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We study, in a hydrodynamical approach, the energy dependence of the kaonmT spectra in central Pb+Pb
(Au+Au) collisions. We show that the experimental data of the inverse slope parameter can be reproduced with
a reasonable choice of both energy-dependent freeze-out temperature and initial conditions.

1 Introduction

Experimental data on transversal momentum distributions of
kaons produced in central Pb+Pb or Au+Au collisions show
an anomalous dependence on the collision energy [1, 2, 3].
The effective temperatureT ∗, or slope parameter of the
transversal-momentum spectra [4], increases with energy in
AGS and RHIC energy domains. However, in the SPS en-
ergies the effective temperature keeps approximately con-
stant. Recently, it was argued [5] that this behaviour might
be caused by a modification of the equation of state in the
transition region between confined and deconfined matter,
as suggested by Van Hove [6] a long time ago, and could
be considered as new signal of deconfinement in the SPS
energy domain.

Our main object in the present work is to study the be-
haviour of the effective temperature for K+ in several energy
domains. For this purpose, we apply the recently developed
SPheRIO [7, 8] code for hydrodynamics in 3+1 dimensions,
using both Landau-type compact initial conditions and spa-
tially more spread ones. For the latter we used the average
over many events generated by NeXus [9, 10]. We show
that initial conditions given in small volume, like Landau-
type ones, are unable to reproduce the effective temperature
together with other data (multiplicities and rapidity distribu-
tions). These quantities can be reproduced altogether only
when using a large initial volume with an appropriate veloc-
ity distribution.

Besides, it seems that the increase ofT ∗ in the RHIC en-
ergy domains is caused mainly by the larger expansion time
in the hadronic phase for higher incidente energy, which im-
plies lower freeze-out temperature as

√
s increases [11, 12].

It seems that, within our analyses with NeXus initial condi-
tions, the RHIC incident energies are not enough to produce
noticeable increase in the transverse acceleration during the

quark-gluon plasma (QGP) phase.

2 Hydrodynamics in 3+1 dimensions

The hydrodynamical code in 3+1 dimensions used here is
based on the technique calledSmoothed Particle Hydrody-
namics(SPH) [13, 14]. This is a method which uses La-
grangian coordinates. The fluid is represented by small vol-
umes called SPH-particles and the equations for the fluid
evolution become a system of ordinary differencial equa-
tions for the SPH-particles, in this representation.

The numerical code SPheRIO [15] is a suitable imple-
mentation of this method for the relativistic nuclear colli-
sions. An advantage of this technique is the convenience in
the study of problems where the geometry is highly irreg-
ular, as is the case of non-central relativistic collisions. A
SPH-particle has attached to it conserved quantities; in the
present version of SPheRIO, the entropy and the baryonic
number are the quantities which are kept constant during
the fluid evolution. In the SPH representation, the entropy
density and the baryonic density are parametrized as:

s(τ,x) =
1
τγ

∑

i

νs
i W (x− xi; h), (1)

nb(τ,x) =
1
τγ

∑

i

νb
i W (x− xi; h), (2)

whereνs
i (νb

i ) is the entropy (baryonic number) of thei-
th SPH-particle,γ = 1/

√
(1 − v2

x − v2
y − τ2v2

η), andW
is the interpolating kernel with widthh. Here we use the
hyperbolic coordinatesτ ≡ √

(t2 − z2), x, y and η ≡
1/2 · ln[(t + z)/(t − z)] which are convenient for a sys-
tem in rapid longitudinal expansion. The equations for the
SPH-particles are given by:
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= −
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τγ2
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Pj

τγ2
j s2

j

]
∇iW (xi − xj ; h), (4)

d

whereω = (vx, vy, τ2vη). The pressure,P , and the en-
ergy density,ε, are related to the entropy densitys and the
baryonic densitynb via equation of state.

2.1 Decoupling criterion

The distribution of final particles is obtained by using
Cooper-Frye’s prescription [16]:

E
d3N

dp3
=

∫

Σfo

dσ · pf(p · u), (5)

wheref(p · u) is the distribution function (Bose-Einstein or
Fermi-Dirac) and the integral is evaluated on the freeze-out
surfaceΣfo. In the SPH representation, Eq. (5) is written as

E
d3N

dp3
=

∑

i

νs
i n̂i · p

si |n̂i · ui|f(p · ui), (6)

where the sum is over all SPH-particles on the freeze-out
surface and̂n is the normal four-vector to this surface, given
by n̂µ ∝ (−∂T/∂τ,−∂T/∂x,−∂T/∂y,−∂T/∂η).

3 Equations of state

Let us consider here two sets of equations of state. The first
one type-I (EOS-I) has a first-order phase transition between
an ideal gas of massless quarks (u, d and s) and gluons and
an ideal hadron gas (baryon number is assumed to be zero),
where the pressure, the energy density and the entropy den-
sity are given by:

Pq =
π2

90
gqT

4 −B, (7)

εq =
π2

30
gqT

4 + B, (8)

sq =
2π2

45
gqT

3, (9)

Ph =
π2

90
ghT 4, (10)

εh =
π2

30
ghT 4, (11)

sh =
2π2

45
ghT 3. (12)

Heregh = 16 is an effective parameter (see [17] for details),
gq = 95/2, andB is the bag model parameter.

The second one, type-II (EOS-II), somewhat more real-
istic than the previous one, considers a first-order phase tran-
sition between a QGP and a hadronic resonance gas (baryon
number is taking into account). In the QGP we consider an
ideal gas of massless quarks (u, d, s) and gluons. The ther-
modynamical quantities are given by

Pq =
π2

90
gqT

4 +
3
2

(
T 2µ2

q +
µ4

q

2π2

)
−B, (13)

εq =
π2

30
gqT

4 +
9
2

(
T 2µ2

q +
µ4

q

2π2

)
+ B, (14)

sq =
2π2

45
gqT

3 + 3Tµ2
q, (15)

nq = 3

(
T 2µ2

q +
µ3

q

π2

)
. (16)

The hadronic phase is composed of resonances with mass
below 2.5 GeV/c2, where volume correction is taken into
account. The corrected-volume pressure,P ex, is written in
function of the pressure for an ideal gasP id:

∑

i

P ex
i (T, µi) =

∑

i

P id
i (T, µ̃i), (17)

where µ̃i = µi − Vi

∑
j P id

j (T, µ̃j), (Vi: volume of the
hadroni). Others thermodynamical quantities are given fol-
lowing the relation:

χex
i (T, µi) =

χid
i (T, µ̃i)

1 +
∑

j Vjnid
j (T, µ̃j)

, (18)

whereχ representsn, ε or s.
In both equations of state, the transition temperature is

assumed to be 160 MeV.

4 Initial conditions and results

In order to study the behaviour of the effective tempera-
ture, we began with Landau-type initial conditions, where
the fluid is at rest att = 0 fm/c, and the matter is localized
in a Lorentz contracted sphere. The initial energy density
is assumed to be constant and given by:ε0 = E/V , where
E = ζ(

√
s − 2m)A is the available kinetical energy in the

collision, andV = γ−1
0 V0 = γ−1

0 (4/3)πR3 is the volume
of the contracted incident nuclei when superposed. Here
ζ is the inelasticity parameter andγ0 =

√
s/2m. These

initial conditions (together with EOS-I) can reproduce both
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the particle multiplicities and the rapidity distributions fairly
well (Ref. [17]). However it has an inconvenience that the
initial energy density is too high. As a consequence, the time
of expansion becomes very large and transverse expansion
is considerable. The result is a very large effective tempera-
ture and a non-exponential shape of the spectra in transverse
momentum.

A solution we found to this problem was to give the
fluid an initial longitudinal-velocity distribution. We did not
change the shape of the region where the fluid is formed,
which remained a Lorentz contracted sphere. The initial lon-
gitudinal velocity is not constant, but proportional toz:

uµ(z) = (γ(z), 0, 0, γ(z)v), (19)

uz(z) =
z

zm
ζ
√

γ2
0 − 1, (20)

γ(z) =

√(
z

zm

)2

ζ2(γ2
0 − 1) + 1, (21)

wherezm = R/γ0. As a consequence of this change, the
initial energy densityε0, which we took constant and ob-
tained solving the equation

E =
∫

V : r2+γ2
0z2=R2

[
(ε0 + p)γ2(z)− p

]
dV, (22)

became much smaller and then the transverse expansion
compatible with data, as shown in Table 1 and Fig. 1. In this
simulation we consider freeze-out temperatures smoothly
increasing with energy, until SPS domains. For RHIC en-
ergies, we show two cases: a decreasing freeze-out temper-
ature and a increasing one (bold-faced types in Table 1 and
triangle in Fig. 1).

However, sinceε0 became much smaller than the previ-
ous case, so did the entropy densitys0 and the total multi-
plicity, although the rapidity distributions remained more or
less the same in the shape.

10
0

10
1

10
2

10
3

s
1/2

 (GeV)

0

50

100

150

200

250

300

350

400

T
*  (

M
eV

)

Figure 1. Energy dependence of the effective temperature for K+.
The initial conditions are Landau-type ones, with initial longitudi-
nal velocity. Triangles corresponde toTfo=155 MeV. Experimen-
tal data are shown in square symbols.
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Figure 2. Energy dependence of the effective temperature for K+.
The initial conditions are NeXus-type ones. Triangles corresponde
to Tfo=155 MeV. Experimental data are shown in square symbols.

To reproduce all quantities (multiplicities, rapidity dis-
tributions and transverse-momentum distributions) we have
to take a large initial volume, with some appropriate
longitudinal-velocity distribution. To do this, we use the
NeXus event generator, which produces the event-by-event
initial conditions at timeτ = 1 fm/c. Instead of using these
fluctuating initial conditions, here we smooth them out by
averaging 30 random events for each collision energy. For
this case we use the EOS-II. The results are shown in Table
2 and Fig. 2. Besides reproducing the effective tempera-
ture data quite well, it was shown that this initial conditions
give good results also of multiplicity and rapidity distribu-
tions [18].

5 Conclusions

We conclude that the initial conditions given in small vol-
ume like Landau-type discussed above are not appropriated
to describe the multiplicity data, rapidity distributions and
the transverse-momentum distributions at the same time. If
we try to obtain the correct multiplicities (together with the
rapidity distributions), the effective temperature becomes
too large (the first case discussed in Sec. 4, where the fluid
is at rest) . On the other side, if we try to get the correct ef-
fective temperature and the shape of rapidity distributions as
we did, the multiplicities become small, unless an additional
entropy is generated during the expansion (the second case
discussed in Sec. 4). It is clear that these conclusions about
the initial conditions do not change if we replace EOS-I by
EOS-II.

Nexus type initial conditions, with spatially spread en-
ergy and velocity distributions, reproduce well all the main
characteristics of data, namely particle multiplicities, rapid-
ity distributions andpT spectra. In this case, the increase
of T ∗ in RHIC energy domain seems to be due mostly to
the larger expansion in the hadronic phase than to that in the
QGP phase.
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TABLE I. Results obtained from Landau-type initial conditions with initial longitudinal velocity.vT is the transversal velocity averaged in
the rapidity interval−0.5 ≤ y ≤ 0.5. ε0 is the initial energy density andT0 is the corresponding initial temperature.

√
s T0 ε0 Tfo vT T ∗

(A·GeV) (MeV) (GeV/fm3) (MeV) (MeV)

2.7 109 0.097 85 0.240 143
3.3 128 0.185 94 0.255 164
3.8 140 0.263 97 0.280 178
4.3 149 0.341 115 0.155 167
4.9 158 0.431 120 0.153 171
8.8 160 1.038 143 0.146 213
12.3 160 1.322 147 0.147 221
17.3 160 1.536 149 0.139 230
130 167 1.896 128 0.292 300

155 0.191 273
200 168 1.908 125 0.485 392

155 0.272 331

TABLE 2. Results obtained from NeXus-type initial conditions. The initial energy densityε0 and the initial temperatureT0 are given in the
central point (x = y = η = 0). vT is the transversal velocity averaged in the rapidity interval−0.5 ≤ y ≤ 0.5.

√
s T0 ε0 Tfo vT T ∗

(A·GeV) (MeV) (GeV/fm3) (MeV) (MeV)

2.7 98 0.75 85 0.067 92
3.3 128 0.66 94 0.28 155
3.8 131 1.01 97 0.41 192
4.3 135 1.38 115 0.37 212
4.9 140 1.55 120 0.39 225
8.8 198 4.06 143 0.32 234
12.3 248 9.04 147 0.32 231
17.3 265 11.37 149 0.32 228
130 279 12.86 128 0.52 280

155 0.34 234
200 277 12.48 125 0.56 300

155 0.34 231
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