Markovian chain, although this possibility is not
apparent at all in Table XI. Perhaps this bias could ap-
pear only for much larger statistics. An alternative way
to avoid large energy jumps still taking averages only
after each whole lattice sweep is to restrict the random
walk to narrow energy windows. This corresponds to
the Creutz energy-bag simulator [24] combined with the
random walk dynamics [1] inside each window. It was
introduced in [19], and the results also show relative er-
rors much smaller than those predicted by detailed bal-
ance arguments. The specific heat for a 32 x 32 square
lattice is shown in figure 3, where approximations Al,
A2 and A3 were used. By restricting the energy to nar-
row windows, one is also restricting the temperature to
small variations, thus forcing the system to be always
near the canonical equilibrium conditions for any en-
ergy inside the current window. Once again, the best
performance occurs at the critical region.

VI - Conclusions

The Broad Histogram Method (BHM) introduced in
[1] allows one to determine the energy spectrum of any
system, i.e. the degeneracy g(F) as a function of the
energy F, through the exact and completely gen-
eral equation (4). First, one needs to adopt some re-
versible protocol of allowed movements in the system’s
space of states. Reversible means that for any allowed
movement S — S’ the back movement 5" — S is also
allowed. For Ising models, for instance, one can choose
single-spin flips, to flip clusters of neighboring spins,
etc. In fact, one could invent any protocol. For each
state S, Ng" counts the number of such allowed move-
ments for which the system’s energy would be increased
by a fixed amount AF. Accordingly, Ngn counts the
number of allowed movements decreasing the energy by
the same amount AFE. The energy jump AF is also
chosen and fixed since the beginning. < N"P(E) > and
< N9 (E) > are the microcanonical, fixed-E averages
for these two quantities, both functions of the energy.
Then, in order to determine g(F) from the BHM equa-
tion (4), one needs only to find a way, any way, to
measure those microcanonical averages.
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2
E In g; fg) )
300 1.749921 1.749897
302 1.748650 1.748599
304 1.747398 1.747387
306 1.746164 1.746151
308 1.744946 1.744960
310 1.743743 1.743748
312 1.742554 1.742590
314 1.741375 1.741424
316 1.740206 1.740295
318 1.739045 1.739128
320 1.737889 1.737970
322 1.736737 1.736831
324 1.735586 1.735680
326 1.734434 1.734560
328 1.733279 1.733420

In <Nup(E)>

<Nan(E+2)>

1.749800 1.749992
1.748496 1.748678
1.747288 1.747365
1.746055 1.746144
1.744834 1.744905
1.743638 1.743660
1.742452 1.742438
1.741305 1.741192
1.740148 1.740000
1.738995 1.738762
1.737828 1.737596
1.736655 1.736406
1.735494 1.735275
1.734342 1.734086
1.733174 1.732904
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Table XI Data for the 32 x 32 square lattice, near the critical region. Exact values are in
the second column, and the next 2 columns correspond to different BHM runs. The
random walk dynamics [1] with approximation Al (see text) was adopted. A new
averaging state is counted after each single-spin flip, instead of waiting for a whole
lattice sweep. Nearly 10° states per energy were sampled for ech run. The same
numerical accuracy was obtained also by using the further approximations A2 and A3,
last column, in spite of the detailed balance violation [27] between different energies,
forced by A2. Within BHM, one does not need to care about the relative balance
of visitations to different energies. Only a uniform sampling probability inside each

energy level, separately, is important.

By following the same way adopted in measuring
< N"P(E) > and < N9(E) >, one can also obtain
the microcanonical average < Q(F) > of the particular
thermodynamic quantity @ of interest (magnetization,
density, correlations, etc). All these microcanonical
averages are independent of the particular environ-
ment the system is currently interacting with. In other
words, they do not depend on temperatures, equilib-
rium conditions, or any other thermodynamic concept:
they are determined by the system’s energy spectrum
alone. Thus, after g(F) is already determined through
the BHM equation (4), once and forever, the same sys-
tem can be submitted to different environment condi-
tions, and its behaviour (equilibrium or not) can be
studied resorting always to the same g(£). Within the
particular case of canonical equilibrium, for instance,
the thermal average < () >7 of the quantity ¢ can
be obtained from equation (3), for any temperature 7.
If one decides to use computer simulations as the in-
strument measuring < N (E) >, < N9(E) > and
< Q(F) >, then only one computer run is enough to
determine the whole temperature dependence, contin-
uously, without need of repeating again the simulation
for each new temperature.

Other computer simulation methods, the so-called

multicanonical sampling strategies [5-7], also allow the
direct determination of g(E). All of them are based

on the counting V(E) of visits to each energy level E.
Every time each energy level E is visited by the cur-
rent state S, along the Markovian chain, the count-
ing is updated from the current V(F) to V(E) + 1.
Within BHM, however, the F-histograms for N'P and
N4® are updated from the current N"P(E) and N4*(E)
to NUP(E) + NgP and N (E) + NZ®| respectively, for
the same current state S. This corresponds to macro-
scopic upgrades instead of the mere counting of one
more state. Thus, a much more detailed information
is extracted from each averaging state withing BHM
than any other method, giving rise to much more ac-
curate results. Moreover, the larger the system size,
the stronger is this advantage, due to the macroscopic
character of the BHM quantities N'P and N7,

Another advantage of BHM over other methods is
its complete independence concerning the particular
dynamic rule adopted in order to measure the micro-
canonical averages. Any recipe can be used, provided
the correct E-functions < NP (E) >, < NI¥(E) >
and < Q(F) > were accurately determined. As the
fundamental equation (4) is exact, any numerical devi-
ation observed on the final results are due to the par-
ticular measuring recipe one chooses to adopt, not to
the method itself. This 1s a big advantage, once one
can choose a more adequate measuring instrument for
each different system under study. The only require-
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ment to obtain correct microcanonical averages is a
uniform probability distribution inside each energy
level, separately. Detailed balance between differ-
ent energy levels is irrelevant for BHM. All possible
transitions between different energy levels are exactly
counted by the BHM quantities N"P and N them-
selves, not by the particular stochastic dynamic recipe
one adopts. On the other hand, besides the uniform
sampling probability inside each energy level, multi-
canonical methods also depend on the particular tran-
sition rates between different energies, which are tuned
during the computer run in order to get a flat distri-
bution of visits at the end. Detailed balance is funda-
mental for multicanonical methods. Thus, besides the
acccuracy advantage commented before, any good dy-
namic rule for multicanonical sampling is also good for
BHM, but the reverse is not true. Indeed, BHM allows
the user to design his own profile of visits along the
energy axis, taking for instance a better statistics near
the critical region.

During the past half century, theoretical studies pro-
vided us with many recipes concerning detailed bal-
ance for Markovian processes, leading to Gibbs equilib-
rium distribution. These recipes show us how to design
adequate transition rates between different energy lev-
els. Unfortunately, there are no equivalent theoretical
studies 1n what concerns adequate rules leading to a
uniform probability inside each energy level. Perhaps
this missing point is due to the fact that most studies
were directed towards canonical distributions, where a
sharp region of the energy axis is visited: after some
transient steps (normally discarded from the Marko-
vian chain) the system becomes trapped into this sharp
region. Thus, the spread over this restricted region is
supposed to occur naturally, giving rise to the required
uniformity inside each level. At least for smooth E-
dependent quantities < Q(F) >, the quoted sharpness
solves the problem. However, this is not the case if
one needs to cover wide energy ranges. For both mul-
ticanonical sampling as well as BHM, this 1s an open
problem waiting for new ideas, new insight. How to
assure a uniform probability of visits inside each en-
ergy level? Some clues towards the answer were dis-
cussed, and some very efficient practical solutions were
proposed in section V.
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