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ABSTRACT: Banana is one of the most consumed fruits in Brazil 

and an important source of minerals, vitamins and carbohydrates 

for human diet. The characterization of banana superior genotypes 

allows identifying those with nutritional quality for cultivation and to 

integrate genetic improvement programs. However, identification 

and quantification of the provitamin carotenoids are hampered by 

the instruments and reagents cost for chemical analyzes, and it 

may become unworkable if the number of samples to be analyzed 

is high. Thus, the objective was to verify the potential of indirect 

phenotyping of the vitamin A content in banana through artificial 

neural networks (ANNs) using colorimetric data. Fifteen banana 

cultivars with four replications were evaluated, totaling 60 samples. 
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For each sample, colorimetric data were obtained and the vitamin A 

content was estimated in the ripe banana pulp. For the prediction of 

the vitamin A content by colorimetric data, multilayer perceptron 

ANNs were used. Ten network architectures were tested with a 

single hidden layer. The network selected by the best fit (least mean 

square error) had four neurons in the hidden layer, enabling high 

efficiency in prediction of vitamin A (r2 = 0.98). The colorimetric 

parameters a* and Hue angle were the most important in this study. 

High-scale indirect phenotyping of vitamin A by ANNs on banana 

pulp is possible and feasible.
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INTRODUCTION

The banana tree (Musa spp.) is one of the most 
cultivated fruit trees in tropical and subtropical countries. 
In Brazil, the production of bananas and plantains was 
6.89 million tons in 485,000 hectares of harvested area in 
2013 (FAO 2015). Due to its good organoleptic properties 
and low cost, bananas are consumed by people across the 
social spectrum, representing a good source of minerals, 
vitamins and carbohydrates, with a high potential as a 
functional and nutraceutical food (Amorim et al. 2011; 
Aquino et al. 2014). The carotenoid contents, such 
as lutein, β-carotene, and α-carotene, which play an 
important role in the operation of the human body, stand 
out among the functional and nutraceutical properties. 
Moreover, β-carotene and α-carotene are converted to 
vitamin A in the human body (Davey et al. 2009). 

Vitamin A deficiency is considered a serious nutritional 
disease and is the most common cause of preventable 
blindness in the world (Santos et al. 2010). One of the 
sustainable ways to mitigate the problem of vitamin A 
deficiency is to encourage the consumption of natural 
foods rich in provitamin carotenoids, such as fruits and 
vegetables (Ekesa et al. 2012). Thus, the prospection of 
banana access into collections is important to breeding 
programs, focusing on the development of cultivars with 
better nutraceutical properties (Amorim et al. 2011). 
However, the quantification of vitamin A content is 
expensive and it may become unfeasible if the number 
of samples to be analyzed is high. 

The indirect estimate of the carotenoid content and, 
consequently, the provitamin one is possible by using 
colorimetric data, which are easily measured in the pulp 
or peel of the fruit using the colorimeter. This analytical 
approach has been used in tomato (Carvalho et al. 2005; 
Fernandez-Ruiz et al. 2010), pumpkin (Seroczyńska 
et al. 2006; Itle and Kabelka 2009; Doka et al. 2013), 
and potato (Lu et al. 2001). The indirect estimate of 
the carotenoid content can reduce the time, labor and 
financial resources in the evaluation stages.

Because artificial neural networks (ANNs) are 
efficient to model complex problems (Barbosa et al. 2011; 
Nascimento et al. 2013; Azevedo et al. 2015; Brasileiro 
et al. 2015), they may also be effective in the indirect 
phenotyping of vitamin A content by using colorimetric 
data. The ANNs are computational models of the human 

brain that can recognize patterns and regularities of the 
data, becoming an alternative as universal approximator 
of complex functions (Gianola et al. 2011). Consequently, 
they may perform better than conventional statistical 
models, with the advantage of being non-parametric, 
do not require detailed information about the physical 
processes of the system to be modeled, and tolerate data 
loss (Azevedo et al. 2015).

Thus, the objective of the present research was to 
verify the phenotyping potential of the vitamin A content 
in banana, using ANNs and colorimetric data.

MATERIAL AND METHODS

Banana bunches of the cultivars Ouro (AA), Nanica 
(AAA), Nanicão (AAA), Caru-Verde (AAA), Caru-Roxa 
(AAA), Caipira (AAA), Prata (AAB), Prata-Anã (AAB), 
Maçã (AAB), Mysore (AAB), Pacovan (AAB), Marmelo 
(ABB), Prata-Graúda (AAAB) and Caju (unidentified 
genomic group), as well as Terrinha plantain (AAB), 
were harvested from an experimental orchard in the 
Universidade Federal de Viçosa, Viçosa, Minas Gerais.

The banana bunches were harvested when the first 
signs of yellow color appeared in the fruits of each 
cultivar. The bananas were removed from the second, 
third and fourth tiers hands, and the damaged, diseased 
and malformed ones were discarded. Subsequently, they 
were immersed in ethephon solution (1.2 g∙L–1) for 8 min 
to even the ripening. After drying in air for 15 min, they 
were dipped in Prochloraz fungicide solution (0.49 g∙L–1) 
for 5 min. Then, the fruits remained at room temperature 
until the complete ripening.

The completely randomized design was adopted, 
with 15 treatments (cultivars) and four replications 
(clusters) — six fruits per sample unit. The bananas 
were peeled, cut longitudinally, and the colorimetric 
reading was performed inside the fruit using the 
colorimeter Konica-Minolta, model CR 10. The values ​​
of L*, a*, b*, C* and Hue angle (°hue) were determined. 
L* (brightness) ranges from 0 (black) to 100 (white); 
a* varies from green (−60) to yellow (+60); b* ranges 
from blue (−60) to yellow (+60); C* is chroma/saturation 
or color intensity. The °hue value ranges from 0° to 
360°, being 0° (red), 90° (yellow), 180° (green) and 
270° (blue) (McGuire 1992).
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Carotenoids were extracted according to the method 
proposed by Rodríguez-Amaya (2001) with modifications. 
A 5-g sample of plant material was weighed; 60 mL of 
100% acetone (which was cooled) were added. Then, the 
material was processed in an Ultra-Turrax homogenizer 
(model T18 Basic) for 6 min. Subsequently, the extract 
was vacuum-filtered through Buchner funnel using filter 
paper; then it was transferred to a separatory funnel 
containing 20 mL of cooled petroleum ether and washed 
with distilled water to remove the acetone completely. 
Anhydrous sodium sulfate p.a. was added to remove the 
residual water contained in the extract.

The carotenoids were analyzed by high-performance 
liquid chromatography HPLC-DAD, following the 
chromatographic conditions adjusted by Pinheiro-
Sant’ana et al. (1998). The Shimadzu chromatograph 
was equipped with a high-pressure pump, LC-10AT VP 
model, with SIL-10AF automatic injector, and UV-visible 
diode array detector, SPD-M10A model, controlled by 
the Multi System software, Class VP 6.12. We employed 
a chromatographic column Phenomenex Gemini RP-18, 
250 × 4.6 mm, with 5 μm internal particle, equipped 
with Phenomenex ODS guard column (C18), 4 × 3 mm, 
and detection at 450 nm. The mobile phase consisted 
of methanol:ethyl acetate:acetonitrile (80:10:10, v/v/v), 
HPLC grade, 2.0 mL∙min–1 flow rate, and 13 min run time.

The peaks of interest were identified by comparing the 
retention times of the standard and samples and, especially, 
through the absorption spectrum. The quantification was 
performed using the standard curves of concentration 
versus area, and the results are expressed in μg per 100 g 

of each plant, on a wet basis. The vitamin A content 
was obtained according to the recommendations of the 
Institute of Medicine (2001). The carotenoids (β-carotene 
and α-carotene) were quantified, and the steps were 
performed, being protected from direct light to prevent 
degradation of the material.

Thus, the colorimetric parameters (L*, a*, b*, C* 
and °hue) and vitamin A content for 60 samples (four 
replicates of 15 cultivars) were obtained. These data were 
analyzed in the R software (R Development Core Team 
2012) by ANNs. For the best efficiency in the training of 
networks, both input (color data) and output (vitamin 
A content) data were normalized to the range between 
0 and 1 by the “normalize Data” function of the RSNNS 
package (Bergmeir and Benitez 2012).

The analysis by ANNs showed that 70% of the data 
(42 samples) were used to train the network and 30%, 
for validation (18 samples). The samples that formed 
the training and validation fractions were randomly 
selected. The Multi-Layer-Perceptron (MLP) networks 
were used for the analysis and developed using the “mlp” 
function of the RSNNS package with back propagation 
algorithm and learning rate of 0.1. The maximum number 
of training/epochs was 1,000, the activation function for 
the hidden layer was the logistics and the output layer 
was the linear. Ten network architectures were tested 
to determine a trained network with good fit, with 1, 2, 
3, …, 9 and 10 neurons in the hidden layer. Considering 
that, at the beginning of the training, the free parameters 
were randomly generated and that these initial values ​​
can influence the final result of the training (Soares 
et al. 2014), each ANN architecture was trained 1,000 
times. The network with the best fit was selected using 
the mean squared error (MSE) for the validation sample.

For the best-selected network, the diagram of the 
network topology was obtained using “plotnet” function 
(Neural Net Tools package). In addition, the relative 
importance of the input traits was obtained using the 
Garson method (1991) and the “garson” function (Neural 
Net Tools package). To determine the efficiency of 
network training, we performed the regression analysis 
of vitamin A levels predicted and observed for the training 
and validation samples. The multiple comparison test 
by bootstrapping (Ramos and Ferreira 2009) was used 
to compare the best network architectures, and the BCa 
bootstrap test, to obtain the 95% confidence intervals. 
The vitamin A level estimates, observed and predicted 
by the ANNs, were compared by the bootstrap paired 
test. In all analyses using the bootstrap technique, 10,000 
simulations were used.

RESULTS AND DISCUSSION

The vitamin A content of the studied samples varied 
greatly, from 1.330 to 141.968 µg per 100 g of pulp, with 
a coefficient of variation equal to 149.144% (Table 1). 
This high variability is essential, so that the trained 
networks are general enough (Azevedo et al. 2015). 
Among the colorimetric data, the parameter a* had 
the greatest variability, with the highest coefficient of 
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variation (103.527%). The red/green opponent colors are 
represented on the a* axis, where the positive values 
are red; the negative ones are green; and 0 value is 
neutral (Trevisan et al. 2008). On the other hand, the L* 
parameter displayed the lowest variability, with coefficient 
of variation of 6.191%. This parameter relates to light, 
ranging from 0 (perfect black) to 100 (perfect white).

For the ten tested network architectures, the smallest 
MSEs were observed for the lower numbers of neurons in 
the hidden layer (Figure 1a). Small MSE estimates indicate 
that the values, actual and predicted by the ANN, are 
close, or, in other words, indicate great efficiency of the 
networks. The multiple comparison test by bootstrapping 
(Ramos and Ferreira 2009) showed that, when using only 
one neuron in the hidden layer, the average network 
efficiency was better. A similar conclusion was evident 
when analyzing the coefficient of determination (r2) 
in Figure 1b in which smaller numbers of neurons in 
the hidden layer also yielded better results. The use of 
non-parametric tests such as the bootstrap for multiple 
comparisons (Ramos and Ferreira 2009) is feasible in 
studies similar to this, when, in general, the MSE and 
r2 do not follow a normal distribution.

Generally, the increased number of neurons per 
layer does not ensure the best network performance. 
Similar results were found by Soares et al. (2014) and 
Azevedo et al. (2015). An explanation for this is that the 
increased number of neurons in the network may lead 
to overfitting, which occurs when the network training 
process stores the data in the training sample and does 
not identify the associations between the data in the 

input and output layers (Silva et al. 2010). In this case, a 
good fit is observed for the sample training while a very 
poor one is found for the validation sample. Therefore, 

Parameters L* a* b* C* °hue Vitamin A

Maximum 82.470 12.600 43.250 42.450 95.620 141.968

Mean 71.029 3.512 33.443 33.630 84.295 21.457

Minimum 62.750 −2.080 21.200 21.300 70.300 1.330

CV (%) 6.191 103.527 13.028 13.117 6.995 149.144

Pearson correlation

L* 1.000 −0.456 −0.585 −0.550 0.492 −0.106

a* −0.456 1.000 0.677 0.711 −0.948 0.821

b* −0.585 0.677 1.000 0.971 −0.678 0.403

C* −0.550 0.711 0.971 1.000 −0.712 0.486

°hue 0.492 −0.948 −0.678 −0.712 1.000 −0.765

Vitamin A −0.106 0.821 0.403 0.486 −0.765 1.000

Table 1. Descriptive analysis and Pearson correlation between colorimetric parameters and vitamin A level in ripe banana pulp.

Figure 1. Mean square error (a) and coefficient of determination (b) 
for different numbers of neurons in the hidden layer. 

*Bars followed by the same letter do not differ significantly by the 
multiple comparisons test with bootstrap at a significance level of 5% 
(Ramos and Ferreira 2009) with 10,000 simulations. The deviations 
refer to the 95% confidence intervals obtained by bootstrap BCa with 
10,000 simulations.
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network efficiency should always be checked with a 
sample whose data were not used in the training process, 
which is the validation sample.

The evaluation of the relative importance of the 
explanatory variables by Garson method (1991) showed 
that the parameters a* and °hue were the most important 
(Figure 2), with relative contribution of 28.87 and 
20.08%, respectively. This is important, especially when 
it becomes advantageous to exclude traits to reduce 
the computational effort (Paliwal and Kumar 2011). A 
major contribution is expected for these traits due to the 
highest correlation estimates with vitamin A (Table 1), 
0.821 and −0.765 for a* and °hue, respectively.

Although there was on average a good fit with only 
one neuron in the hidden layer (Figure 1a,b), the best fit 
was observed when using four neurons in the hidden layer 
(Figure 3). This can be explained by the high number of 
trainings (1,000) for each network architecture. The use 
of a large number of trainings for each network architecture 
is suggested, since, at the beginning of the training, the 
synaptic weights are randomly generated (Soares et al. 
2014) and, therefore, at each training, different results 
are found for the same architecture.

For the best-fitted network, optimum fittings were 
found, with r2 = 95.11% for the training sample (Figure 4a) 
and 98.50% for the validation sample (Figure 4b). The 
high r2 value estimated for the validation sample indicates 

Vitamina A
content

Input
layer

Hidden layer

Output
layer

L*

a*

b*

C*

°hue

Figure 2. Relative contribution, obtained by the method of Garson 
(1991), of the colorimetric parameters in the input layer to predict 
the vitamin A level using artificial neural networks. The deviations 
refer to the 95% confidence intervals obtained by bootstrap BCa 
with 10,000 simulations.
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Figure 3. Best-fit network topology trained to predict vitamin A level 
from colorimetric data of ripe banana pulp.

that the trained network is efficient and has the power 
of generalization. The prediction efficiency found in 
this study is higher than that observed by Carvalho 
et al. (2005), r2 = 0.90% for lycopene prediction, using 
the colorimetric data of tomatoes. On the other hand, 
Seroczyńska et al. (2006) and Doka et al. (2013) found 
r2 of 0.92 and 0.96%, respectively, when predicting the 
β-carotene content using the colorimetric data of pumpkin. 
The good results of this work can be explained by the good 
fit of neural networks for non-linear systems (Gionola 
et al. 2011). Also, this technique allows considering many 
explanatory variables simultaneously, which can become 
impractical for multiple linear regression. Fernandez-
Ruiz et al. (2010) also found high r2 (0.99%) estimates 
to predict lycopene content in tomatoes by ANNs, using 
colorimetric data.

The actual and predicted vitamin A levels were 
compared by the non-parametric bootstrapping paired 
test for training and validation samples, with estimated 
p-values of 44 and 48%, respectively. This means that, 
at 5% significance level, there is not enough evidence to 
reject the null hypothesis. In this case, the null hypothesis 
considers that the mean difference of each observation 
between the actual and predicted data is zero. This 
reinforces the conclusion of the prediction efficiency 
found in this study. Thus, the content of vitamin A can 
be easily estimated by using only color data. This strategy 
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