Acessibilidade / Reportar erro

Non-invasive genetic sampling reveals a habitat use extension of Chrysocyon brachyurus and Leopardus guttulus inside a protected area of Southeastern Brazil

Amostragem genética não-invasiva revela uma extensão do uso de habitat por Chrysocyon brachyurus e Leopardus guttulus em uma área protegida do Sudeste do Brasil

Abstract

Anthropogenic activities have modified landscapes leading to environmental damages and to a threatened biodiversity. As a result, protected areas have become the last refuge for many species. Protected areas surrounded by a highly modified landscape may accumulate species, especially large mammals, which may alter their habitual habitat use. Here we used non-invasive DNA analysis, molecular species identification, and landscape analyses to assess the habitat use of carnivore species in an isolated protected area, Itatiaia National Park (PNI). Two species were by far the most sampled within PNI, Chrysocyon brachyurus and Leopardus guttulus. The spatial distribution of each species was assessed to the following landscape variables: altitude; land use/land cover; slope and Euclidean distances from water and from urban buildings. The habitat use of C. brachyurus and L. guttulus was related to altitude and land use/land cover. We tested whether there were differences in the environmental indicators considering both species, which showed that higher altitudes, forest and/or grassland formation were indeed associated with them. We highlighted the unprecedented presence of both species at altitudes up to 2,631 meters. Our results suggest a habitat use extension for both species inside the PNI that could be a consequence of the highly modified landscape where PNI is inserted. Therefore, the results can be helpful for better understanding the species dynamics and their conservation in the face of landscape changes. Further, this study may be of help for management and conservation policies of this emblematic protected area.

Keywords
Conservation; non-invasive DNA; landscape; land use/land cover; carnivores

Resumo

As atividades antropogênicas modificaram as paisagens levando a danos ambientais e a uma biodiversidade ameaçada. Como resultado, as áreas protegidas se tornaram o último refúgio para muitas espécies. Áreas protegidas cercadas por uma paisagem altamente modificada podem acumular espécies, especialmente grandes mamíferos, o que pode alterar o uso de seu habitat habitual. Neste trabalho, usamos análise de DNA não-invasivo, identificação molecular de espécies e análises de paisagem para avaliar o uso de habitat de carnívoros em uma área protegida isolada, o Parque Nacional de Itatiaia (PNI). Duas espécies foram de longe as mais amostradas dentro do PNI, Chrysocyon brachyurus e Leopardus guttulus. A distribuição espacial de cada espécie foi avaliada com as seguintes variáveis paisagísticas: altitude; uso e cobertura do solo; declividade e distâncias euclidianas da água e de construções urbanas. O uso de C. brachyurus e L. guttulus no habitat estava relacionado à altitude e ao uso e cobertura do solo. Testamos se existiam diferenças nos indicadores ambientais considerando ambas as espécies, o que mostrou que altitudes mais elevadas, formação de florestas e/ou campestres estavam de fato associadas a elas. Destacamos a presença incomum de ambas as espécies em altitudes de até 2.631 metros. Nossos resultados sugerem uma extensão do uso do habitat conhecido para ambas as espécies como possível consequência da paisagem altamente modificada onde o PNI está inserido. Portanto, os resultados podem ser úteis para entender melhor a dinâmica das espécies e sua conservação diante das mudanças na paisagem. Além disso, este estudo pode ser útil para as políticas de manejo e conservação desta emblemática área protegida.

Palavras-chave
Conservação; DNA não-invasivo; paisagem; uso e cobertura do solo; carnívoros

Introduction

Anthropogenic activities are the main source of environmental changes once they have intensified the process of landscape fragmentation and enhanced ecological damage (Cerqueira et al. 200311. CERQUEIRA, R., BRANT, A., NASCIMENTO, M.T. & PARDINI, R. 2003. Fragmentação: alguns conceitos. In Fragmentação de Ecossistemas: Causas, Efeitos sobre a Biodiversidade e Recomendações de Políticas Públicas, p. 23–43.). These land use modifications represent the greatest immediate threat to biodiversity, and it can lead to variations in the ecosystem functioning, including biodiversity loss (Cardinale et al. 200610. CARDINALE, B., SRIVASTAVA, D., DUFFY, E., WRIGHT, J.P., DOWNING, A.L., SANKARAN, M. & JOUSEAU, C. 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature. 443:989–992.).

In this scenario, protected natural areas are one of the most important mechanisms to slow down biodiversity loss. (Godet and Devictor 201826. GODET, L. & DEVICTOR, V. 2018. What conservation does. Trends Ecol. Evol. 33:720–730.; Wintle et al. 201970. WINTLE, B.A., KUJALA, H., WHITEHEAD, A., CAMERON, A., VELOZ, S., KUKKALA, A., MOILANEN, A., GORDON, A., LENTINI, P.E., CADENHEAD, N.C.R. & BEKESSY, S.A. 2019. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proceedings of the National Academy of Sciences, 116(3):909–914.). They are also essential to watershed protection and carbon storage, as well as to cultural services that are more challenging to quantify (DeFries et al. 200716. DEFRIES, R.A., HANSEN, B.L., TURNER, REID, R. & LIU, J. 2007. Land use change around protected areas: management to balance human needs and ecological function. Ecol. Appl. 17: 1031–1038.). Nevertheless, even protected areas may face several threats such as deforestation and fragmentation, invasion of alien species, wildfires, logging, and hunting (Ervin 200323. ERVIN, J. 2003. Rapid assessment of protected area management effectiveness in four countries. BioScience 53:833–841.; Carey et al. 20009. CAREY, C., DUDLEY, N. & STOLTON, S. (2000). Squandering Paradise? The Importance and Vulnerability of the World’s Protected Areas. WWF-World Wide Fund for Nature.). Protected areas surrounded by a highly modified landscape may suffer with the potential negative consequences associated with neighbor land use changes (Hansen and DeFries 200729. HANSEN, A.J. & DEFRIES, R. 2007. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17:974– 988.). A most common consequence of these landscape modifications to animals, mainly large mammals, is altering their range distribution and habitat use (Ripple et al. 201757. RIPPLE, W.J., WOLF, C., NEWSOME, T.M., HOFFMANN, M., WIRSING, A.J. & MCCAULEY, D.J. 2017. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl. Acad. Sci. U.S.A. 114, 10678–10683).

Nonetheless, understanding the habitat use and its conservation becomes a challenge when focusing on large mammals, due to recurring problems in observing or capturing most of these species. The use of non-invasive samples left in the environment by animals as scats, hair, urine, saliva, nails, and feathers, may decrease the expenditure of capturing these animals and the time spent in the field (Duque et al. 201822. DUQUE, S.L.A., OROZCO-JIMÉNEZ, L.Y., ZAPATA-ESCOBAR, C. & PALACIO-BAENA, J.A. 2018. Conservation genetics of otters: Review about the use of non-invasive samples. Therya. 9(1):85–93. ). Furthermore, the increased interest in molecular techniques among ecologists has been improving our knowledge of the biology and ecology of these large mammals. As an example, the use of non-invasive samples as DNA sources (Deyoung and Honeycutt 200519. DEYOUNG, R.W. & HONEYCUTT, R.L. 2005. The Molecular Toolbox: Genetic techniques in wildlife ecology and methods. J. Wildl. Manage. 69(4):1362–1384.; Ruell and Crooks 200761. RUELL, E.W. & CROOKS, K.R. 2007. Evaluation of Noninvasive Genetic Sampling Methods for Felid and Canid Populations. J. Wildl. Manage. 71(5):1690–1694.) for species identification or for assessing social organization system, demographic history, and population dynamics (Marker et al. 200741. MARKER, L.L., WILKERSON, A.J.P., SARNO, R.J., MARTENSON, J., BREITENMOSER-WÜRSTEN, C., O’BRIEN, S.J. & JOHNSON, W.E. 2007. Molecular genetic insights on cheetah (Acinonyx jubatus) ecology and conservation in Namibia. J. Hered. 99(1):2–13.; Miotto et al. 201443. MIOTTO, R.A., CERVINI, M., KAJIN, M., BEGOTTI, R.A. & GALETTI JR, P.M. 2014. Estimating puma Puma concolor population size in a human-disturbed landscape in Brazil, using DNA mark-recapture data. Oryx, 48(2):250–257.; Riley et al. 200655. RILEY, S.P.D., POLLINGER, J.P., SAUVAJOT, R.M., YORK, E.C., BROMLEY, C., FULLER, T. K. & WAYNE, R.K. 2006. A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol. Ecol. 15(7):1733–1741.; Saranholi et al. 201765. SARANHOLI, B.H., CHÁVEZ-CONGRAINS, K., GALETTI Jr, P.M. 2017. Evidence of recent fine-scale population structuring in South American Puma concolor. Diversity. 9(4). ; Souza et al. 2017).

Among mammals, the carnivores have been increasingly suffering from habitat loss and landscape modifications (Noss et al. 199646. NOSS, R.F., QUIGLEY, H.B., HORNOCKER, M.G., MERRILL, T. & PAQUET, P. C. 1996. Conservation Biology and Carnivore Conservation in the Rocky Mountains. Conserv. Biol. 949–963.; Ripple et al. 201456. RIPPLE, W.J., ESTES, J.A., BESCHTA, R.L., WILMERS, C.C., RITCHIE, E.G., HEBBLEWHITE, M., BERGERBODIL, J. ELMHAGEN, B., LETNIC, M., NELSON, M. P., SCHMITZ, O. J., SMITH, D. W., WALLACH, A. D. & WIRSING, A. J. 2014. Status and ecological effects of the world’s largest carnivores. Science, 343(6167).). However, because of their important ecological function of regulating other populations through predation (Santos et al. 200463. SANTOS, M.D.F.M., dos, PELLANDA, M., TOMAZZONI, A.C., HASENACK, H. & HARTZ, S.M. 2004. Mamíferos carnívoros e sua relação com a diversidade de hábitats no Parque Nacional dos Aparados da Serra, sul do Brasil. Iheringia, Sér. Zool. 94(3):235–245. ; Ripple et al. 201456. RIPPLE, W.J., ESTES, J.A., BESCHTA, R.L., WILMERS, C.C., RITCHIE, E.G., HEBBLEWHITE, M., BERGERBODIL, J. ELMHAGEN, B., LETNIC, M., NELSON, M. P., SCHMITZ, O. J., SMITH, D. W., WALLACH, A. D. & WIRSING, A. J. 2014. Status and ecological effects of the world’s largest carnivores. Science, 343(6167).), their persistence in the ecosystem is critical.

In this study, we employed non-invasive-derived DNA from carnivores’ scats to understand how these species use available habitats inside an important protected mountain area inserted in a highly modified landscape in Southeastern Brazil. We focused in Chrysocyon brachyurus and Leopardus guttulus, which are by far the two carnivore species most sampled in the studied area. Regarding habitat use, we expected that C. brachyurus would be associated with grassland and L. guttulus with forest formations. In addition, C. brachyurus inhabits the Brazilian savannas in altitudes up to 2000 m (Queirolo et al. 201151. QUEIROLO, D., MOREIRA, J.R., SOLER, L., EMMONS, L.H., RODRIGUES, F.H.G., PAUTASSO, A.A., CARTES, J.L. & SALVATORI, V. 2011. Historical and current range of the near threatened Maned wolf Chrysocyon brachyurus in South America. Oryx. 45:296–303.; Paula & DeMatteo, 201549. PAULA, R.C. & DeMATTEO K. 2015. Chrysocyon brachyurus (errata version published in 2016). The IUCN Red List of Threatened Species 2015.; Bereta et al. 20178. BERETA, A., FREITAS, S.R.,BUENO, C. 2017. Novas ocorrências de Chrysocyon brachyurus (Carnivora) no estado do Rio de Janeiro indicando a expansão de sua distribuição geográfica. Boletim da Sociedade Brasileira de Mastozoologia, v. 78, n. 1, p. 5–8.) and L. guttulus appears in areas of dense vegetation, such as Atlantic Forest from the coastal plain to fields with altitudes no higher than 1300 m (Oliveira and Cassaro 199947. OLIVEIRA, T.G.D. & CASSARO, K. 1999. Guia de identificação dos felinos brasileiros (No. 599.742. 7 (81) OLI).; Goulart et al. 200927. GOULART, F.V.B., CÁCERES, N.C., GRAIPEL, M.E., TORTATO, M.A., GHIZONI JR, I.R. & OLIVEIRA-SANTOS, L.G.R. 2009. Habitat selection by large mammals in a southern Brazilian Atlantic Forest. Mamm. Biol. 74(3), 182–190.), although it can reach up to 2000 m of altitude (Oliveira et al. 201648. OLIVEIRA, T., TRIGO, T., TORTATO, M., PAVIOLO, A., BIANCHI, R. and LEITE-PITMAN, M.R.P. 2016. Leopardus guttulus. The IUCN Red List of Threatened Species 2016.; Sartor et al. 202164. SARTOR, C.C., CUSHMAN, S.A., WAN, H.Y., KRETSCHMER, R., PEREIRA, J.A.,BOU, N., COSSE, M., GONZÁLEZ, S., EIZIRIK, E., FREITAS,T.R.O. & TRIGO, T.C. 2021. The role of the environment in the spatial dynamics of an extensive hybrid zone between two neotropical cats. Journal of Evolutionary Biology, 34(4), 614–627.). Hence, we also expected to find both species up to a maximum altitude of 2000 meters.

Material and Methods

The sample collection was made in previously existing trails in the emblematic Itatiaia National Park (PNI), the first national park created in Brazil in 1937. The area is classified by the Brazilian legislation as an integral protection conservation unit (IPCU), where only indirect use of natural resources is allowed. PNI has a total area of 28,084 hectares (ICMBio 201230. ICMBio. Plano de Manejo do Parque Nacional de Itatiaia - Encarte 1. v. 1, p. 82, 2012.), ranging altitude from 549 to 2791 meters and is located between the states of Rio de Janeiro and Minas Gerais ((Fig. 1a) - boundaries from the Brazilian Institute of Geography and Statistics), Southeastern Brazil. The conservation area is integrally inserted in the Atlantic Forest biome, and is considered a priority area for the conservation of biodiversity of extreme relevance due to the high concentration of endemic and endangered species (Bencke et al. 20067. BENCKE, G.A., MAURICIO, G.N., DEVELEY, P.F. & GOERCK, J.M. 2006. Áreas importantes para a conservação das aves no Brasil: Parte I - Estados do Domínio da Mata Atlântica. São Paulo: SAVE Brasil, v. 14.). Also, it is a priority area for future mammal censuses considering the absence of data, especially about medium and large mammals (Galetti et al. 200925. GALETTI, M., GIACOMINI, H.C., BUENO, R.S., BERNARDO, C.S., MARQUES, R.M., BOVENDORP, R.S., STEFFLER, C.E., RUBIM, P., GOBBO, S.K., DONATTI, C.I., BEGOTTI, R.A., MEIRELLES, F., NOBRE, R.A., CHIARELLO, A.G. & PERES, C.A. 2009. Priority areas for the conservation of Atlantic Forest large mammals. Biol. Conserv. 142(6):1229–1241.).

Figure 1.
(a) Location of Itatiaia National Park (PNI), trails and samples location; (b) Land use/land cover; (c) digital elevation model; (d) slope; (e) Distance from urban buildings and their locations (f) Distance from water bodies.

Despite being a protected area, the PNI is circumvented by municipalities historically recognized for agricultural activities, which present a series of conflicts concerning PNI (Aximoff and Rodrigues 20114. AXIMOFF, I. & RODRIGUES, R.D.C. 2011. Histórico dos incêndios florestais no Parque Nacional do Itatiaia. Ciênc. Florest. 21(1):83–92.; Richter 200454. RICHTER, M. 2004. Geotecnologias no Suporte ao Planejamento e Gestão de unidades de conservação Estudo de caso: Parque Nacional do Itatiaia. Seropédica: Universidade Federal do Rio de Janeiro.). Between the alarming activities, we can highlight the use of fire for cleaning and maintenance of pastures, disorderly tourism, hunting, and illegal extraction (de Medeiros 200218. de MEDEIROS, M.B. 2002. Manejo do fogo em unidades de conservação do cerrado. Boletim do Herbário Ezechias Paulo Heringer, 10.; Aximoff and Rodrigues 20114. AXIMOFF, I. & RODRIGUES, R.D.C. 2011. Histórico dos incêndios florestais no Parque Nacional do Itatiaia. Ciênc. Florest. 21(1):83–92.; Dib et al. 202020. DIB, L.V., PALMER, J.P.S., CLASS, C.D.S.C., PINHEIRO, J.L., RAMOS,R.C.F., DOS SANTOS, C.R., FONSECA, A.B.M., RODRÍGUEZ-CASTRO, K.G., GONÇALVES, C.F., GALETTI JR, P.M., BASTOS, O.M.P., UCHÔA, C.M.A., CORRÊA, L.L., BASTOS, A.C.M.P., AMENDOEIRA, M.R.R. & BARBOSA, A.S. 2020. Non-invasive sampling in Itatiaia National Park, Brazil: wild mammal parasite detection. BMC veterinary research. Dryad Digital Repository. 16(1):1–21.). The unregulated land tenure also causes irregular parceling of the soil and may even allow people living in the PNI, culminating in the generation of waste, effluents, and others (ICMBio 201230. ICMBio. Plano de Manejo do Parque Nacional de Itatiaia - Encarte 1. v. 1, p. 82, 2012.).

The traveled trails totaling 352.20 km covered the entire extension of the PNI (Fig. 1a), varying between 773 m and 2766 m in altitude, with 46% in Forest Formation, 49% in Grassland Formation, 4% in Mosaic of Agriculture and pasture, and 1% in Rocky outcrops.

The trails were covered once by foot in non-periodic visits and the sample collection was carried out between July 2017 and April 2018. This was done preferably in the dry season when finding fresh scats is easier (Miotto et al. 201242. MIOTTO, R.A., CERVINI, M., BEGOTTI, R.A. & GALETTI JR, P.M. 2012. Monitoring a puma (Puma concolor) population in a fragmented landscape in southeast Brazil. Biotropica, 44(1):98–104. ) and considering that the presence of carnivores is not strongly affected by seasonality (Nagy-Reis et al. 201945. NAGY-REIS, M.B., IWAKAMI, V.H., ESTEVO, C.A. & SETZ, E.Z. 2019. Temporal and dietary segregation in a neotropical small-felid assemblage and its relation to prey activity. Mamm. Biol. 95(1):1–8.; Trolle et al. 200668. TROLLE, M., NOSS, A.J., DE LIMA, E.S. & DALPONTE, J.C. 2006. Camera-trap studies of maned wolf density in the Cerrado and the Pantanal of Brazil. In Vertebrate Conservation and Biodiversity. p. 371–378. Springer, Dordrecht.; de Almeida Jácomo et al. 200417. de ALMEIDA JÁCOMO, A.T., SILVEIRA, L. & DINIZ-FILHO, J.A.F. 2004. Niche separation between the maned wolf (Chrysocyon brachyurus), the crab-eating fox (Dusicyon thous) and the hoary fox (Dusicyon vetulus) in central Brazil. J. Zool. 262(1):99–106.).

Scats morphologically identified in the field as belonging to medium and large carnivores were collected along the trails in rocks and open places up to 3 m maximum around the trails since carnivores can use these places to mark their territory (Kleiman 201132. KLEIMAN, D.G. 2011. Canid mating systems, social behavior, parental care and ontogeny: are they flexible?. Behav. Genet., 41(6):803–809.; Lyra-Jorge et al. 200838. LYRA-JORGE, M. C., CIOCHETI, G. & PIVELLO, V. R. 2008. Carnivore mammals in a fragmented landscape in northeast of São Paulo State, Brazil. Biodivers. Conserv. 17(7): 1573–1580.). All scat samples collected were stored in 95% alcohol at –20 °C for molecular species identification, and the sampling geographic coordinates were recorded using a GPS device (Table S1).

Total DNA was extracted from fecal using QIAamp Fast DNA Stool Mini Kit (Qiagen) following the manufacturer’s recommendations. We used the scat surface to minimize contamination from non-target DNA (Ball et al. 20075. BALL, M.C., PITHER, R., MANSEAU, M., CLARK, J., PETERSEN, S.D., KINGSTON, S., NATASHA, M. & WILSON, P. 2007. Characterization of target nuclear DNA from faeces reduces technical issues associated with the assumptions of low-quality and quantity template. Conserv. genet. 8(3):577–586. ); additionally, two carnivore-specific fragments of mitochondrial DNA from the 12S (148 bp, Rodríguez-Castro et al. 201860. RODRÍGUEZ-CASTRO, K.G., SARANHOLI, B.H., BATAGLIA, L., BLANCK, D. & GALETTI Jr, P.M. 2018. Molecular species identification of scat samples of South American felids and canids. Conserv. Genet. Resour. 12:61–66.), and ATP6 (179 bp, Haag et al. 200928. HAAG, T., SANTOS, A.S., de ANGELO, C., SRBEK-ARAUJO, A.C., SANA, D.A., MORATO, R.G., SALZANO, F.M. & EIZIRIK, E. 2009. Development and testing of an optimized method for DNA-based identification of jaguar (Panthera onca) and puma (Puma concolor) faecal samples for use in ecological and genetic studies. Genetica, 136(3):505–512.; Chaves et al. 201212. CHAVES, P.B., GRAEFF, V.G., LION, M.B., OLIVEIRA, L.R. & EIZIRIK,E. 2012. DNA barcoding meets molecular scatology: short mtDNA sequences for standardized species assignment of carnivore noninvasive samples. Mol. Ecol. Resour. 12(1):18–35.) genes were amplified by PCR for molecular identification. The use of taxon-specific primers avoided amplification of non-target species, such as the prey on which carnivores feed, facilitating the DNA amplification of the species of interest. PCRs were performed on the Applied Biosystems ProFlex PCR System thermocycler (Life Technologies) following the conditions proposed for suitable amplification of mitochondrial regions of carnivore scats using the Car12Ss2 rRNA primers (Rodríguez-Castro et al. 201860. RODRÍGUEZ-CASTRO, K.G., SARANHOLI, B.H., BATAGLIA, L., BLANCK, D. & GALETTI Jr, P.M. 2018. Molecular species identification of scat samples of South American felids and canids. Conserv. Genet. Resour. 12:61–66.), and ATP6-DF3 (Haag et al. 200928. HAAG, T., SANTOS, A.S., de ANGELO, C., SRBEK-ARAUJO, A.C., SANA, D.A., MORATO, R.G., SALZANO, F.M. & EIZIRIK, E. 2009. Development and testing of an optimized method for DNA-based identification of jaguar (Panthera onca) and puma (Puma concolor) faecal samples for use in ecological and genetic studies. Genetica, 136(3):505–512.), and ATP6-DR1 (Chaves et al. 201212. CHAVES, P.B., GRAEFF, V.G., LION, M.B., OLIVEIRA, L.R. & EIZIRIK,E. 2012. DNA barcoding meets molecular scatology: short mtDNA sequences for standardized species assignment of carnivore noninvasive samples. Mol. Ecol. Resour. 12(1):18–35.).

PCR products were verified in electrophoresis using 1.5% agarose gel with GelRed (Biotium), purified using ExoSAP-IT enzyme (Affymetrix), and sequenced in ABI3730XL automatic sequencer (Applied Biosystem). Sequences obtained were manually edited and aligned using the CLUSTAL method (Thompson et al. 199467. THOMPSON, J.D., HIGGINS, D.G. & GIBSON, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22):4673–4680. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/308517
http://www.ncbi.nlm.nih.gov/pubmed/30851...
) with the Geneious software (Kearse et al. 201231. KEARSE, M., MOIR, R., WILSON, A., STONES-HAVAS, S., CHEUNG, M., STURROCK, S., BUXTON, S., COOPER, A., MARKOWITZ, S., DURAN, C., THIERER, T., ASHTON, B., MEINTJES, P. & DRUMMOND, A. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12):1647–1649. ). We compared each obtained sequence with the deposited sequences in the National Center for Biotechnology Information (NCBI), using the Basic Local Alignment Search Tool (BLAST) (Altschul et al. 19902. ALTSCHUL, S.F., GISH, W., MILLER W., MYERS, E.W. & LIPMAN D.J. 1990. Basic Local Alignment Search Tool. J. Mol. Biol. 215(3):403–410.). Likewise, the sequence was contrasted with sequences previously obtained by the Laboratory of Molecular Biodiversity and Conservation (Department of Genetics and Evolution/Federal University of São Carlos), using the neighbor-joining distance-based method (Saitou and Nei 198762. SAITOU, N. & NEI, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4):406–425.). Only sequences that showed the identity similarity value above 98% with the reference sequences were considered.

The landscape variables land use/land cover, Euclidean distance (ED) from water bodies, ED from the nearest urban buildings and altitude which have already been identified in other studies as influencing the occurrence of carnivores (Queirolo et al. 201151. QUEIROLO, D., MOREIRA, J.R., SOLER, L., EMMONS, L.H., RODRIGUES, F.H.G., PAUTASSO, A.A., CARTES, J.L. & SALVATORI, V. 2011. Historical and current range of the near threatened Maned wolf Chrysocyon brachyurus in South America. Oryx. 45:296–303.; Bereta et al. 20178. BERETA, A., FREITAS, S.R.,BUENO, C. 2017. Novas ocorrências de Chrysocyon brachyurus (Carnivora) no estado do Rio de Janeiro indicando a expansão de sua distribuição geográfica. Boletim da Sociedade Brasileira de Mastozoologia, v. 78, n. 1, p. 5–8.; Cruz et al. 201915. CRUZ, P., DE ANGELO, C., MARTÍNEZ, PARDO J., IEZZI, M.E., VARELA, D., DI BITETTI, M.S., PAVIOLO, A. 2019. Cats under cover: Habitat models indicate a high dependency on woodlands by Atlantic Forest felids. Biotropica, 51, 266–278.) were analyzed. The fine-scaled measure of climate variables was not available and was not included in the analyses. We extracted the variables from each fecal sample point and added random points obtained through the Create Random Points tool in QGis. All points were used to test whether each species occurrence had a specific pattern, given the possible habitats within PNI. Land use/land cover were obtained from the MAPBIOMAS PROJECT 3.0 platform (http://mapbiomas.org). The annual series used (2017) was obtained with LandSat images using Google Earth Engine with 30 m resolution and accuracy validated by the platform owner (Fig. 1b). Based on information from the drainage network, the distance between the samples and the nearest water body was calculated (Fig. 1f), aiming to establish the geographical range of water bodies by Euclidean distance using QGis. The urban infrastructure locations were obtained from the PNI’s Management Plan, Map 2.1, booklet 2, where they were named as Villages, Hamlets and Neighborhoods. These locations were completed using Google Earth Pro. The ED calculated between urban buildings and the species location is shown in Fig. 1e.

The geographical relief was obtained from a Digital Elevation Model (DEM), which reproduces the spatial representation of a terrain’s surface from points that describe its three-dimensional elevation (Montgomery 200344. MONTGOMERY, D.R. 2003. Predicting landscape-scale erosion rates using digital elevation models. C. R. Geosci. 335(16):1121–1130.). Planialtimetric data were acquired using ALOS Palsar satellite images with 30 m resolution. The primary attributes of relief features (Klingebiel et al. 198733. KLINGEBIE, A.A., HORVATH, E.H., MOORE, D.G. & REYBOLD, W.U. 1987. Use of Slope, Aspect, and Elevation Maps Derived from Digital Elevation Model Data in Making Soil Surveys. Soil Survey Techniques. 20. ) obtained from the DEM and considered in this study were the altitude and slope (Figures 1c, d). Those values were taken from the pixel of each sampling point using QGis (pixel resolution 30 m).

We tested whether species occurrence was related to environmental variables (land use/land cover, altitude, slope, ED from water bodies and urban buildings), comparing the sample fecal points to a null random sampling points for each species, using R (R Development Core Team 202053. R CORE TEAM 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.). For the land use/land cover, the unique categorical variable, we also compared species across vegetation types using the “lsmeans” package (Lenth et al. 201634. LENTH, R.V. 2016. Least-Squares Means: The R Package lsmeans. J. Stat. Softw. 69(1):1–33. ). Since C. brachyurus and L. guttulus shown similar presence with regard to the environmental variables, we compared species occurrence in a single generalized mixed model, one species relative to the other. We used sets of generalized mixed models with binomial distribution, and the PCA-axis-built with ecological variables as fixed-factors, in all possible arrangements for PCA following Lindstrom and Bates (1990)36. LINDSTROM, M.L. & BATES, D.M. 1990. Nonlinear mixed effects models for repeated measures data. Biometrics, 46(3):673–687..

Generalized mixed models were fitted using the ‘lme4’ package (Bates et al. 20156. BATES, D., MÄCHLER, M., BOLKER, B. & WALKER, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67(1): 1–48.). In all cases, we selected the best model relating species occurrence to these variables, using the lowest Akaike Information Criterion (AIC; Akaike 19741. AKAIKE, H. 1974. A new look at the statistical model identification. In Selected Papers of Hirotugu Akaike (E. Parzen, K. Tanabe & G. Kitagawa, eds.). Springer, New York, NY, p. 215–222.) values and significant differences. The significance of each explanatory variable was tested using the ‘Anova’ function in the ‘car’ package (Fox and Weisberg 201924. FOX, J. & WEISBERG, S. 2019. An R Companion to applied regression, 3 ed. Sage Thousand Oaks CA.).

Results

From a total of 244 scats, we were able to identify 175 (71.7%) using non-invasive-derived DNA for molecular species identification. The remaining 81 samples were removed from the analyses because they presented degradation in the genetic material likely due to prolonged exposure to environmental conditions or they did not belong to carnivores.

The scat samples were identified as following: 94 (57.6%) as belonging to C. brachyurus (maned wolf), 52 (31.9%) L. guttulus (southern tiger cat), three (1.84%) Cerdocyon thous (crab-eating fox) and 14 (8.58%) of Canis familiaris (domestic dog). Only the two most sampled species (n > 50), C. brachyurus and L. guttulus, were analyzed hereafter. C. brachyurus scats were mainly found in grassland formation (69 scats, 73%), following by forest formation (25 scats, 27%). Otherwise L. guttulus scats were mostly found in forest formation (35 scats, 67%), following by grassland formation (16 scats, 31%) and mosaic of agriculture and pasture (1, 2%), Table S1.

Seven different types of land use and land cover were determined within the PNI, mostly natural elements of the landscape, such as Forest formation (79.3%), Grassland formation (15.55%), Rock Outcrop (0.79%). Nevertheless, other types, such as the Mosaic of Agriculture and pasture (3.3%), Pasture (0.83%), Non-vegetated areas (0.04%) and Forest plantation (0.01%), were generated by the human presence (Fig. 1b).

Using DEM analysis, we found altitudes ranging from 549 to 2790 m (Pico das Agulhas Negras – Fig. 1c). According to the classification proposed by Lepsch (1983)35. LEPSCH, I.F., BELLINAZZI JR, R., BERTOLINI, D. & ESPÍNDOLA, C.R. 1983. Manual para levantamento utilitário do meio físico e classificação de terras no sistema de capacidade de uso. Sociedade Brasileira de Ciência do Solo., the relief of the PNI can be characterized as strongly wavy to steep, with slope above 15% on most of its land (Fig. 1d). The ED results for each sample to water bodies ranged from 1 to 750 m (Fig. 1f), while for urban buildings ranged from1 to 6650 m (Fig. 1e).

The top-ranked models of generalized mixed models performed to evaluate the relationship between presence of species (C. brachyurus and L. guttulus) and environmental variables are shown in Table S2, and the model selected included altitude and land use/land cover, considering the lowest AIC with significant P values. Because we did not obtain fecal samples in rocky outcrop, forest plantation, other non-vegetated area and pasture, these variables were not included in the GLMM analyses. The generalized mixed models using random sample (P < 0.001, Table 1)and both species (Table S3), performed to assess the association of species occurrence to environmental variables according to availability within the PNI, showed that altitude, forest and grassland formation were relevant for their habitat use.

Table 1.
Coefficients of generalized mixed models using a random sampling showing correlation between presence of species (C. brachyurus and L. guttulus) and environmental variables (altitude, forest formation, grassland formation and mosaic of agriculture and pasture).

Altitude, forest and grassland positively affected the presence of both C. brachyurus and L. guttulus (P < 0.001, Table 1). Since the habitat use was similar between the two species, we have included both in a single model only with observational data to test whether there were any differences between them, and the results were similar (Table S3). Of note, among the numerical variables analyzed, altitude was the only variable that differed between species (Figure S1).

Discussion

Our findings suggest a habitat use extension of C. brachyurus inhabiting grassland and forest in the studied area. In contrast, L. guttulus was mostly found in the forest formation (67%) as expected, corroborating its habitat use already reported (Oliveira and Cassaro, 199947. OLIVEIRA, T.G.D. & CASSARO, K. 1999. Guia de identificação dos felinos brasileiros (No. 599.742. 7 (81) OLI).; Gourlart et al. 200927. GOULART, F.V.B., CÁCERES, N.C., GRAIPEL, M.E., TORTATO, M.A., GHIZONI JR, I.R. & OLIVEIRA-SANTOS, L.G.R. 2009. Habitat selection by large mammals in a southern Brazilian Atlantic Forest. Mamm. Biol. 74(3), 182–190.; Sartor et al. 202164. SARTOR, C.C., CUSHMAN, S.A., WAN, H.Y., KRETSCHMER, R., PEREIRA, J.A.,BOU, N., COSSE, M., GONZÁLEZ, S., EIZIRIK, E., FREITAS,T.R.O. & TRIGO, T.C. 2021. The role of the environment in the spatial dynamics of an extensive hybrid zone between two neotropical cats. Journal of Evolutionary Biology, 34(4), 614–627.), although scats of this species were also obtained in grassland formation (31%), suggesting an important association with this habitat in PNI. It is well known that C. brachyurus is affected throughout its original range by habitat loss and modification due to urbanization, agricultural and livestock raising (Paula et al. 201350. PAULA, R.C., GUIMARÃES, F.H., QUEIROLO, D., PINTO, R., LEMOS, F.G. & RODRIGUES, L. 2013. Avaliação do estado de conservação do Lobo-guará Chrysocyon brachyurus (Illiger, 1815) no Brasil. Biodiversidade Brasileira. 3(1):146–159.; Queirolo et al. 201151. QUEIROLO, D., MOREIRA, J.R., SOLER, L., EMMONS, L.H., RODRIGUES, F.H.G., PAUTASSO, A.A., CARTES, J.L. & SALVATORI, V. 2011. Historical and current range of the near threatened Maned wolf Chrysocyon brachyurus in South America. Oryx. 45:296–303., 201452. QUEIROLO, D., INDRUSIAK, C., COELHO, L., COSSE, M. & DOTTA, G. 2014. Maned Wolf conservation in the South of Brazil and Uruguay. In Ecology and Conservation of the Maned Wolf: Multidisciplinary Perspectives (Consorte-McCrea, A.G. & Ferraz Santos, E., eds.). CRC Press Taylor and Francis Group, London, p. 193–202.; Vynne, 201469. VYNNE, C. 2014. Agricultural expansion and the future of the Maned wolf. In Ecology and Conservation of the Maned Wolf: Multidisciplinary perspectives (A.G. Consorte-McCrea, E. Ferraz Santos, eds.). CRC Press Taylor and Francis Group, London, p. 165–176.). These human-promoted habitat modifications can be leading to habitat use expansion in this species (Queirolo et al. 201151. QUEIROLO, D., MOREIRA, J.R., SOLER, L., EMMONS, L.H., RODRIGUES, F.H.G., PAUTASSO, A.A., CARTES, J.L. & SALVATORI, V. 2011. Historical and current range of the near threatened Maned wolf Chrysocyon brachyurus in South America. Oryx. 45:296–303.). Thus, even though the original range of C. brachyurus did not include Atlantic Forest, it has been already reported inside this domain (Rodrigues and Oliveira 2006; Lourenzutti and Almeida 2006) and had its first record for PNI in 1954 (Ávila-Pires & Gouvea, 19773. ÁVILA-PIRES, F.D. & GOUVÊA, E. 1977. Mamíferos do Parque Nacional do Itatiaia. Bol. Mus. Nac. 291: 1–29.).

In the present study, C. brachyurus was observed in the grassland formation, as frequently reported across its distribution area (Dietz 198421. DIETZ, J.M. 1984. Ecology and social organization of the Maned Wolf (Chrysocyon brachyurus). Smithson. Contrib. Zool. 392(392):52.; Rodden et al. 200458. RODDEN, M., RODRIGUES, F. & BESTELMEYER, S. 2004. Maned wolf (Chrysocyon brachyurus). In Canids: Foxes, Wolves, Jackals and Dogs. p. 117–123.; Lyra-Jorge et al. 201039. LYRA-JORGE, M.C., RIBEIRO, M.C., CIOCHETI, G., TAMBOSI, L.R. & PIVELLO, V.R. 2010. Influence of multi-scale landscape structure on the occurrence of carnivorous mammals in a human-modified savanna, Brazil. Eur. J. Wildl. Res. 56(3):359–368. ; Coelho et al. 201814. COELHO, L., ROMERO, D., QUEIROLO, D. & GUERRERO, J.C. 2018. Understanding factors affecting the distribution of the maned wolf (Chrysocyon brachyurus) in South America: Spatial dynamics and environmental drivers. Mamm. Biol. 92:54–61.), but an expressive amount of scats (27%) was sampled in the forest, contrasting with other studies which showed that this animal avoids these areas (e.g. Coelho et al. 200813. COELHO, de MELO, F.B., SÁBATO, M.A.L., MAGNI, E.M.V., HIRSCH,A. & YOUNG, R.J. 2008. Habitat Use by Wild Maned Wolves (Chrysocyon brachyurus) in a Transition Zone Environment. J. Mammal. 89(1): 97–104.). It is important to notice that the proportion of grassland formation in PNI is low (16%), but it concentrates 73% of all records obtained for C. brachyurus, demonstrating a strong association of this canid with this vegetation. However, it is suggested that PNI represents an important refuge for the local population of C. brachyurus that once was putatively expelled from the highly modified areas nearby. Limited by the geographical and vegetational characteristics of PNI, C. brachyurus seems to be expanding its habitat use to the forest.

Our findings of differential occurrence in relation to altitude also have some novelties. Although L. guttulus occurred preferably in lower altitudes, our data revealed its presence at altitudes ranging from 1436 to 2544 m, representing the highest altitudinal limit observed for the species (Oliveira et al. 201648. OLIVEIRA, T., TRIGO, T., TORTATO, M., PAVIOLO, A., BIANCHI, R. and LEITE-PITMAN, M.R.P. 2016. Leopardus guttulus. The IUCN Red List of Threatened Species 2016.; Goulart et al. 200927. GOULART, F.V.B., CÁCERES, N.C., GRAIPEL, M.E., TORTATO, M.A., GHIZONI JR, I.R. & OLIVEIRA-SANTOS, L.G.R. 2009. Habitat selection by large mammals in a southern Brazilian Atlantic Forest. Mamm. Biol. 74(3), 182–190.). In a recent modelling study, the presence of L. guttulus reached altitudes of about 1000 m, declining to a minimum value at 2000 m (Sartor et al. 202164. SARTOR, C.C., CUSHMAN, S.A., WAN, H.Y., KRETSCHMER, R., PEREIRA, J.A.,BOU, N., COSSE, M., GONZÁLEZ, S., EIZIRIK, E., FREITAS,T.R.O. & TRIGO, T.C. 2021. The role of the environment in the spatial dynamics of an extensive hybrid zone between two neotropical cats. Journal of Evolutionary Biology, 34(4), 614–627.). It is suggested that our findings enlarge the altitudinal range for the species and the presence of forested areas at these altitudes could be facilitating L. guttulus to expand its height scope in PNI. However, further studies to evaluate the occurrence of this species in different altitudes are still needed. Similarly, our results on the C. brachyurus occurrence also showed higher altitudes than it has ever been reported. While this species preferably appears to inhabit altitudes up to 2000 m (Queirolo et al. 201151. QUEIROLO, D., MOREIRA, J.R., SOLER, L., EMMONS, L.H., RODRIGUES, F.H.G., PAUTASSO, A.A., CARTES, J.L. & SALVATORI, V. 2011. Historical and current range of the near threatened Maned wolf Chrysocyon brachyurus in South America. Oryx. 45:296–303.; Paula & DeMatteo, 201549. PAULA, R.C. & DeMATTEO K. 2015. Chrysocyon brachyurus (errata version published in 2016). The IUCN Red List of Threatened Species 2015.; Bereta et al. 20178. BERETA, A., FREITAS, S.R.,BUENO, C. 2017. Novas ocorrências de Chrysocyon brachyurus (Carnivora) no estado do Rio de Janeiro indicando a expansão de sua distribuição geográfica. Boletim da Sociedade Brasileira de Mastozoologia, v. 78, n. 1, p. 5–8.), we found this species in higher altitudes ranging from 1574 to 2631 m. Together, these results represent the highest altitude reported for both species this far.

In sum, our findings suggest a potential habitat use extension in C. brachyurus and L. guttulus inhabiting an emblematic protected area in southeastern Brazil. Similar results were already reported for both species living in different studied areas (Rodrigues and Oliveira 200659. RODRIGUES, F.H.G. & OLIVEIRA, T.G. 2006. Unidades de conservação e seu papel na conservação de carnívoros brasileiros. In Manejo e Conservação de carnívoros tropicais (R.G. Morato, F. H. G. Rodrigues, E. Eizirik, P. R. Mangini, F.C.C. Azevedo, J. Marinho-Filho, eds.), p 97–110. MMA, São Paulo.; Lourenzutti and Almeida 200637. LOURENZUTTI, R. & ALMEIDA, A.D.P. 2006. A coleção de mamíferos do Museu Elias Lorenzutti em Linhares, Estado do Espírito Santo, Brasil. Boletim do Museu de Biologia Mello Leitão.19:59–74.; Queirolo et al. 201151. QUEIROLO, D., MOREIRA, J.R., SOLER, L., EMMONS, L.H., RODRIGUES, F.H.G., PAUTASSO, A.A., CARTES, J.L. & SALVATORI, V. 2011. Historical and current range of the near threatened Maned wolf Chrysocyon brachyurus in South America. Oryx. 45:296–303.; Sartor et al. 202164. SARTOR, C.C., CUSHMAN, S.A., WAN, H.Y., KRETSCHMER, R., PEREIRA, J.A.,BOU, N., COSSE, M., GONZÁLEZ, S., EIZIRIK, E., FREITAS,T.R.O. & TRIGO, T.C. 2021. The role of the environment in the spatial dynamics of an extensive hybrid zone between two neotropical cats. Journal of Evolutionary Biology, 34(4), 614–627.). We also point out that PNI represents an important refuge for the species that suffer the consequences of the increasingly landscape modifications in this geographical region. The use of molecular species identification through non-invasive sampling was critical for assessing presence and ecological information of both carnivores studied. The integration of molecular species identification and landscape analyses allowed to infer how these species may be responding to anthropic disturbances. Even further, it is gathering useful information for a better understanding of the species dynamics, conservation plans of studied species in a changing scenario, and management and conservation policies of this important protected area.

Acknowledgements

All authors thank the Itatiaia National Park and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES, Finance Code 001). CFG, KGRC and PMGJ thanks the Brazilian agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, 132010/2018-6, 140689/2013-3, and 303524/2019-7, respectively). CFG also thanks Programa de Pós-Graduação em Ecologia e Recursos Naturais (PPGERN, UFSCar). KGRC also thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES, 8887.475596/2020-00). We thank Priscilla Loiola for helping with statistical analysis. The authors thank the two anonymous reviewers for useful comments and suggestions.

Supplementary Material

The following online material is available for this article:

Table S1 – Geographic coordinates and landscape variables for each data.

Table S2 – Top-ranked models of generalized mixed models between presence of species (C. brachyurus and L. guttulus) and environmental variables (ED from water bodies, ED from urban buildings, altitude, slope, land use/land cover).

Table S3 – Coefficients of generalized mixed models showing correlation between presence of species (C. brachyurus and L. guttulus) and environmental variables (altitude, land use/land cover).

Figure S1 – Boxplot showing the environmental variables describing the occurrence of the studied species. Grey boxplot indicates significant difference after the GLMM tests (P < 0.001).

  • Ethics
    All research was conducted based on the protocols approved by Ethics Committee on Animal Experimentation (CEUA, Instituto Biomédico, Universidade Federal Fluminense), and SISBIO-ICMBio (Authorization System and Biodiversity Information-Chico Mendes Institute for Biodiversity Conservation, Ministry of Environment, Federal Government, Brazil, number 57635-1), and through the National Management System for Genetic Heritage, and Associated Traditional Knowledge (SisGen), under registration code AFB4EA3.
  • Data Availability
    The dataset generated in this study from AT6 region are available in the Dryad repository under DOI number https://doi.org/10.5061/dryad.djh9w0vvx, for 12S and COI in GenBank-NCBI under accession numbers MN509185-MN509198, MN608174-MN608176 (Dib et al. 202020. DIB, L.V., PALMER, J.P.S., CLASS, C.D.S.C., PINHEIRO, J.L., RAMOS,R.C.F., DOS SANTOS, C.R., FONSECA, A.B.M., RODRÍGUEZ-CASTRO, K.G., GONÇALVES, C.F., GALETTI JR, P.M., BASTOS, O.M.P., UCHÔA, C.M.A., CORRÊA, L.L., BASTOS, A.C.M.P., AMENDOEIRA, M.R.R. & BARBOSA, A.S. 2020. Non-invasive sampling in Itatiaia National Park, Brazil: wild mammal parasite detection. BMC veterinary research. Dryad Digital Repository. 16(1):1–21.). And all the dataset are available in the Supplementary Information in the Figshare under DOI number https://doi.org/10.6084/m9.figshare.20217044.

References

  • 1.
    AKAIKE, H. 1974. A new look at the statistical model identification. In Selected Papers of Hirotugu Akaike (E. Parzen, K. Tanabe & G. Kitagawa, eds.). Springer, New York, NY, p. 215–222.
  • 2.
    ALTSCHUL, S.F., GISH, W., MILLER W., MYERS, E.W. & LIPMAN D.J. 1990. Basic Local Alignment Search Tool. J. Mol. Biol. 215(3):403–410.
  • 3.
    ÁVILA-PIRES, F.D. & GOUVÊA, E. 1977. Mamíferos do Parque Nacional do Itatiaia. Bol. Mus. Nac. 291: 1–29.
  • 4.
    AXIMOFF, I. & RODRIGUES, R.D.C. 2011. Histórico dos incêndios florestais no Parque Nacional do Itatiaia. Ciênc. Florest. 21(1):83–92.
  • 5.
    BALL, M.C., PITHER, R., MANSEAU, M., CLARK, J., PETERSEN, S.D., KINGSTON, S., NATASHA, M. & WILSON, P. 2007. Characterization of target nuclear DNA from faeces reduces technical issues associated with the assumptions of low-quality and quantity template. Conserv. genet. 8(3):577–586.
  • 6.
    BATES, D., MÄCHLER, M., BOLKER, B. & WALKER, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67(1): 1–48.
  • 7.
    BENCKE, G.A., MAURICIO, G.N., DEVELEY, P.F. & GOERCK, J.M. 2006. Áreas importantes para a conservação das aves no Brasil: Parte I - Estados do Domínio da Mata Atlântica. São Paulo: SAVE Brasil, v. 14.
  • 8.
    BERETA, A., FREITAS, S.R.,BUENO, C. 2017. Novas ocorrências de Chrysocyon brachyurus (Carnivora) no estado do Rio de Janeiro indicando a expansão de sua distribuição geográfica. Boletim da Sociedade Brasileira de Mastozoologia, v. 78, n. 1, p. 5–8.
  • 9.
    CAREY, C., DUDLEY, N. & STOLTON, S. (2000). Squandering Paradise? The Importance and Vulnerability of the World’s Protected Areas. WWF-World Wide Fund for Nature.
  • 10.
    CARDINALE, B., SRIVASTAVA, D., DUFFY, E., WRIGHT, J.P., DOWNING, A.L., SANKARAN, M. & JOUSEAU, C. 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature. 443:989–992.
  • 11.
    CERQUEIRA, R., BRANT, A., NASCIMENTO, M.T. & PARDINI, R. 2003. Fragmentação: alguns conceitos. In Fragmentação de Ecossistemas: Causas, Efeitos sobre a Biodiversidade e Recomendações de Políticas Públicas, p. 23–43.
  • 12.
    CHAVES, P.B., GRAEFF, V.G., LION, M.B., OLIVEIRA, L.R. & EIZIRIK,E. 2012. DNA barcoding meets molecular scatology: short mtDNA sequences for standardized species assignment of carnivore noninvasive samples. Mol. Ecol. Resour. 12(1):18–35.
  • 13.
    COELHO, de MELO, F.B., SÁBATO, M.A.L., MAGNI, E.M.V., HIRSCH,A. & YOUNG, R.J. 2008. Habitat Use by Wild Maned Wolves (Chrysocyon brachyurus) in a Transition Zone Environment. J. Mammal. 89(1): 97–104.
  • 14.
    COELHO, L., ROMERO, D., QUEIROLO, D. & GUERRERO, J.C. 2018. Understanding factors affecting the distribution of the maned wolf (Chrysocyon brachyurus) in South America: Spatial dynamics and environmental drivers. Mamm. Biol. 92:54–61.
  • 15.
    CRUZ, P., DE ANGELO, C., MARTÍNEZ, PARDO J., IEZZI, M.E., VARELA, D., DI BITETTI, M.S., PAVIOLO, A. 2019. Cats under cover: Habitat models indicate a high dependency on woodlands by Atlantic Forest felids. Biotropica, 51, 266–278.
  • 16.
    DEFRIES, R.A., HANSEN, B.L., TURNER, REID, R. & LIU, J. 2007. Land use change around protected areas: management to balance human needs and ecological function. Ecol. Appl. 17: 1031–1038.
  • 17.
    de ALMEIDA JÁCOMO, A.T., SILVEIRA, L. & DINIZ-FILHO, J.A.F. 2004. Niche separation between the maned wolf (Chrysocyon brachyurus), the crab-eating fox (Dusicyon thous) and the hoary fox (Dusicyon vetulus) in central Brazil. J. Zool. 262(1):99–106.
  • 18.
    de MEDEIROS, M.B. 2002. Manejo do fogo em unidades de conservação do cerrado. Boletim do Herbário Ezechias Paulo Heringer, 10.
  • 19.
    DEYOUNG, R.W. & HONEYCUTT, R.L. 2005. The Molecular Toolbox: Genetic techniques in wildlife ecology and methods. J. Wildl. Manage. 69(4):1362–1384.
  • 20.
    DIB, L.V., PALMER, J.P.S., CLASS, C.D.S.C., PINHEIRO, J.L., RAMOS,R.C.F., DOS SANTOS, C.R., FONSECA, A.B.M., RODRÍGUEZ-CASTRO, K.G., GONÇALVES, C.F., GALETTI JR, P.M., BASTOS, O.M.P., UCHÔA, C.M.A., CORRÊA, L.L., BASTOS, A.C.M.P., AMENDOEIRA, M.R.R. & BARBOSA, A.S. 2020. Non-invasive sampling in Itatiaia National Park, Brazil: wild mammal parasite detection. BMC veterinary research. Dryad Digital Repository. 16(1):1–21.
  • 21.
    DIETZ, J.M. 1984. Ecology and social organization of the Maned Wolf (Chrysocyon brachyurus). Smithson. Contrib. Zool. 392(392):52.
  • 22.
    DUQUE, S.L.A., OROZCO-JIMÉNEZ, L.Y., ZAPATA-ESCOBAR, C. & PALACIO-BAENA, J.A. 2018. Conservation genetics of otters: Review about the use of non-invasive samples. Therya. 9(1):85–93.
  • 23.
    ERVIN, J. 2003. Rapid assessment of protected area management effectiveness in four countries. BioScience 53:833–841.
  • 24.
    FOX, J. & WEISBERG, S. 2019. An R Companion to applied regression, 3 ed. Sage Thousand Oaks CA.
  • 25.
    GALETTI, M., GIACOMINI, H.C., BUENO, R.S., BERNARDO, C.S., MARQUES, R.M., BOVENDORP, R.S., STEFFLER, C.E., RUBIM, P., GOBBO, S.K., DONATTI, C.I., BEGOTTI, R.A., MEIRELLES, F., NOBRE, R.A., CHIARELLO, A.G. & PERES, C.A. 2009. Priority areas for the conservation of Atlantic Forest large mammals. Biol. Conserv. 142(6):1229–1241.
  • 26.
    GODET, L. & DEVICTOR, V. 2018. What conservation does. Trends Ecol. Evol. 33:720–730.
  • 27.
    GOULART, F.V.B., CÁCERES, N.C., GRAIPEL, M.E., TORTATO, M.A., GHIZONI JR, I.R. & OLIVEIRA-SANTOS, L.G.R. 2009. Habitat selection by large mammals in a southern Brazilian Atlantic Forest. Mamm. Biol. 74(3), 182–190.
  • 28.
    HAAG, T., SANTOS, A.S., de ANGELO, C., SRBEK-ARAUJO, A.C., SANA, D.A., MORATO, R.G., SALZANO, F.M. & EIZIRIK, E. 2009. Development and testing of an optimized method for DNA-based identification of jaguar (Panthera onca) and puma (Puma concolor) faecal samples for use in ecological and genetic studies. Genetica, 136(3):505–512.
  • 29.
    HANSEN, A.J. & DEFRIES, R. 2007. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17:974– 988.
  • 30.
    ICMBio. Plano de Manejo do Parque Nacional de Itatiaia - Encarte 1. v. 1, p. 82, 2012.
  • 31.
    KEARSE, M., MOIR, R., WILSON, A., STONES-HAVAS, S., CHEUNG, M., STURROCK, S., BUXTON, S., COOPER, A., MARKOWITZ, S., DURAN, C., THIERER, T., ASHTON, B., MEINTJES, P. & DRUMMOND, A. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12):1647–1649.
  • 32.
    KLEIMAN, D.G. 2011. Canid mating systems, social behavior, parental care and ontogeny: are they flexible?. Behav. Genet., 41(6):803–809.
  • 33.
    KLINGEBIE, A.A., HORVATH, E.H., MOORE, D.G. & REYBOLD, W.U. 1987. Use of Slope, Aspect, and Elevation Maps Derived from Digital Elevation Model Data in Making Soil Surveys. Soil Survey Techniques. 20.
  • 34.
    LENTH, R.V. 2016. Least-Squares Means: The R Package lsmeans. J. Stat. Softw. 69(1):1–33.
  • 35.
    LEPSCH, I.F., BELLINAZZI JR, R., BERTOLINI, D. & ESPÍNDOLA, C.R. 1983. Manual para levantamento utilitário do meio físico e classificação de terras no sistema de capacidade de uso. Sociedade Brasileira de Ciência do Solo.
  • 36.
    LINDSTROM, M.L. & BATES, D.M. 1990. Nonlinear mixed effects models for repeated measures data. Biometrics, 46(3):673–687.
  • 37.
    LOURENZUTTI, R. & ALMEIDA, A.D.P. 2006. A coleção de mamíferos do Museu Elias Lorenzutti em Linhares, Estado do Espírito Santo, Brasil. Boletim do Museu de Biologia Mello Leitão.19:59–74.
  • 38.
    LYRA-JORGE, M. C., CIOCHETI, G. & PIVELLO, V. R. 2008. Carnivore mammals in a fragmented landscape in northeast of São Paulo State, Brazil. Biodivers. Conserv. 17(7): 1573–1580.
  • 39.
    LYRA-JORGE, M.C., RIBEIRO, M.C., CIOCHETI, G., TAMBOSI, L.R. & PIVELLO, V.R. 2010. Influence of multi-scale landscape structure on the occurrence of carnivorous mammals in a human-modified savanna, Brazil. Eur. J. Wildl. Res. 56(3):359–368.
  • 40.
    MAPBIOMAS PROJECT – Collection 3.0 of Annual Series of Land Use and Land Cover Maps of Brazil. Access: May 23, 2019. Disponible: <http://mapbiomas.org/map#coverage>.
    » http://mapbiomas.org/map#coverage
  • 41.
    MARKER, L.L., WILKERSON, A.J.P., SARNO, R.J., MARTENSON, J., BREITENMOSER-WÜRSTEN, C., O’BRIEN, S.J. & JOHNSON, W.E. 2007. Molecular genetic insights on cheetah (Acinonyx jubatus) ecology and conservation in Namibia. J. Hered. 99(1):2–13.
  • 42.
    MIOTTO, R.A., CERVINI, M., BEGOTTI, R.A. & GALETTI JR, P.M. 2012. Monitoring a puma (Puma concolor) population in a fragmented landscape in southeast Brazil. Biotropica, 44(1):98–104.
  • 43.
    MIOTTO, R.A., CERVINI, M., KAJIN, M., BEGOTTI, R.A. & GALETTI JR, P.M. 2014. Estimating puma Puma concolor population size in a human-disturbed landscape in Brazil, using DNA mark-recapture data. Oryx, 48(2):250–257.
  • 44.
    MONTGOMERY, D.R. 2003. Predicting landscape-scale erosion rates using digital elevation models. C. R. Geosci. 335(16):1121–1130.
  • 45.
    NAGY-REIS, M.B., IWAKAMI, V.H., ESTEVO, C.A. & SETZ, E.Z. 2019. Temporal and dietary segregation in a neotropical small-felid assemblage and its relation to prey activity. Mamm. Biol. 95(1):1–8.
  • 46.
    NOSS, R.F., QUIGLEY, H.B., HORNOCKER, M.G., MERRILL, T. & PAQUET, P. C. 1996. Conservation Biology and Carnivore Conservation in the Rocky Mountains. Conserv. Biol. 949–963.
  • 47.
    OLIVEIRA, T.G.D. & CASSARO, K. 1999. Guia de identificação dos felinos brasileiros (No. 599.742. 7 (81) OLI).
  • 48.
    OLIVEIRA, T., TRIGO, T., TORTATO, M., PAVIOLO, A., BIANCHI, R. and LEITE-PITMAN, M.R.P. 2016. Leopardus guttulus The IUCN Red List of Threatened Species 2016.
  • 49.
    PAULA, R.C. & DeMATTEO K. 2015. Chrysocyon brachyurus (errata version published in 2016). The IUCN Red List of Threatened Species 2015.
  • 50.
    PAULA, R.C., GUIMARÃES, F.H., QUEIROLO, D., PINTO, R., LEMOS, F.G. & RODRIGUES, L. 2013. Avaliação do estado de conservação do Lobo-guará Chrysocyon brachyurus (Illiger, 1815) no Brasil. Biodiversidade Brasileira 3(1):146–159.
  • 51.
    QUEIROLO, D., MOREIRA, J.R., SOLER, L., EMMONS, L.H., RODRIGUES, F.H.G., PAUTASSO, A.A., CARTES, J.L. & SALVATORI, V. 2011. Historical and current range of the near threatened Maned wolf Chrysocyon brachyurus in South America. Oryx. 45:296–303.
  • 52.
    QUEIROLO, D., INDRUSIAK, C., COELHO, L., COSSE, M. & DOTTA, G. 2014. Maned Wolf conservation in the South of Brazil and Uruguay. In Ecology and Conservation of the Maned Wolf: Multidisciplinary Perspectives (Consorte-McCrea, A.G. & Ferraz Santos, E., eds.). CRC Press Taylor and Francis Group, London, p. 193–202.
  • 53.
    R CORE TEAM 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  • 54.
    RICHTER, M. 2004. Geotecnologias no Suporte ao Planejamento e Gestão de unidades de conservação Estudo de caso: Parque Nacional do Itatiaia. Seropédica: Universidade Federal do Rio de Janeiro.
  • 55.
    RILEY, S.P.D., POLLINGER, J.P., SAUVAJOT, R.M., YORK, E.C., BROMLEY, C., FULLER, T. K. & WAYNE, R.K. 2006. A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol. Ecol. 15(7):1733–1741.
  • 56.
    RIPPLE, W.J., ESTES, J.A., BESCHTA, R.L., WILMERS, C.C., RITCHIE, E.G., HEBBLEWHITE, M., BERGERBODIL, J. ELMHAGEN, B., LETNIC, M., NELSON, M. P., SCHMITZ, O. J., SMITH, D. W., WALLACH, A. D. & WIRSING, A. J. 2014. Status and ecological effects of the world’s largest carnivores. Science, 343(6167).
  • 57.
    RIPPLE, W.J., WOLF, C., NEWSOME, T.M., HOFFMANN, M., WIRSING, A.J. & MCCAULEY, D.J. 2017. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl. Acad. Sci. U.S.A. 114, 10678–10683
  • 58.
    RODDEN, M., RODRIGUES, F. & BESTELMEYER, S. 2004. Maned wolf (Chrysocyon brachyurus). In Canids: Foxes, Wolves, Jackals and Dogs. p. 117–123.
  • 59.
    RODRIGUES, F.H.G. & OLIVEIRA, T.G. 2006. Unidades de conservação e seu papel na conservação de carnívoros brasileiros. In Manejo e Conservação de carnívoros tropicais (R.G. Morato, F. H. G. Rodrigues, E. Eizirik, P. R. Mangini, F.C.C. Azevedo, J. Marinho-Filho, eds.), p 97–110. MMA, São Paulo.
  • 60.
    RODRÍGUEZ-CASTRO, K.G., SARANHOLI, B.H., BATAGLIA, L., BLANCK, D. & GALETTI Jr, P.M. 2018. Molecular species identification of scat samples of South American felids and canids. Conserv. Genet. Resour. 12:61–66.
  • 61.
    RUELL, E.W. & CROOKS, K.R. 2007. Evaluation of Noninvasive Genetic Sampling Methods for Felid and Canid Populations. J. Wildl. Manage. 71(5):1690–1694.
  • 62.
    SAITOU, N. & NEI, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4):406–425.
  • 63.
    SANTOS, M.D.F.M., dos, PELLANDA, M., TOMAZZONI, A.C., HASENACK, H. & HARTZ, S.M. 2004. Mamíferos carnívoros e sua relação com a diversidade de hábitats no Parque Nacional dos Aparados da Serra, sul do Brasil. Iheringia, Sér. Zool. 94(3):235–245.
  • 64.
    SARTOR, C.C., CUSHMAN, S.A., WAN, H.Y., KRETSCHMER, R., PEREIRA, J.A.,BOU, N., COSSE, M., GONZÁLEZ, S., EIZIRIK, E., FREITAS,T.R.O. & TRIGO, T.C. 2021. The role of the environment in the spatial dynamics of an extensive hybrid zone between two neotropical cats. Journal of Evolutionary Biology, 34(4), 614–627.
  • 65.
    SARANHOLI, B.H., CHÁVEZ-CONGRAINS, K., GALETTI Jr, P.M. 2017. Evidence of recent fine-scale population structuring in South American Puma concolor. Diversity. 9(4).
  • 66.
    SOUSA, L.R.T. 2000. Chrysocyon brachyurus – Ecologia e Comportamento do Lobo-guará. Monografia, Centro Universitário de Brasília, Distrito Federal.
  • 67.
    THOMPSON, J.D., HIGGINS, D.G. & GIBSON, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22):4673–4680. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/308517
    » http://www.ncbi.nlm.nih.gov/pubmed/308517
  • 68.
    TROLLE, M., NOSS, A.J., DE LIMA, E.S. & DALPONTE, J.C. 2006. Camera-trap studies of maned wolf density in the Cerrado and the Pantanal of Brazil. In Vertebrate Conservation and Biodiversity. p. 371–378. Springer, Dordrecht.
  • 69.
    VYNNE, C. 2014. Agricultural expansion and the future of the Maned wolf. In Ecology and Conservation of the Maned Wolf: Multidisciplinary perspectives (A.G. Consorte-McCrea, E. Ferraz Santos, eds.). CRC Press Taylor and Francis Group, London, p. 165–176.
  • 70.
    WINTLE, B.A., KUJALA, H., WHITEHEAD, A., CAMERON, A., VELOZ, S., KUKKALA, A., MOILANEN, A., GORDON, A., LENTINI, P.E., CADENHEAD, N.C.R. & BEKESSY, S.A. 2019. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proceedings of the National Academy of Sciences, 116(3):909–914.

Edited by

Associate Editor
Diego Astúa

Publication Dates

  • Publication in this collection
    07 Oct 2022
  • Date of issue
    2022

History

  • Received
    07 Mar 2022
  • Accepted
    13 Sept 2022
Instituto Virtual da Biodiversidade | BIOTA - FAPESP Departamento de Biologia Vegetal - Instituto de Biologia, UNICAMP CP 6109, 13083-970 - Campinas/SP, Tel.: (+55 19) 3521-6166, Fax: (+55 19) 3521-6168 - Campinas - SP - Brazil
E-mail: contato@biotaneotropica.org.br