Acessibilidade / Reportar erro

Abnormal average increase in sea surface temperature may promote the first documented mortality event of a marine sponge in the Southeastern Brazil

Aumento na temperatura média do mar pode ter causado o primeiro evento registrado de mortalidade de esponjas marinhas no Sudeste do Brasil

Abstract

Frequent heat waves and mass mortality events on marine biota are positively correlated to ocean warming. Although literature has indicated some species of marine sponges, and some oceanic regions, like the Brazilian Exclusive Economic Zone, may be less affected or seem to be more resilient under future scenarios of climate changes, few studies have focused on the species responses on the climate change issue along Brazilian coast. This paradigm was undone throughout 2019 after an exceptional average increase of 2 °C in the sea surface temperature (SST) and on precipitation values since 2015 at Ilha Grande Bay (IGB, SE Brazil). The combination of SST and precipitation average increase possibly favored an environmental context for the unprecedented strong population decline and mass mortality rate of the marine sponge species Desmapsamma anchorata in the austral spring. The species used to be one of the most frequent benthic species at IGB however it was only recorded in 41.7% sites (n = 12). From 162 individuals recorded at Abraãozinho along 180 m rocky shore, 83 individuals (51.2%) were healthy, 74 (45.7%) were intensively covered by cyanobacteria and locally bleached, and five (3.1%) were completely bleached or died. Desmapsamma anchorata population deterioration in a biogeographic transition zone (Rio de Janeiro state) may reflect a shift in the marine community of IGB, opening space for opportunistic species establishment and coverage increase, since IGB has a high species turnover. The three-dimensionality, the shelter for several species, the high competitive ability and the potential to indicate polluted or not polluted areas make D. anchorata a key species for IGB monitoring in a climate change scenario.

Keywords
Climate changes; Desmapsamma anchorata; Population decline; Heat waves; Ilha Grande Bay

Resumo

Ondas de calor e eventos de mortalidade em massa da biota marinha são cada vez mais frequentes e estão positivamente correlacionados ao aquecimento do oceano. Embora a literatura tenha indicado que algumas espécies de esponjas marinhas e algumas regiões oceânicas, como a Zona Econômica Exclusiva do Brasil, podem ser menos afetadas ou serem mais resilientes em cenários futuros de mudanças climáticas, poucos estudos focaram na resposta das espécies à problemática das mudanças climáticas na costa brasileira. Esse paradigma foi desfeito em 2019 após um excepcional aumento médio de 2 °C na temperatura da superfície do mar e nos valores de precipitação, desde 2015 na Baía da Ilha Grande (BIG, SE Brasil). Essa combinação de fatores possivelmente favoreceu um contexto ambiental sem precedentes, levando ao forte declínio populacional e alta taxa de mortalidade da esponja marinha Desmapsamma anchorata na primavera austral. A espécie costuma ser uma das espécies bentônicas mais frequentes na BIG, mas só foi observada em 41,7% dos sítios (n = 12). De 162 indivíduos registrados em Abraãozinho ao longo de 180 m de costão rochoso, 83 indivíduos (51,2%) estavam saudáveis, 74 (45,7%) estavam cobertos por cianobactéria e localmente branqueados e cinco (3,1%) estavam completamente branqueados ou mortos. A deterioração da população de D. anchorata na zona de transição biogeográfica (estado do Rio de Janeiro) pode refletir em uma alteração na comunidade marinha da BIG, abrindo espaço para o estabelecimento de espécies oportunistas, uma vez que a BIG possui alto turnover. A tridimensionalidade, o abrigo a diversas espécies, a alta capacidade competitiva e o potencial de indicar áreas poluídas ou não tornam D. anchorata uma espécie chave no monitoramento da BIG em um cenário de mudanças climáticas.

Palavras-chave
Mudanças climáticas; Desmapsamma anchorata; Declínio populacional; Ondas de calor; Baía da Ilha Grande

Introduction

Ocean warming is one of the major events affecting marine biota from organism to ecosystem scales (Hoegh-Guldberg and Bruno 2010Hoegh-Guldberg O, Bruno JF, 2010. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528. doi: 10.1126/science.1189930
https://doi.org/10.1126/science.1189930...
; Zhou et al. 2021Zhou K, Du P, Jiang Z, Tang Y, Liao Y, Chen J, Shou L, Zeng J, 2021. Temperature-driven shifts in the reproductive strategies of Centropages abdominalis Sato in Xiangshan Bay, China. Estuarine, Coastal and Shelf Science 252, 107272. doi: 10.1016/j.ecss.2021.107272.
https://doi.org/10.1016/j.ecss.2021.1072...
). Marine species bleaching due to loss zooxanthellae and/or pigments (Glynn 1996Glynn PW, 1996. Coral reef bleaching: facts, hypotheses and implications. Global Change Biology 2, 495–509. doi: 10.1111/j.1365-2486.1996.tb00063.x
https://doi.org/10.1111/j.1365-2486.1996...
), and mass mortality events on marine biota are positively correlated with this phenomenon, causing physiological changes, populations decline, interspecific relationships decrease, resulting in phase shift in the ecosystems (Yao and Somero 2014Yao CL, Somero GN, 2014. The impact of ocean warming on marine organisms. Chinese Science Bulletin 59, 468–479. doi: 10.1007/s11434-014-0113-0
https://doi.org/10.1007/s11434-014-0113-...
; Inagaki et al. 2020Inagaki KY, Pennino MG, Floeter SR, Hay ME, Longo GO, 2020. Trophic interactions will expand geographically but be less intense as oceans warm. Global Change Biology. doi: 10.1111/gcb.15346.
https://doi.org/10.1111/gcb.15346...
; Teixeira et al. 2021Teixeira CD, Chiroque-Solano PM, Ribeiro FV, Carlos-Júnior LA, Neves LM, Salomon PS et al., 2021. Decadal (2006-2018) dynamics of Southwestern Atlantic’s largest turbid zone reefs. PLoS ONE 16, e0247111. doi: 10.1371/journal.pone.0247111.
https://doi.org/10.1371/journal.pone.024...
). Overall, ocean warming and diseases were surveyed on coral species from coral reefs, but other groups, such as Phylum Porifera, have also melted worldwide with global change (Vicente 1990Vicente VP, 1990. Response of sponges with autotrophic endosymbionts during the coral-bleaching episode in Puerto Rico. Coral Reefs 8, 199–202. doi: 10.1007/BF00265011
https://doi.org/10.1007/BF00265011...
; Fromont and Garson 1999Fromont J, Garson M, 1999. Sponge bleaching on the West and East coasts of Australia. Coral Reefs 18, 340. doi: 10.1007/s003380050209
https://doi.org/10.1007/s003380050209...
; Pérez et al. 2000Pérez T, Garrabou J, Sartoretto S, Harmelin JG, Francour P, Vacelet J, 2000. Mortalité massive d’invertébrés marins: un événement sans précédent en Méditerranée nord-occidentale. Sciences de La Vie 323, 853–865. doi: 10.1016/S0764-4469(00)01237-3
https://doi.org/10.1016/S0764-4469(00)01...
; Garrabou et al. 2009Garrabou J, Coma R, Bensoussan N, Ball M, Chevaldonne P, Cigliano M, Cerrano C, 2009. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Global Change Biology 15, 1090–1103. doi: 10.1111/j.1365-2486.2008.01823.x
https://doi.org/10.1111/j.1365-2486.2008...
; Cebrian et al. 2011Cebrian E, Uriz MJ, Garrabou J, Ballesteros E, 2011. Sponge mass mortalities in a warming Mediterranean Sea: Are cyanobacteria-harboring species worse off? PLoS ONE 6, e20211. doi: 10.1371/journal.pone.0020211
https://doi.org/10.1371/journal.pone.002...
; Stevely et al. 2011Stevely JM, Sweat DE, Bert TM, Sim-Smith C, Kelly M, 2011. Sponge mortality at Marathon and Long Key, Florida: Patterns of species response and population recovery. Proceedings of the 63rd GCFI, San Juan, 384–400.; Rubio-Portillo et al. 2016Rubio-Portillo E, Izquierdo-Muñoz A, Gago JF, Rosselló-Mora R, Antón J., Ramos-Esplá AA, 2016. Effects of the 2015 heat wave on benthic invertebrates in the Tabarca Marine Protected Area (southeast Spain). Marine Environmental Research 122, 135–142. doi: 10.1016/j.marenvres.2016.10.004
https://doi.org/10.1016/j.marenvres.2016...
). Understanding the response of different taxonomic groups into global change is the only way to promote practical restoration programs and constitute refugia zones.

Sponges have been considered winners under the stressful climate change phenomenon since their resilience in comparison to other groups (Fabricius et al. 2011Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Lough JM, 2011. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1, 165–169. doi: 10.1038/nclimate1122
https://doi.org/10.1038/nclimate1122...
; Peck et al. 2015Peck LS, Clark MS, Power D, Reis J, Batista FM, Harper EM, 2015. Acidification effects on biofouling communities: Winners and losers. Global Change Biology 21, 1907–1913. doi: 10.1111/gcb.12841
https://doi.org/10.1111/gcb.12841...
; Bell et al. 2018Bell JJ, Bennett HM, Rovellini A, Webster NS, 2018. Sponges to be winners under near-future climate scenarios. BioScience 68, 955–968. doi: 10.1093/biosci/biy142
https://doi.org/10.1093/biosci/biy142...
). Some examples of sponges’ tolerance to ocean warming were evidenced in the Great Barrier Reef (GBR, Schönberg and Ortiz 2008Schönberg CHL, Ortiz J-C, 2008. Is sponge bioerosion increasing? Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, Florida, 520–523.; Wisshak et al. 2012Wisshak M, Schönberg CHL, Form A, Freiwald A, 2012. Ocean acidification accelerates reef bioerosion. PLOS ONE 7, e45124. doi:10.1371/journal.pone.0045124
https://doi.org/10.1371/journal.pone.004...
), Caribbean reefs (Duckworth et al. 2012Duckworth A, West L, Vansach T, Stubler A, Hardt M, 2012. Effects of water temperature and pH on growth and metabolite biosynthesis of coral reef sponges. Marine Ecology Progress Series 462, 67–77. doi: 10.3354/meps09853
https://doi.org/10.3354/meps09853...
), Bahia reefs, Brazil (Kelmo et al. 2013Kelmo F, Bell JJ, Attrill M, 2013. Tolerance of sponge assemblages to temperature anomalies: Resilience and proliferation of sponges following the 1997–8 El Niño Southern Oscillation. PLoS ONE 8, e76441. doi: 10.1371/journal.pone.0076441.
https://doi.org/10.1371/journal.pone.007...
), sea-grass habitat at Peconic Bay (NY), USA (Duckworth and Peterson 2013Duckworth AR, Peterson BJ, 2013. Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells. Marine Biology 160, 27–35. doi: 10.1007/s00227-012-2053-z
https://doi.org/10.1007/s00227-012-2053-...
) and Hawaiian reefs (Vicente et al. 2016Vicente J, Silbiger NJ, Beckley BA, Raczkowski CW, Hill RT, 2016. Impact of high pCO2 and warmer temperatures on the process of silica biomineralization in the sponge Mycale grandis. ICES Journal of Marine Science 73, 704–714. doi: 10.1093/icesjms/fsv235
https://doi.org/10.1093/icesjms/fsv235...
). Bioeroding sponges were positively impacted with an increase in bioerosion rates (GBR, NY), while nonbioeroding sponges were not highly affected in their growth, survival, and biochemical synthesis (Duckworth et al. 2012Duckworth A, West L, Vansach T, Stubler A, Hardt M, 2012. Effects of water temperature and pH on growth and metabolite biosynthesis of coral reef sponges. Marine Ecology Progress Series 462, 67–77. doi: 10.3354/meps09853
https://doi.org/10.3354/meps09853...
). No effect on growth and survival of Iotrochota birotulata (Higgin, 1877) was evidenced after an experimental increase in 2.2 ºC in seawater temperature (Duckworth et al. 2012Duckworth A, West L, Vansach T, Stubler A, Hardt M, 2012. Effects of water temperature and pH on growth and metabolite biosynthesis of coral reef sponges. Marine Ecology Progress Series 462, 67–77. doi: 10.3354/meps09853
https://doi.org/10.3354/meps09853...
). An increase in the abundance of excavator sponges was the first response of boring species after a major coral bleaching event in GBR, suggesting that these sponges benefit from the warming of the oceans, as mortality of corals will possibly provide greater availability of space (Schönberg and Ortiz 2008Schönberg CHL, Ortiz J-C, 2008. Is sponge bioerosion increasing? Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, Florida, 520–523.). Specifically at Brazilian reefs, a sponge assemblage stability was found before and after an El Niño Southern Oscillation (ENSO) in 1997-98, which had increased the sea surface temperature (SST) by 2 °C (Kelmo et al. 2013Kelmo F, Bell JJ, Attrill M, 2013. Tolerance of sponge assemblages to temperature anomalies: Resilience and proliferation of sponges following the 1997–8 El Niño Southern Oscillation. PLoS ONE 8, e76441. doi: 10.1371/journal.pone.0076441.
https://doi.org/10.1371/journal.pone.007...
). Even some sponges winning extreme thermal scenarios, it becomes irrelevant with the surrounding environment depreciation.

South Atlantic marine ecosystems have been documented as less impacted than Indo-Pacific and Caribbean ones in relation to thermal stress events (Baird and Marshall 2002Baird AH, Marshall PA, 2002. Mortality, growth, and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Marine Ecology Progress Series 237, 133–141. doi: 10.3354/MEPS237133
https://doi.org/10.3354/MEPS237133...
; Perry et al. 2013Perry CT, Murphy GN, Kench PS, Smithers SG, Edinger EN, Steneck RS, et al., 2013. Caribbean-wide decline in carbonate production threatens coral reef growth. Nature Communications 4, 1402. doi: 10.1038/ncomms2409.
https://doi.org/10.1038/ncomms2409...
; Kelmo et al. 2013Kelmo F, Bell JJ, Attrill M, 2013. Tolerance of sponge assemblages to temperature anomalies: Resilience and proliferation of sponges following the 1997–8 El Niño Southern Oscillation. PLoS ONE 8, e76441. doi: 10.1371/journal.pone.0076441.
https://doi.org/10.1371/journal.pone.007...
; DeCarlo et al. 2017DeCarlo TM, Cohen AL, Wong GTF, Davis KA, Lohmann P, Soong K, 2017. Mass coral mortality under local amplification of 2 °C ocean warming. Scientific Reports 7, 44586. doi: 10.1038/srep44586.
https://doi.org/10.1038/srep44586...
; Hughes et al. 2018Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, et al., 2018. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83. doi: 10.1126/science.aan8048.
https://doi.org/10.1126/science.aan8048...
; Mies et al. 2020Mies M, Francini-Filho RB, Zilberberg C, Garrido AG, Longo GO, Laurentino E, Güth AZ, Sumida P, Banha TN, 2020. South Atlantic coral reefs are majorglobal warming refugia and less susceptible to bleaching. Frontiers in Marine Science 7, 514. doi: 10.3389/fmars.2020.00514
https://doi.org/10.3389/fmars.2020.00514...
). However, the impact of climate changes within Brazilian ZEE is poorly understood, with only local evidence of severe impacts on marine biota (Coutinho et al. 2016Coutinho R, Yaginuma LE, Siviero F, dos Santos JCQP, López MS, Christofoletti RA et al., 2016. Studies on benthic communities of rocky shores on the Brazilian coastand climate change monitoring: status of knowledge and challenges. Brazilian Journal of Oceanography 64, 27–36. doi: 10.1590/S1679-875920161015064sp2
https://doi.org/10.1590/S1679-8759201610...
; Teixeira et al. 2019Teixeira CD, Leitão RLL, Ribeiro FV, Moraes FC, Neves LM, Bastos AC et al., 2019. Sustained mass coral bleaching (2016–2017) in Brazilian turbid-zone reefs: taxonomic, cross-shelf and habitat-related trends. Coral Reefs 38, 801–813. doi: 10.1007/s00338-019-01789-6.
https://doi.org/10.1007/s00338-019-01789...
, 2021Teixeira CD, Chiroque-Solano PM, Ribeiro FV, Carlos-Júnior LA, Neves LM, Salomon PS et al., 2021. Decadal (2006-2018) dynamics of Southwestern Atlantic’s largest turbid zone reefs. PLoS ONE 16, e0247111. doi: 10.1371/journal.pone.0247111.
https://doi.org/10.1371/journal.pone.024...
; Duarte et al. 2020Duarte GAS, Villela HDM, Deocleciano M, Silva D, Barno A, Cardoso PM et al., 2020. Heat waves are a major threat to turbid coral reefs in Brazil. Frontiers in Marine Science 7, 179. doi: 10.3389/fmars.2020.00179.
https://doi.org/10.3389/fmars.2020.00179...
; Gaspar et al. 2021Gaspar TL, Quimbayo JP, Ozekoski R, Nunes LT, Aued AW, Mendes TC, Garrido AG, Segal B, 2021. Severe coral bleaching of Siderastrea stellata at the only atoll in the South Atlantic driven by sequential marine heatwaves. Biota Neotropica 21, e20201131. doi: 10.1590/1676-0611-BN-2020-1131
https://doi.org/10.1590/1676-0611-BN-202...
). At Rio de Janeiro state, for example, Carvalho (2019)Carvalho BC, 2019. Variabilidade da resposta da linha de costa aos condicionantes hidrodinâmicos e às oscilações do nível do mar no litoral sul fluminense. PhD dissertation, Universidade do Estado do Rio de Janeiro, 192 pp. observed a persistent increase in air temperature overtaking 40 °C at Marambaia barrier island from September to February (austral spring and summer) in the XXI century, Skinner (2018aSkinner LF, 2018a. Sea surface temperature measured since 2012 for Ponta leste, Angra dos Reis, Rio de Janeiro, Brazil. doi: 10.13140/RG.2.2.19686.27205
https://doi.org/10.13140/RG.2.2.19686.27...
, bSkinner LF, 2018b. Sea surface temperature measured since 2012 for Dois Rios cove, Ilha Grande, Rio de Janeiro, Brazil. doi: 10.13140/RG.2.2.12975.38560
https://doi.org/10.13140/RG.2.2.12975.38...
) have detected 33 ºC for SST with sensor in situ, in two sites of Ilha Grande Bay (IGB), from 2012 to 2017, and Coutinho et al. (2016)Coutinho R, Yaginuma LE, Siviero F, dos Santos JCQP, López MS, Christofoletti RA et al., 2016. Studies on benthic communities of rocky shores on the Brazilian coastand climate change monitoring: status of knowledge and challenges. Brazilian Journal of Oceanography 64, 27–36. doi: 10.1590/S1679-875920161015064sp2
https://doi.org/10.1590/S1679-8759201610...
documented SST overtaking the daily range of 30 °C at Arraial do Cabo (RJ), a coastal city with historical predominance of cold waters, due to the influence of a strong upwelling during spring and summer months (Valentin 2001Valentin JL, 2001. The Cabo Frio Upwelling System, Brazil. In: Seeliger, U., Kjerfve, B. (eds) Coastal Marine Ecosystems of Latin America. Ecological Studies, vol 144. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-662-04482-7_8
https://doi.org/10.1007/978-3-662-04482-...
). These frequent and high SST values highlight the need for studies assessing the effect of rising SST on Brazilian coastal ecosystems.

The year of 2019 was exceptionally hot in Brazil causing an unprecedented mass mortality event on the major reef building hydrocoral Millepora alcicornis (Linnaeus, 1758) at the biggest coral reef of the South Atlantic, Abrolhos (Duarte et al. 2020Duarte GAS, Villela HDM, Deocleciano M, Silva D, Barno A, Cardoso PM et al., 2020. Heat waves are a major threat to turbid coral reefs in Brazil. Frontiers in Marine Science 7, 179. doi: 10.3389/fmars.2020.00179.
https://doi.org/10.3389/fmars.2020.00179...
), on the endemic coral species Siderastrea stellata Verrill, 1868 in the Rocas Atoll (Gaspar et al. 2021Gaspar TL, Quimbayo JP, Ozekoski R, Nunes LT, Aued AW, Mendes TC, Garrido AG, Segal B, 2021. Severe coral bleaching of Siderastrea stellata at the only atoll in the South Atlantic driven by sequential marine heatwaves. Biota Neotropica 21, e20201131. doi: 10.1590/1676-0611-BN-2020-1131
https://doi.org/10.1590/1676-0611-BN-202...
), and bleaching on cnidarians in Rio de Janeiro, Southeast Brazil (Santos et al. 2021Santos LA, da Silva BCA, Silva KCR, dos Santos RC, de Sousa EM, Muniz RA, Barbosa AB, 2021. Branqueamento de corais e outros cnidários bentônicos no costão rochoso da Praia do Forno (Arraial do Cabo, RJ) durante as anomalias térmicas das águas superficiais do oceano ocorridas nos meses de fevereiro e maio de 2019. Revista Vértices 23, 560–579. doi: 10.19180/1809-2667.
https://doi.org/10.19180/1809-2667...
). This heat wave throughout the year may also have caused a population decline and the first documented mortality event on the marine sponge species Desmapsamma anchorata (Carter, 1882) in the Southwestern Atlantic, Rio de Janeiro, IGB (Figure 1). The aim of this short communication is to report the population decline/mass mortality of D. anchorata at IGB. It is a relevant report, as the species is ecologically important due high abundance, competition with invasive species and potential for pollutant indicator (Silva 2018Silva AG, 2018. Vivendo com o inimigo: competição entre os corais invasores Tubastraea spp. e a esponja Desmapsamma anchorata na Baía de Ilha Grande, RJ. PhD dissertation, Universidade do Estado do Rio de Janeiro, p 174.; Silva et al. 2017Silva AG, Fortunato HFM, Lôbo-Hajdu G, Fleury BG, 2017. Response of native marine sponges to invasive Tubastraea corals: a case study. Marine Biology 164, 78–88. doi: 10.1007/s00227-017-3112-2
https://doi.org/10.1007/s00227-017-3112-...
, 2022Silva AG, Carlos-Júnior LA, Sato CYS, Lages BG, Neres-Lima V, Oliveira FMS, Maia LF, Cappa de Oliveira LF, Fleury BG, 2022. Living with an enemy: Invasive sun-coral (Tubastraea spp.) competing against sponges Desmapsamma anchorata in southeastern Brazil. Marine Environmental Research 174, 105559. doi: 10.1016/j.marenvres.2022.105559
https://doi.org/10.1016/j.marenvres.2022...
; Fortunato et al. 2020Fortunato HFM, de Paula TS, Esteves EL, Muricy G, Lôbo-Hajdu G, 2020. Biodiversity and structure of marine sponge assemblages around a subtropical island. Hydrobiologia 847, 1281–1299. doi: 10.1007/s10750-020-04183-4
https://doi.org/10.1007/s10750-020-04183...
). Also, mass mortality of sponges was never documented along the Brazilian coastline, and there is scarce data of ocean warming affecting marine species at Rio de Janeiro state (Coutinho et al. 2016Coutinho R, Yaginuma LE, Siviero F, dos Santos JCQP, López MS, Christofoletti RA et al., 2016. Studies on benthic communities of rocky shores on the Brazilian coastand climate change monitoring: status of knowledge and challenges. Brazilian Journal of Oceanography 64, 27–36. doi: 10.1590/S1679-875920161015064sp2
https://doi.org/10.1590/S1679-8759201610...
; Santos et al. 2021Santos LA, da Silva BCA, Silva KCR, dos Santos RC, de Sousa EM, Muniz RA, Barbosa AB, 2021. Branqueamento de corais e outros cnidários bentônicos no costão rochoso da Praia do Forno (Arraial do Cabo, RJ) durante as anomalias térmicas das águas superficiais do oceano ocorridas nos meses de fevereiro e maio de 2019. Revista Vértices 23, 560–579. doi: 10.19180/1809-2667.
https://doi.org/10.19180/1809-2667...
).

Figure 1.
Map of the 12 sites where Desmapsamma anchorata was searched at Ilha Grande Bay, Rio de Janeiro (RJ), Brazil. Brazilian map is illustrated at the top-left corner. (a) Ilha da Laje Preta; (b) Ilha do Papagaio; (c) Ilha do Meio; (d) Ilha da Josefa; (e) Praia das flechas; (f) Praia do Dentista; (g) Ilha do Bonfim; (h) Ilha dos Porcos Pequena; (i) Ilha dos Porcos Grande; (j) Ilha dos Macacos; (k) Abraãozinho left rock shore; (l) Abraãozinho right rock shore.

Material and Methods

Overall, IGB rocky shores are shallow, with average depth of 5.5 m in the Central channel, between 20 and 30 m depth on the west side and between 10 and 25 m on the east side (Creed 2009Creed JC, 2009. Ecossistemas marinhos. In: Bastos, M.; Callado, C. (Org.) O Ambiente da Ilha Grande. UERJ/CEADS, p. 247-298.). Austral summer is 25–27 °C in SST average, and the benthic community is dominated by turf multispecies algae and the zoanthid Palythoa caribaeorum Duchassaing & Michelotti, 1860 (Creed et al. 2007Creed JC, Pires DO, Figueiredo MAO, 2007. Biodiversidade Marinha da Baía da Ilha Grande. Ministério do Meio Ambiente, Brasília: 417 pp.; Mantelatto et al. 2022Mantelatto MC, Carlos-Júnior LA, Correa C, Cardoso CFL, Creed JC, 2022. Depth-related drivers of benthic community structure on shallow subtidal rocky reefs. Estuarine, Coastal and Shelf Science 266. doi: 10.1016/j.ecss.2022.107743
https://doi.org/10.1016/j.ecss.2022.1077...
), but D. anchorata is commonly recorded as one of the major space-occupying species there (Mantelatto et al. 2013Mantelatto MC, Fleury BG, Menegola C, Creed JC, 2013. Cost-benefit of different methods for monitoring invasive corals on tropical rocky reefs in the southwest Atlantic. Journal of Experimental Marine Biology and Ecology 449, 129–134. doi: 10.1016/j.jembe.2013.09.009
https://doi.org/10.1016/j.jembe.2013.09....
; Fortunato et al. 2020Fortunato HFM, de Paula TS, Esteves EL, Muricy G, Lôbo-Hajdu G, 2020. Biodiversity and structure of marine sponge assemblages around a subtropical island. Hydrobiologia 847, 1281–1299. doi: 10.1007/s10750-020-04183-4
https://doi.org/10.1007/s10750-020-04183...
). An unusual absence of D. anchorata was observed during 20 minutes SCUBA dives at two depths (3 m – back and 10 m – forth), in 12 sites of IGB, in October 2019, aiming to collect the invasive ophiuroid Ophiothela mirabilis Verrill, 1867 being hosted by D. anchorata, as both species are intrinsically related in the region (Mantelatto et al. 2016Mantelatto MC, Vidon LF, Silveira RB, Menegola C, Rocha RM, Creed JC, 2016. Host species of the non-indigenous brittle star Ophiothela mirabilis (Echinodermata: Ophiuroidea): an invasive generalist in Brazil? Marine Biodiversity Records 9. doi: 10.1186/s41200–016–0013–x.
https://doi.org/10.1186/s41200–016–0013–...
; Tavares et al. 2019Tavares MR, Costa PAS, Ventura CRR, 2019. Population size structure, asexual reproduction, and somatic growth estimates of the non-indigenous brittle star Ophiothela mirabilis (Echinodermata: Ophiuroidea) on the southeastern coast of Brazil. Marine Biodiversity. doi: 10.1007/s12526-019-00938-y.
https://doi.org/10.1007/s12526-019-00938...
; Fortunato and Lôbo-Hajdu 2021Fortunato HFM, Lôbo-Hajdu G, 2021. Quantification of the non-indigenous ophiuroid Ophiothela mirabilis Verrill, 1867 associated with marine sponges with different morphologies. Aquatic Invasions 16, 77–93. doi: 10.3391/ai.2021.16.1.06
https://doi.org/10.3391/ai.2021.16.1.06...
). The absence of D. anchorata was recorded and a putative explanation is enlightened herein.

In the same survey,several individuals of D. anchorata were recorded at Abraãozinho beach rocky shores. Then, its population was quantified by three visual censuses along 30 × 1 m (30 m2) belts at 3 m depth and organisms were categorized as healthy (orange-pinkish color), unhealthy (pale color, locally bleached or covered by algae or cyanobacteria, and dead (partial or total necrosis). Arcsine transformed values for each category was statistically tested with ANOVA and Tukey a posteriori (JAMOVI Software) to identify how healthy the population was at that moment.

Monthly averaged SST dataset was obtained from Giovanni platform (Beaudoing and Rodell 2020Beaudoing H, Rodell M. – NASA/GSFC/HSL, 2020. GLDAS Noah Land Surface Model L4 monthly 0.25 x 0.25 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), doi:10.5067/SXAVCZFAQLNO
https://doi.org/10.5067/SXAVCZFAQLNO...
) for the period 2015–2019, based on MODIS-Aqua satellite imagery with 4 km spatial resolution and compiled in an Excel file. ANOVA repeated measures was applied to evaluate statistical differences between years, after Shapiro-Wilk normality test indicate those values as normal (Jamovi 2021The jamovi Project, 2021. jamovi. (Version 1.6) [Computer Software]. Retrieved from https://www.jamovi.org.
https://www.jamovi.org...
). Additionally, air temperature and precipitation dataset, for same time span, were obtained from an automatic station (Marambaia station) kept by the National Institute of Meteorology (INMET). It is an automatic station, located on the eastern side of the Marambaia barrier island (Rio de Janeiro southern coast). Therefore, oceanographic, and atmospheric data from IGB and Marambaia are comparable. Monthly and annually averages were computed for SST, air temperature and accumulated precipitation at MATLAB® to identify differences in the abiotic data from 2015 to 2019. Also, SST medians were statistically analyzed with the non-parametric Kruskal-Wallis test (Ernst 2004Ernst MD, 2004. Permutation Methods: A Basis for Exact Inference. Statistical Science 19, 676–685.) using the PAST Software.

Results

From 12 sites where D. anchorata is routinely recorded at IGB, we only found the species in five sites (41.7%) indicating a strong decrease in the local population. From 162 individuals recorded at Abraãozinho, 83 individuals (51.2%) were healthy (Figure 2a–b), 74 individuals (45.7%) were intensively covered by cyanobacteria and locally bleached (Figure 2c–e), and five individuals (3.1%) were completely bleached or died (Figure 2f). Statistical differences were only recorded for the died category in relationship to the others (One-Way ANOVA F: 7.36, p = 0.01; Post-Hoc Tukey test: healthy:died – p < 0.001 and unhealthy:died – p = 0.001).

Figure 2.
Life status of Desmapsamma anchorata at Abraãozinho in the austral spring of 2019. (a) Healthy pinkish arborescent specimen; (b) Lobate pink specimen with a bitten white mark; (c) Unhealthy massive specimen hugely covered by algae and cyanobacteria; (d) Partially healthy (pink) and dead (necrosed mass) in association with the bryozoan Schizoporella errata (Waters, 1878); (e) Unhealthy branching specimen with bleached and necrosed base and cyanobacteria cover in apical branches; (f) Dead digitiform specimen.

Monthly averaged SST revealed an abnormal elevation of 2 °C (26.6 °C) for 2019 in comparison to other years (2015–2018), while 2019 air temperature was only 0.1 °C higher than previous years (Table 1). Also, average precipitation values for 2019 are much higher than the other years. When monthly averages were compared to other years, 2019 months had the highest SST values with exception for July (no variation) and November (−0.7 °C). October 2019 (26.5 °C) was 3.5 °C warmer than the average between 2015–2018 (23 °C), 2019 had the highest SST values for all seasons in average, with austral spring 1.6 °C warmer than the other years 2015–2018, and 2019 presented statistically higher values (Repeated Measures ANOVA F: 17.6, p < 0.001) SST than all compared years (Figure 3). The largest variations in air temperature occur during September (13.4−39.6 °C) and October (15.6−41.3 °C) (beginning of austral spring), while the largest accumulated precipitation values are recorded from January to March (281−473 mm) (austral summer and beginning of fall) (Supplementary Figure Supplementary Material The following online material is available for this article: Figure S1 – Oceanographic and meteorological data from 2015 to 2019: (a) Monthly sea surface temperature variation in Ilha Grande Bay; (b) Monthly air temperature variation and (c) Monthly average accumulated precipitation in Marambaia station. Vertical bars are standard deviation values, dots are outliers above and below standard deviation, box represent 75% of the data and, line within box is the median. ).

Table 1.
Annual average values of Sea Surface Temperature (SST) from Ilha Grande Bay and annual average values of air temperature (AIR), annual accumulated precipitation, and average accumulated monthly precipitation for each year in Marambaia meteorological station from 2015 to 2019. The last column indicates the difference between the 2019 data and the highest ever recorded since 2015. Standard deviation values are inside parentheses.
Figure 3.
Sea surface temperature (SST) average values for both (a) months from 2015 to 2019, and (b) years obtained from Giovanni platform. In (b), statistical differences are shown by letters a, b (p ≤ 0.001), and c (p = 0.005) after ANOVA Repeated Measures and post-hoc Tukey test.

Discussion

Desmapsamma anchorata is widely spread in the Tropical Western Atlantic realm (Spalding et al. 2007Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, et al. Robertson J, 2007. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience 57, 573–583. doi: 10.1641/B570707
https://doi.org/10.1641/B570707...
), generally in high abundance, fast growing and aggressive competitive behavior (Aerts and van Soest 1997Aerts LAM, van soest RWM, 1997. Quantification of sponge/coral interactions in a physically stressed reef community, NE Colombia. Marine Ecology Progress Series 148, 125–134.; McLean and Yoshioka 2008McLean E, Yoshioka PM, 2008. Substratum effects on the growth and survivorship of the sponge Desmapsamma anchorata. Caribbean Journal of Science 44, 83–89. doi: 10.18475/cjos.v44i1.a9
https://doi.org/10.18475/cjos.v44i1.a9...
; Hajdu et al 2011Hajdu E, Peixinho S, Fernandez J, 2011. Esponjas marinhas da Bahia: Guia de campo e laboratório. Série Livros 45, Museu Nacional/UFRJ, Rio de Janeiro.; Silva et al. 2017Silva AG, Fortunato HFM, Lôbo-Hajdu G, Fleury BG, 2017. Response of native marine sponges to invasive Tubastraea corals: a case study. Marine Biology 164, 78–88. doi: 10.1007/s00227-017-3112-2
https://doi.org/10.1007/s00227-017-3112-...
). This sponge dominates Brazilian tropical bays rocky shores (Muricy and Hajdu 2006Muricy G, Hajdu E, 2006. Porifera Brasilis: guia de identificação das esponjas marinhas do sudeste do Brasil. Série Livros 17, Museu Nacional/UFRJ, Rio de Janeiro.; Hajdu et al. 2011Hajdu E, Peixinho S, Fernandez J, 2011. Esponjas marinhas da Bahia: Guia de campo e laboratório. Série Livros 45, Museu Nacional/UFRJ, Rio de Janeiro.; Fortunato et al. 2020Fortunato HFM, de Paula TS, Esteves EL, Muricy G, Lôbo-Hajdu G, 2020. Biodiversity and structure of marine sponge assemblages around a subtropical island. Hydrobiologia 847, 1281–1299. doi: 10.1007/s10750-020-04183-4
https://doi.org/10.1007/s10750-020-04183...
), but it also likes sedimented substrates from the Caribbean Sea to Rio de Janeiro state (McLean and Yoshioka 2008McLean E, Yoshioka PM, 2008. Substratum effects on the growth and survivorship of the sponge Desmapsamma anchorata. Caribbean Journal of Science 44, 83–89. doi: 10.18475/cjos.v44i1.a9
https://doi.org/10.18475/cjos.v44i1.a9...
; Hajdu et al 2011Hajdu E, Peixinho S, Fernandez J, 2011. Esponjas marinhas da Bahia: Guia de campo e laboratório. Série Livros 45, Museu Nacional/UFRJ, Rio de Janeiro.; Fortunato et al. 2020Fortunato HFM, de Paula TS, Esteves EL, Muricy G, Lôbo-Hajdu G, 2020. Biodiversity and structure of marine sponge assemblages around a subtropical island. Hydrobiologia 847, 1281–1299. doi: 10.1007/s10750-020-04183-4
https://doi.org/10.1007/s10750-020-04183...
). In general, few factors directly affect the species density in Brazil, such as presence of a more abundant species in Todos os Santos Bay (Bahia state) (see Oliveira and Lanna 2018Oliveira FS, Lanna E, 2018. Mind your neighbourhood: Biotic and abiotic factors shaping the small-scale spatial distribution of sponges (Demospongiae) in tropical urban beaches. Marine Ecology 39, e12524. doi:10.1111/maec.12524
https://doi.org/10.1111/maec.12524...
) and hydrodynamics in IGB (Rio de Janeiro state) (see Fortunato et al. 2020Fortunato HFM, de Paula TS, Esteves EL, Muricy G, Lôbo-Hajdu G, 2020. Biodiversity and structure of marine sponge assemblages around a subtropical island. Hydrobiologia 847, 1281–1299. doi: 10.1007/s10750-020-04183-4
https://doi.org/10.1007/s10750-020-04183...
).Specifically to IGB, it is one of the most frequent benthic species throughout the year in both abundance and relative cover in the bay side (Mantelatto et al. 2013Mantelatto MC, Fleury BG, Menegola C, Creed JC, 2013. Cost-benefit of different methods for monitoring invasive corals on tropical rocky reefs in the southwest Atlantic. Journal of Experimental Marine Biology and Ecology 449, 129–134. doi: 10.1016/j.jembe.2013.09.009
https://doi.org/10.1016/j.jembe.2013.09....
, 2022; Fortunato et al. 2020Fortunato HFM, de Paula TS, Esteves EL, Muricy G, Lôbo-Hajdu G, 2020. Biodiversity and structure of marine sponge assemblages around a subtropical island. Hydrobiologia 847, 1281–1299. doi: 10.1007/s10750-020-04183-4
https://doi.org/10.1007/s10750-020-04183...
). Their fragments presented fast growth from September to November during a manipulated experiment, doubling their volumes within a month (Ferreira 2016Ferreira YCS, 2016. Variação temporal e espacial de metabólitos secundários da esponja Desmapsamma anchorata (Demospongiae). M.Sc. dissertation, Universidade do Estado do Rio de Janeiro, p 124.), and it can outgrow the invasive sun corals Tubastraea spp. locally (Silva et al. 2017Silva AG, Fortunato HFM, Lôbo-Hajdu G, Fleury BG, 2017. Response of native marine sponges to invasive Tubastraea corals: a case study. Marine Biology 164, 78–88. doi: 10.1007/s00227-017-3112-2
https://doi.org/10.1007/s00227-017-3112-...
, 2022Silva AG, Carlos-Júnior LA, Sato CYS, Lages BG, Neres-Lima V, Oliveira FMS, Maia LF, Cappa de Oliveira LF, Fleury BG, 2022. Living with an enemy: Invasive sun-coral (Tubastraea spp.) competing against sponges Desmapsamma anchorata in southeastern Brazil. Marine Environmental Research 174, 105559. doi: 10.1016/j.marenvres.2022.105559
https://doi.org/10.1016/j.marenvres.2022...
). However, it seems sensitive to abrupt environmental changes through its distribution, such as high seawater temperature (Vilanova et al. 2004Vilanova E, Mayer-Pinto M, Curbelo-Fernandez MP, Silva SHF, 2004. The impact of a nuclear power plant discharge on the sponge community of a tropical bay (SE Brazil). Bollettino dei Musei e degli Istituti Biologici dell Universita Genova 68, 647–654.), pollution (Vilanova et al. 2004Vilanova E, Mayer-Pinto M, Curbelo-Fernandez MP, Silva SHF, 2004. The impact of a nuclear power plant discharge on the sponge community of a tropical bay (SE Brazil). Bollettino dei Musei e degli Istituti Biologici dell Universita Genova 68, 647–654.; Silva 2018Silva AG, 2018. Vivendo com o inimigo: competição entre os corais invasores Tubastraea spp. e a esponja Desmapsamma anchorata na Baía de Ilha Grande, RJ. PhD dissertation, Universidade do Estado do Rio de Janeiro, p 174.) and storms (Wulff 2008Wulff JL, 2008. Life-History differences among coral reef sponges promote mutualism or exploitation of mutualism by influencing partner fidelity feedback. The American Naturalist 171, 597–609. doi: 10.1086/587067
https://doi.org/10.1086/587067...
). Desmapsamma anchorata may be considered as negatively affected to ocean warming in terms of gene expression, reproductive output, filtration capability, higher bleaching and necrosis due heat shock protein expression, and others (see Bell et al. 2018Bell JJ, Bennett HM, Rovellini A, Webster NS, 2018. Sponges to be winners under near-future climate scenarios. BioScience 68, 955–968. doi: 10.1093/biosci/biy142
https://doi.org/10.1093/biosci/biy142...
for more examples). At IGB it is considered a putative sentinel species for urbanization pollutants (Silva 2018Silva AG, 2018. Vivendo com o inimigo: competição entre os corais invasores Tubastraea spp. e a esponja Desmapsamma anchorata na Baía de Ilha Grande, RJ. PhD dissertation, Universidade do Estado do Rio de Janeiro, p 174.) and it is not observed in the assemblage close to thermal power plant water outlets (Vilanova et al. 2004Vilanova E, Mayer-Pinto M, Curbelo-Fernandez MP, Silva SHF, 2004. The impact of a nuclear power plant discharge on the sponge community of a tropical bay (SE Brazil). Bollettino dei Musei e degli Istituti Biologici dell Universita Genova 68, 647–654.).

Although 2019 SST was statistically warmer than other years at IGB, we cannot prove the direct relationship between the occurrence of high SST in 2019 and D. anchorata’s population decline and mortality, since we do not have information about annual cover or abundance data of the species for each year at IGB. However, an exceptional average increase of 2 °C in the SST since 2015 at Ilha Grande Bay (SE Brazil) and the species death are facts. Also, this year had extreme heat waves episodes that severely impacted Brazilian fauna in both Northeast (Duarte et al. 2020Duarte GAS, Villela HDM, Deocleciano M, Silva D, Barno A, Cardoso PM et al., 2020. Heat waves are a major threat to turbid coral reefs in Brazil. Frontiers in Marine Science 7, 179. doi: 10.3389/fmars.2020.00179.
https://doi.org/10.3389/fmars.2020.00179...
; Gaspar et al. 2021Gaspar TL, Quimbayo JP, Ozekoski R, Nunes LT, Aued AW, Mendes TC, Garrido AG, Segal B, 2021. Severe coral bleaching of Siderastrea stellata at the only atoll in the South Atlantic driven by sequential marine heatwaves. Biota Neotropica 21, e20201131. doi: 10.1590/1676-0611-BN-2020-1131
https://doi.org/10.1590/1676-0611-BN-202...
) and Southeast regions (Santos et al. 2021Santos LA, da Silva BCA, Silva KCR, dos Santos RC, de Sousa EM, Muniz RA, Barbosa AB, 2021. Branqueamento de corais e outros cnidários bentônicos no costão rochoso da Praia do Forno (Arraial do Cabo, RJ) durante as anomalias térmicas das águas superficiais do oceano ocorridas nos meses de fevereiro e maio de 2019. Revista Vértices 23, 560–579. doi: 10.19180/1809-2667.
https://doi.org/10.19180/1809-2667...
). In contrast to the survival of sponge assemblages after ENSO (Kelmo et al. 2013Kelmo F, Bell JJ, Attrill M, 2013. Tolerance of sponge assemblages to temperature anomalies: Resilience and proliferation of sponges following the 1997–8 El Niño Southern Oscillation. PLoS ONE 8, e76441. doi: 10.1371/journal.pone.0076441.
https://doi.org/10.1371/journal.pone.007...
), Gaspar et al. (2021)Gaspar TL, Quimbayo JP, Ozekoski R, Nunes LT, Aued AW, Mendes TC, Garrido AG, Segal B, 2021. Severe coral bleaching of Siderastrea stellata at the only atoll in the South Atlantic driven by sequential marine heatwaves. Biota Neotropica 21, e20201131. doi: 10.1590/1676-0611-BN-2020-1131
https://doi.org/10.1590/1676-0611-BN-202...
suggests a higher impact on corals when ENSO and longer heat waves occur sequentially. Probably, this high SST in synergy with high precipitation values in 2019 (in comparison to other years) and more frequent and strong heat waves, favored an environmental context for this unprecedented strong population decline, bleaching and mortality rate of the marine sponge species Desmapsamma anchorata in the austral spring. While ocean warming may disrupt morphological and physiological changes in sponge species (Bell et al. 2018Bell JJ, Bennett HM, Rovellini A, Webster NS, 2018. Sponges to be winners under near-future climate scenarios. BioScience 68, 955–968. doi: 10.1093/biosci/biy142
https://doi.org/10.1093/biosci/biy142...
), run off may affects sponge species by increasing sedimentation that clog poriferans filtration system (i.e. Cerrano et al. 2001Cerrano C, Magnino G, Sarà A, Bavestrello G, Gaino E, 2001. Necrosis in a population of Petrosia ficiformis (Porifera, Demospongiae) in relation with environmental stress, Italian Journal of Zoology 68, 131–136. doi:10.1080/11250000109356397
https://doi.org/10.1080/1125000010935639...
). Also, 45.7% of D. anchorata was intensively covered by cyanobacteria, a group favored by CO2 rising (Visser et al. 2016Visser PM, Verspagen JMH, Sandrini G, Stal LJ, Matthijs HCP, 2016. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54, 145–159. doi:10.1016/j.hal.2015.12.006
https://doi.org/10.1016/j.hal.2015.12.00...
) and harmful for corals (Ribeiro et al. 2018Ribeiro FV, Sá JA, Fistarol GO, Salomon PS, Pereira RC, Souza MLAM, et al., 2018. Long-term effects of competition and environmental drivers on the growth of the endangered coral Mussismilia braziliensis (Verril, 1867) PeerJ 6, e5419. doi: 10.7717/peerj.5419
https://doi.org/10.7717/peerj.5419...
). The effect of this group on marine sponges is scarce (Rützler 1988Rützler K, 1988. Mangrove sponge disease induced by cyanobacterial symbionts: failure of a primitive immune system? Diseases of Aquatic Organisms 5, 143–149.; Webster 2007Webster NS, 2007. Sponge disease: a global threat? Environmental Microbiology 9, 1363–1375. doi: 10.1111/j.1462-2920.2007.01303.x
https://doi.org/10.1111/j.1462-2920.2007...
) but may not be underestimated.

Our biological record with marine sponges is the first along the Brazilian coast indicating population deterioration during an abnormal increase in the SST in the austral spring of 2019, when almost half of D. anchorata population was covered by cyanobacteria, macroalgae, bleached and/or necrosed and dead. Although some sponge species have tolerance to ocean warming and ocean acidification, most of the species are intensively affected by climate change (Peck et al. 2015Peck LS, Clark MS, Power D, Reis J, Batista FM, Harper EM, 2015. Acidification effects on biofouling communities: Winners and losers. Global Change Biology 21, 1907–1913. doi: 10.1111/gcb.12841
https://doi.org/10.1111/gcb.12841...
; Bell et al. 2018Bell JJ, Bennett HM, Rovellini A, Webster NS, 2018. Sponges to be winners under near-future climate scenarios. BioScience 68, 955–968. doi: 10.1093/biosci/biy142
https://doi.org/10.1093/biosci/biy142...
), with several records of marine sponges death after high temperature and heat waves worldwide in the last years. It has been much more pronounced than historical mortality events (Smith 1941Smith FGW, 1941. Sponge disease in British Honduras, and its transmission by water currents. Ecology 22, 415–421. doi: 10.2307/1930719
https://doi.org/10.2307/1930719...
; Vacelet and Gallisian 1978Vacelet J, Gallissian MF, 1978. Virus-like particles in cells of the sponge Verongia cavernicola (Demospongiae, Dictyoceratida) and accompanying tissue changes. Journal of Invertebrates Pathology 31, 246–254. doi: 10.1016/0022-2011(78)90014-9
https://doi.org/10.1016/0022-2011(78)900...
; Rützler 1988Rützler K, 1988. Mangrove sponge disease induced by cyanobacterial symbionts: failure of a primitive immune system? Diseases of Aquatic Organisms 5, 143–149.; Webster 2007Webster NS, 2007. Sponge disease: a global threat? Environmental Microbiology 9, 1363–1375. doi: 10.1111/j.1462-2920.2007.01303.x
https://doi.org/10.1111/j.1462-2920.2007...
; Webster et al. 2002Webster NS, Negri AP, Webb RI, Hill RT, 2002. A spongin-boring α-proteobacterium is the etiological agent of disease in the Great Barrier Reef sponge Rhopaloeides odorabile. Marine Ecology Progress Series 232, 305–309. doi: 10.3354/meps232305
https://doi.org/10.3354/meps232305...
). Stronger heat waves and ocean warming provoke physiological and morphological lethal effects, benthic community shift from coral to seaweeds, cyanobacterial booms, and bacterial and viral diseases (Fromont and Garson 1999Fromont J, Garson M, 1999. Sponge bleaching on the West and East coasts of Australia. Coral Reefs 18, 340. doi: 10.1007/s003380050209
https://doi.org/10.1007/s003380050209...
; Pérez et al. 2000Pérez T, Garrabou J, Sartoretto S, Harmelin JG, Francour P, Vacelet J, 2000. Mortalité massive d’invertébrés marins: un événement sans précédent en Méditerranée nord-occidentale. Sciences de La Vie 323, 853–865. doi: 10.1016/S0764-4469(00)01237-3
https://doi.org/10.1016/S0764-4469(00)01...
; Stevely et al. 2011Stevely JM, Sweat DE, Bert TM, Sim-Smith C, Kelly M, 2011. Sponge mortality at Marathon and Long Key, Florida: Patterns of species response and population recovery. Proceedings of the 63rd GCFI, San Juan, 384–400.; Carballo and Bell 2017Carballo JL, Bell JJ, 2017. Climate change and sponges: An introduction. Climate Change, Ocean Acidification and Sponges 1–11. doi: 10.1007/978-3-319-59008-0_1
https://doi.org/10.1007/978-3-319-59008-...
; Luter and Webster 2017Luter HM, Webster NS, 2017. Sponge disease and climate change. Climate Change, Ocean Acidification and Sponges 411–428. doi: 10.1007/978-3-319-59008-0_9
https://doi.org/10.1007/978-3-319-59008-...
). Outbreak in the D. anchorata population was possibly a synergy of several factors that we could not test. Physiologically and chemically monitoring the species is important to understand what factors may affect the species.

Desmapsamma anchorata population deterioration in the warmer austral spring from 2015–2019 in a climate change context in a biogeographic transition zone may reflect a shift in the marine community of IGB by decreasing the associated cryptic diversity and, in turn, opening space for other species arrival and coverage increase, since IGB has a high species turnover (Carlos-Júnior et al. 2019Carlos-Júnior LA, Spencer M, Neves DM, Moulton TP, Pires DO, Castro CB et al., 2019. Rarity and beta diversity assessment as tools for guiding conservation strategies in marine tropical subtidal communities. Diversity and Distributions. doi: 10.1111/ddi.12896.
https://doi.org/10.1111/ddi.12896...
). Ilha Grande Bay holds about a thousand marine species and is considered a local biodiversity sanctuary (Creed et al. 2007Creed JC, Pires DO, Figueiredo MAO, 2007. Biodiversidade Marinha da Baía da Ilha Grande. Ministério do Meio Ambiente, Brasília: 417 pp.). Absence of difference between healthy and unhealthy individuals of D. anchorata indicates a clear outbreak in its population. This collapse is dangerous once the species promotes three-dimensionality due its massive-arborescent shape plasticity, shelter for several species, high competitive ability and potential to indicate polluted or unpolluted areas. Therefore, D. anchorata is a key species for IGB monitoring in a climate change scenario.

Acknowledgments

Authors thank Coordination for the Improvement of Higher Education Personnel (CAPES), National Council for Scientific and Technological Development (CNPq) and BGF also thanks the Programa de Incentivo à Produção Científica, Técnica e Artística (Prociência/DEPESQ/UERJ) for scholarships and grants, as well all the editors and reviewers (especially, Drs. Emilio Lanna, Luís Felipe Skinner and Gisele Lôbo-Hajdu) who kindly improved this scientific report. We also thank the staff of the Centro de Estudos Ambientais e Desenvolvimento Sustentável – CEADS/UERJ for allowing us to use their facilities.

Supplementary Material

The following online material is available for this article:

Figure S1 – Oceanographic and meteorological data from 2015 to 2019: (a) Monthly sea surface temperature variation in Ilha Grande Bay; (b) Monthly air temperature variation and (c) Monthly average accumulated precipitation in Marambaia station. Vertical bars are standard deviation values, dots are outliers above and below standard deviation, box represent 75% of the data and, line within box is the median.

References

  • Aerts LAM, van soest RWM, 1997. Quantification of sponge/coral interactions in a physically stressed reef community, NE Colombia. Marine Ecology Progress Series 148, 125–134.
  • Baird AH, Marshall PA, 2002. Mortality, growth, and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Marine Ecology Progress Series 237, 133–141. doi: 10.3354/MEPS237133
    » https://doi.org/10.3354/MEPS237133
  • Beaudoing H, Rodell M. – NASA/GSFC/HSL, 2020. GLDAS Noah Land Surface Model L4 monthly 0.25 x 0.25 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), doi:10.5067/SXAVCZFAQLNO
    » https://doi.org/10.5067/SXAVCZFAQLNO
  • Bell JJ, Bennett HM, Rovellini A, Webster NS, 2018. Sponges to be winners under near-future climate scenarios. BioScience 68, 955–968. doi: 10.1093/biosci/biy142
    » https://doi.org/10.1093/biosci/biy142
  • Carballo JL, Bell JJ, 2017. Climate change and sponges: An introduction. Climate Change, Ocean Acidification and Sponges 1–11. doi: 10.1007/978-3-319-59008-0_1
    » https://doi.org/10.1007/978-3-319-59008-0_1
  • Carlos-Júnior LA, Spencer M, Neves DM, Moulton TP, Pires DO, Castro CB et al., 2019. Rarity and beta diversity assessment as tools for guiding conservation strategies in marine tropical subtidal communities. Diversity and Distributions. doi: 10.1111/ddi.12896.
    » https://doi.org/10.1111/ddi.12896
  • Carvalho BC, 2019. Variabilidade da resposta da linha de costa aos condicionantes hidrodinâmicos e às oscilações do nível do mar no litoral sul fluminense. PhD dissertation, Universidade do Estado do Rio de Janeiro, 192 pp.
  • Cebrian E, Uriz MJ, Garrabou J, Ballesteros E, 2011. Sponge mass mortalities in a warming Mediterranean Sea: Are cyanobacteria-harboring species worse off? PLoS ONE 6, e20211. doi: 10.1371/journal.pone.0020211
    » https://doi.org/10.1371/journal.pone.0020211
  • Cerrano C, Magnino G, Sarà A, Bavestrello G, Gaino E, 2001. Necrosis in a population of Petrosia ficiformis (Porifera, Demospongiae) in relation with environmental stress, Italian Journal of Zoology 68, 131–136. doi:10.1080/11250000109356397
    » https://doi.org/10.1080/11250000109356397
  • Coutinho R, Yaginuma LE, Siviero F, dos Santos JCQP, López MS, Christofoletti RA et al., 2016. Studies on benthic communities of rocky shores on the Brazilian coastand climate change monitoring: status of knowledge and challenges. Brazilian Journal of Oceanography 64, 27–36. doi: 10.1590/S1679-875920161015064sp2
    » https://doi.org/10.1590/S1679-875920161015064sp2
  • Creed JC, 2009. Ecossistemas marinhos. In: Bastos, M.; Callado, C. (Org.) O Ambiente da Ilha Grande. UERJ/CEADS, p. 247-298.
  • Creed JC, Pires DO, Figueiredo MAO, 2007. Biodiversidade Marinha da Baía da Ilha Grande. Ministério do Meio Ambiente, Brasília: 417 pp.
  • DeCarlo TM, Cohen AL, Wong GTF, Davis KA, Lohmann P, Soong K, 2017. Mass coral mortality under local amplification of 2 °C ocean warming. Scientific Reports 7, 44586. doi: 10.1038/srep44586.
    » https://doi.org/10.1038/srep44586
  • Duarte GAS, Villela HDM, Deocleciano M, Silva D, Barno A, Cardoso PM et al., 2020. Heat waves are a major threat to turbid coral reefs in Brazil. Frontiers in Marine Science 7, 179. doi: 10.3389/fmars.2020.00179.
    » https://doi.org/10.3389/fmars.2020.00179
  • Duckworth A, West L, Vansach T, Stubler A, Hardt M, 2012. Effects of water temperature and pH on growth and metabolite biosynthesis of coral reef sponges. Marine Ecology Progress Series 462, 67–77. doi: 10.3354/meps09853
    » https://doi.org/10.3354/meps09853
  • Duckworth AR, Peterson BJ, 2013. Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells. Marine Biology 160, 27–35. doi: 10.1007/s00227-012-2053-z
    » https://doi.org/10.1007/s00227-012-2053-z
  • Ernst MD, 2004. Permutation Methods: A Basis for Exact Inference. Statistical Science 19, 676–685.
  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Lough JM, 2011. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1, 165–169. doi: 10.1038/nclimate1122
    » https://doi.org/10.1038/nclimate1122
  • Ferreira YCS, 2016. Variação temporal e espacial de metabólitos secundários da esponja Desmapsamma anchorata (Demospongiae). M.Sc. dissertation, Universidade do Estado do Rio de Janeiro, p 124.
  • Fortunato HFM, de Paula TS, Esteves EL, Muricy G, Lôbo-Hajdu G, 2020. Biodiversity and structure of marine sponge assemblages around a subtropical island. Hydrobiologia 847, 1281–1299. doi: 10.1007/s10750-020-04183-4
    » https://doi.org/10.1007/s10750-020-04183-4
  • Fortunato HFM, Lôbo-Hajdu G, 2021. Quantification of the non-indigenous ophiuroid Ophiothela mirabilis Verrill, 1867 associated with marine sponges with different morphologies. Aquatic Invasions 16, 77–93. doi: 10.3391/ai.2021.16.1.06
    » https://doi.org/10.3391/ai.2021.16.1.06
  • Fromont J, Garson M, 1999. Sponge bleaching on the West and East coasts of Australia. Coral Reefs 18, 340. doi: 10.1007/s003380050209
    » https://doi.org/10.1007/s003380050209
  • Garrabou J, Coma R, Bensoussan N, Ball M, Chevaldonne P, Cigliano M, Cerrano C, 2009. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Global Change Biology 15, 1090–1103. doi: 10.1111/j.1365-2486.2008.01823.x
    » https://doi.org/10.1111/j.1365-2486.2008.01823.x
  • Gaspar TL, Quimbayo JP, Ozekoski R, Nunes LT, Aued AW, Mendes TC, Garrido AG, Segal B, 2021. Severe coral bleaching of Siderastrea stellata at the only atoll in the South Atlantic driven by sequential marine heatwaves. Biota Neotropica 21, e20201131. doi: 10.1590/1676-0611-BN-2020-1131
    » https://doi.org/10.1590/1676-0611-BN-2020-1131
  • Glynn PW, 1996. Coral reef bleaching: facts, hypotheses and implications. Global Change Biology 2, 495–509. doi: 10.1111/j.1365-2486.1996.tb00063.x
    » https://doi.org/10.1111/j.1365-2486.1996.tb00063.x
  • Hajdu E, Peixinho S, Fernandez J, 2011. Esponjas marinhas da Bahia: Guia de campo e laboratório. Série Livros 45, Museu Nacional/UFRJ, Rio de Janeiro.
  • Hoegh-Guldberg O, Bruno JF, 2010. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528. doi: 10.1126/science.1189930
    » https://doi.org/10.1126/science.1189930
  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, et al., 2018. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83. doi: 10.1126/science.aan8048.
    » https://doi.org/10.1126/science.aan8048
  • Inagaki KY, Pennino MG, Floeter SR, Hay ME, Longo GO, 2020. Trophic interactions will expand geographically but be less intense as oceans warm. Global Change Biology. doi: 10.1111/gcb.15346.
    » https://doi.org/10.1111/gcb.15346
  • Kelmo F, Bell JJ, Attrill M, 2013. Tolerance of sponge assemblages to temperature anomalies: Resilience and proliferation of sponges following the 1997–8 El Niño Southern Oscillation. PLoS ONE 8, e76441. doi: 10.1371/journal.pone.0076441.
    » https://doi.org/10.1371/journal.pone.0076441
  • Luter HM, Webster NS, 2017. Sponge disease and climate change. Climate Change, Ocean Acidification and Sponges 411–428. doi: 10.1007/978-3-319-59008-0_9
    » https://doi.org/10.1007/978-3-319-59008-0_9
  • Mantelatto MC, Fleury BG, Menegola C, Creed JC, 2013. Cost-benefit of different methods for monitoring invasive corals on tropical rocky reefs in the southwest Atlantic. Journal of Experimental Marine Biology and Ecology 449, 129–134. doi: 10.1016/j.jembe.2013.09.009
    » https://doi.org/10.1016/j.jembe.2013.09.009
  • Mantelatto MC, Vidon LF, Silveira RB, Menegola C, Rocha RM, Creed JC, 2016. Host species of the non-indigenous brittle star Ophiothela mirabilis (Echinodermata: Ophiuroidea): an invasive generalist in Brazil? Marine Biodiversity Records 9. doi: 10.1186/s41200–016–0013–x.
    » https://doi.org/10.1186/s41200–016–0013–x
  • Mantelatto MC, Carlos-Júnior LA, Correa C, Cardoso CFL, Creed JC, 2022. Depth-related drivers of benthic community structure on shallow subtidal rocky reefs. Estuarine, Coastal and Shelf Science 266. doi: 10.1016/j.ecss.2022.107743
    » https://doi.org/10.1016/j.ecss.2022.107743
  • McLean E, Yoshioka PM, 2008. Substratum effects on the growth and survivorship of the sponge Desmapsamma anchorata Caribbean Journal of Science 44, 83–89. doi: 10.18475/cjos.v44i1.a9
    » https://doi.org/10.18475/cjos.v44i1.a9
  • Mies M, Francini-Filho RB, Zilberberg C, Garrido AG, Longo GO, Laurentino E, Güth AZ, Sumida P, Banha TN, 2020. South Atlantic coral reefs are majorglobal warming refugia and less susceptible to bleaching. Frontiers in Marine Science 7, 514. doi: 10.3389/fmars.2020.00514
    » https://doi.org/10.3389/fmars.2020.00514
  • Muricy G, Hajdu E, 2006. Porifera Brasilis: guia de identificação das esponjas marinhas do sudeste do Brasil. Série Livros 17, Museu Nacional/UFRJ, Rio de Janeiro.
  • Oliveira FS, Lanna E, 2018. Mind your neighbourhood: Biotic and abiotic factors shaping the small-scale spatial distribution of sponges (Demospongiae) in tropical urban beaches. Marine Ecology 39, e12524. doi:10.1111/maec.12524
    » https://doi.org/10.1111/maec.12524
  • Peck LS, Clark MS, Power D, Reis J, Batista FM, Harper EM, 2015. Acidification effects on biofouling communities: Winners and losers. Global Change Biology 21, 1907–1913. doi: 10.1111/gcb.12841
    » https://doi.org/10.1111/gcb.12841
  • Pérez T, Garrabou J, Sartoretto S, Harmelin JG, Francour P, Vacelet J, 2000. Mortalité massive d’invertébrés marins: un événement sans précédent en Méditerranée nord-occidentale. Sciences de La Vie 323, 853–865. doi: 10.1016/S0764-4469(00)01237-3
    » https://doi.org/10.1016/S0764-4469(00)01237-3
  • Perry CT, Murphy GN, Kench PS, Smithers SG, Edinger EN, Steneck RS, et al., 2013. Caribbean-wide decline in carbonate production threatens coral reef growth. Nature Communications 4, 1402. doi: 10.1038/ncomms2409.
    » https://doi.org/10.1038/ncomms2409
  • Ribeiro FV, Sá JA, Fistarol GO, Salomon PS, Pereira RC, Souza MLAM, et al., 2018. Long-term effects of competition and environmental drivers on the growth of the endangered coral Mussismilia braziliensis (Verril, 1867) PeerJ 6, e5419. doi: 10.7717/peerj.5419
    » https://doi.org/10.7717/peerj.5419
  • Rubio-Portillo E, Izquierdo-Muñoz A, Gago JF, Rosselló-Mora R, Antón J., Ramos-Esplá AA, 2016. Effects of the 2015 heat wave on benthic invertebrates in the Tabarca Marine Protected Area (southeast Spain). Marine Environmental Research 122, 135–142. doi: 10.1016/j.marenvres.2016.10.004
    » https://doi.org/10.1016/j.marenvres.2016.10.004
  • Rützler K, 1988. Mangrove sponge disease induced by cyanobacterial symbionts: failure of a primitive immune system? Diseases of Aquatic Organisms 5, 143–149.
  • Santos LA, da Silva BCA, Silva KCR, dos Santos RC, de Sousa EM, Muniz RA, Barbosa AB, 2021. Branqueamento de corais e outros cnidários bentônicos no costão rochoso da Praia do Forno (Arraial do Cabo, RJ) durante as anomalias térmicas das águas superficiais do oceano ocorridas nos meses de fevereiro e maio de 2019. Revista Vértices 23, 560–579. doi: 10.19180/1809-2667.
    » https://doi.org/10.19180/1809-2667
  • Schönberg CHL, Ortiz J-C, 2008. Is sponge bioerosion increasing? Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, Florida, 520–523.
  • Silva AG, 2018. Vivendo com o inimigo: competição entre os corais invasores Tubastraea spp. e a esponja Desmapsamma anchorata na Baía de Ilha Grande, RJ. PhD dissertation, Universidade do Estado do Rio de Janeiro, p 174.
  • Silva AG, Fortunato HFM, Lôbo-Hajdu G, Fleury BG, 2017. Response of native marine sponges to invasive Tubastraea corals: a case study. Marine Biology 164, 78–88. doi: 10.1007/s00227-017-3112-2
    » https://doi.org/10.1007/s00227-017-3112-2
  • Silva AG, Carlos-Júnior LA, Sato CYS, Lages BG, Neres-Lima V, Oliveira FMS, Maia LF, Cappa de Oliveira LF, Fleury BG, 2022. Living with an enemy: Invasive sun-coral (Tubastraea spp.) competing against sponges Desmapsamma anchorata in southeastern Brazil. Marine Environmental Research 174, 105559. doi: 10.1016/j.marenvres.2022.105559
    » https://doi.org/10.1016/j.marenvres.2022.105559
  • Skinner LF, 2018a. Sea surface temperature measured since 2012 for Ponta leste, Angra dos Reis, Rio de Janeiro, Brazil. doi: 10.13140/RG.2.2.19686.27205
    » https://doi.org/10.13140/RG.2.2.19686.27205
  • Skinner LF, 2018b. Sea surface temperature measured since 2012 for Dois Rios cove, Ilha Grande, Rio de Janeiro, Brazil. doi: 10.13140/RG.2.2.12975.38560
    » https://doi.org/10.13140/RG.2.2.12975.38560
  • Smith FGW, 1941. Sponge disease in British Honduras, and its transmission by water currents. Ecology 22, 415–421. doi: 10.2307/1930719
    » https://doi.org/10.2307/1930719
  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, et al. Robertson J, 2007. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience 57, 573–583. doi: 10.1641/B570707
    » https://doi.org/10.1641/B570707
  • Stevely JM, Sweat DE, Bert TM, Sim-Smith C, Kelly M, 2011. Sponge mortality at Marathon and Long Key, Florida: Patterns of species response and population recovery. Proceedings of the 63rd GCFI, San Juan, 384–400.
  • Tavares MR, Costa PAS, Ventura CRR, 2019. Population size structure, asexual reproduction, and somatic growth estimates of the non-indigenous brittle star Ophiothela mirabilis (Echinodermata: Ophiuroidea) on the southeastern coast of Brazil. Marine Biodiversity. doi: 10.1007/s12526-019-00938-y.
    » https://doi.org/10.1007/s12526-019-00938-y
  • Teixeira CD, Leitão RLL, Ribeiro FV, Moraes FC, Neves LM, Bastos AC et al., 2019. Sustained mass coral bleaching (2016–2017) in Brazilian turbid-zone reefs: taxonomic, cross-shelf and habitat-related trends. Coral Reefs 38, 801–813. doi: 10.1007/s00338-019-01789-6.
    » https://doi.org/10.1007/s00338-019-01789-6
  • Teixeira CD, Chiroque-Solano PM, Ribeiro FV, Carlos-Júnior LA, Neves LM, Salomon PS et al., 2021. Decadal (2006-2018) dynamics of Southwestern Atlantic’s largest turbid zone reefs. PLoS ONE 16, e0247111. doi: 10.1371/journal.pone.0247111.
    » https://doi.org/10.1371/journal.pone.0247111
  • The jamovi Project, 2021. jamovi. (Version 1.6) [Computer Software]. Retrieved from https://www.jamovi.org
    » https://www.jamovi.org
  • Vacelet J, Gallissian MF, 1978. Virus-like particles in cells of the sponge Verongia cavernicola (Demospongiae, Dictyoceratida) and accompanying tissue changes. Journal of Invertebrates Pathology 31, 246–254. doi: 10.1016/0022-2011(78)90014-9
    » https://doi.org/10.1016/0022-2011(78)90014-9
  • Valentin JL, 2001. The Cabo Frio Upwelling System, Brazil. In: Seeliger, U., Kjerfve, B. (eds) Coastal Marine Ecosystems of Latin America. Ecological Studies, vol 144. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-662-04482-7_8
    » https://doi.org/10.1007/978-3-662-04482-7_8
  • Vicente J, Silbiger NJ, Beckley BA, Raczkowski CW, Hill RT, 2016. Impact of high pCO2 and warmer temperatures on the process of silica biomineralization in the sponge Mycale grandis ICES Journal of Marine Science 73, 704–714. doi: 10.1093/icesjms/fsv235
    » https://doi.org/10.1093/icesjms/fsv235
  • Vicente VP, 1990. Response of sponges with autotrophic endosymbionts during the coral-bleaching episode in Puerto Rico. Coral Reefs 8, 199–202. doi: 10.1007/BF00265011
    » https://doi.org/10.1007/BF00265011
  • Vilanova E, Mayer-Pinto M, Curbelo-Fernandez MP, Silva SHF, 2004. The impact of a nuclear power plant discharge on the sponge community of a tropical bay (SE Brazil). Bollettino dei Musei e degli Istituti Biologici dell Universita Genova 68, 647–654.
  • Visser PM, Verspagen JMH, Sandrini G, Stal LJ, Matthijs HCP, 2016. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54, 145–159. doi:10.1016/j.hal.2015.12.006
    » https://doi.org/10.1016/j.hal.2015.12.006
  • Webster NS, 2007. Sponge disease: a global threat? Environmental Microbiology 9, 1363–1375. doi: 10.1111/j.1462-2920.2007.01303.x
    » https://doi.org/10.1111/j.1462-2920.2007.01303.x
  • Webster NS, Negri AP, Webb RI, Hill RT, 2002. A spongin-boring α-proteobacterium is the etiological agent of disease in the Great Barrier Reef sponge Rhopaloeides odorabile Marine Ecology Progress Series 232, 305–309. doi: 10.3354/meps232305
    » https://doi.org/10.3354/meps232305
  • Wisshak M, Schönberg CHL, Form A, Freiwald A, 2012. Ocean acidification accelerates reef bioerosion. PLOS ONE 7, e45124. doi:10.1371/journal.pone.0045124
    » https://doi.org/10.1371/journal.pone.0045124
  • Wulff JL, 2008. Life-History differences among coral reef sponges promote mutualism or exploitation of mutualism by influencing partner fidelity feedback. The American Naturalist 171, 597–609. doi: 10.1086/587067
    » https://doi.org/10.1086/587067
  • Yao CL, Somero GN, 2014. The impact of ocean warming on marine organisms. Chinese Science Bulletin 59, 468–479. doi: 10.1007/s11434-014-0113-0
    » https://doi.org/10.1007/s11434-014-0113-0
  • Zhou K, Du P, Jiang Z, Tang Y, Liao Y, Chen J, Shou L, Zeng J, 2021. Temperature-driven shifts in the reproductive strategies of Centropages abdominalis Sato in Xiangshan Bay, China. Estuarine, Coastal and Shelf Science 252, 107272. doi: 10.1016/j.ecss.2021.107272.
    » https://doi.org/10.1016/j.ecss.2021.107272

Edited by

Associate Editor
Tito Lotufo

Publication Dates

  • Publication in this collection
    03 Oct 2022
  • Date of issue
    2022

History

  • Received
    01 Nov 2021
  • Accepted
    02 Sept 2022
Instituto Virtual da Biodiversidade | BIOTA - FAPESP Departamento de Biologia Vegetal - Instituto de Biologia, UNICAMP CP 6109, 13083-970 - Campinas/SP, Tel.: (+55 19) 3521-6166, Fax: (+55 19) 3521-6168 - Campinas - SP - Brazil
E-mail: contato@biotaneotropica.org.br