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ABSTRACT: Regional climate models (e.g. Eta) nested to global climate 

models (e.g. HadGEM2-ES and MIROC5) have been used to assess 

potential impacts of climate change at regional scales. This study 

used the generalized extreme value distribution (GEV) to evaluate 

the ability of two nested models (Eta-HadGEM2-ES and Eta-MIROC5) 

to assess the probability of daily extremes of air temperature and 

precipitation in the location of Campinas, state of São Paulo, Brazil. 

Within a control run (1961-2005), correction factors based on the 

GEV parameters have been proposed to approach the distributions 

generated from the models to those built from the weather station of 

Campinas. Both models were also used to estimate the probability 

of daily extremes of air temperature (maximum and minimum) and 

precipitation for the 2041-2070 period. Two concentration paths 

of greenhouse gases (RCP 4.5 and 8.5) have been considered. 
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Although both models project changes to warmer conditions, 

the responses of Eta-Hadgem2-ES to both RCPs are significantly 

larger than that of Eta-Miroc5. While Eta-Hadgem2-ES suggests 

the location of Campinas will be free from agronomic frost events, 

Eta-Miroc5 indicates that air temperature values equal to or lower 

than 5 and 2 °C are expected to present a cumulative probability 

of ~0.20 and ~0.05, respectively (RCP 8.5). Moreover, while the Eta-

Miroc5 projected a reduction in the extreme-precipitation amounts, 

the Eta-Hadgem2-ES projected implausible large daily precipitation 

amounts. The Eta-Miroc5 performed better than the Eta-Hadgem2-ES 

for assessing the probability of air temperature and precipitation 

in Campinas. This latter statement holds particularly true for daily-

extreme precipitation data.
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INTRODUCTION

There are increasing evidences that climate change has 
affected the spatial and temporal distribution of extreme 
meteorological events at global and regional scales (Richards 
1993; Karl et al. 1999; Manton et al. 2001; Kharin and Zwiers 
2005; Wang et al. 2004; Vincent et al. 2005; Haylock et al. 
2006; Alexander et al. 2006; Nadarajah and Choi 2007; 
Pujol et al. 2007; Felici et al. 2007; El Adlouni et al. 2007; 
Furió and Meneu 2011; Sugahara et al. 2009). This change 
is of particular concern because such events constitute 80% 
of the annually US$100 billion damages in global economy, 
with thousands of deaths each year (IFRC/RCS 2011). 
Naturally, these major social disruptions trigged by extreme 
weather conditions justify scientific efforts addressing their 
geophysical dynamics as well as their changing statistical 
properties (New et al. 2007).

Global climate models (GCM; also called atmosphere-
ocean general circulation models) may be regarded as 
invaluable tools for assessing Earth’s potential response to 
altered atmospheric conditions (Kharin et al. 2007; 2013; 
Cooley and Sain 2010; Foley 2010; Chou et al. 2014a). 
Although the GCM have gained in complexity in recent 
years (e.g. IPCC 2007; 2013), they typically have a spatial 
resolution ranging from 100 to 300 km. This feature limits 
their ability to assess impacts of climate change at a local 
scale (Cooley and Sain 2010; Chou et al. 2014a). On such 
background, regional climate models (RCM) have been 
nested to GCM in order to provide suitable spatial resolution 
for local impact studies (Cooley and Sain 2010; Chou et al. 
2014a). Accordingly, these nested Regional Global models, 
with grid size of tens of kilometers, provide a unique 
opportunity to understand potential impacts of climate 
change at fine scales (Cooley and Sain 2010).

Different from weather forecast models, the above-
mentioned models are not intended to accurately represent 
observational weather data. Instead, their runs over a time 
span – usually decades – are only intended to simulate 
plausible climate projections for a particular set of boundary 
conditions that have been provided by a specific GCM 
(Cooley and Sain 2010). From a mathematical standpoint, 
this latter statement implies that datasets generated from 
RCM runs are expected to present feasible statistical 
distributions of the meteorological variables. In control 
runs – where these nested models are used to represent 
the current/observed climate (e.g. 1961-1990; Cooley and 

Sain 2010) – the parameters shaping the distribution of 
generated/simulated data should approach those of their 
corresponding observational data (Kharin et al. 2007; 
Kharin et al. 2013).

The generalized extreme value distribution (GEV) has 
been used to model the distribution of extreme weather 
events, including air temperature and precipitation (Frei et al. 
2006; Kharin et al. 2007; 2013; Cooley and Sain 2010). 
Therefore, this distribution can be used to quantify how 
well parameters shaping the distribution of simulated data 
represent the regional climatology of a particular area. 
More specifically, this 3-parameter function can be used to 
assess model’s bias affecting the location, the scale and the 
tail behavior of distributions built from simulated data in 
regard to those built from observational data. In addition, 
because it is impossible to collect observations for future 
climate conditions (Foley et al. 2010), using the GEV 
in control runs is a preliminary step to verify if a particular 
climate model can be used to assess potential effects 
of climate change on future extreme weather events (Kharin 
et al. 2007; 2013).

Regarding regional climate models, the Eta model – 
developed by the Brazilian National Institute for Space 
Research (INPE) – has been used in the elaboration of a 
National Communication to the United Nations Framework 
Convention of Climate Change (Chou et al. 2014a). Although 
the Eta model, nested to GCM such as HadGEM2-ES or 
MIROC5, has already been used to address climate change 
over South America under distinct downscaling scenarios 
(Chou et al. 2014a; 2014b), there is no study assessing 
the performance of such nested models on the basis of the 
Extreme Value Theory. This theory, which is based on 
distributions such as the GEV, was used in this study to 
evaluate the following hypothesis: both Eta-HadGEM2-ES 
and Eta-MIROC5 models can be used in studies addressing 
local impacts of climate change.

In order to provide statistical information supporting 
this hypothesis, the goal of this study was to evaluate the 
ability of these two nested models (Eta-HadGEM2-ES and 
Eta-MIROC5) to assess the probability of daily extremes 
of air temperature and precipitation in the location of 
Campinas, state of São Paulo, Brazil. Considering regional 
climate models are likely to exhibit bias in respect to their 
corresponding weather stations (Ines and Hansen 2006; 
Bárdossy and Pegram 2011), this study developed correction 
factors (CF) in order to approach the parameters shaping 
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the distributions of daily-extremes generated from the 
nested models to those obtained from the weather station 
of Campinas (State of São Paulo, Brazil during 1961 to 
2005). Finally, as a case study, these two climate models 
were used to estimate the probability of daily-extremes of air 
temperature and precipitation for the period of 2041-2070. 
Two concentration paths of greenhouse gases corresponding 
to 4.5 W∙m–2 (RCP 4.5) and 8.5 W∙m–2 (RCP 8.5; Chou 
et al. 2014b) have been considered.

DATA AND METHODS

The observational data (Campinas, São Paulo, Brazil; 
22°54’ S, 47°05’ W and 669 m) were obtained from the 
Agronomic Institute of Campinas (IAC/APTA/SAA). This 
weather station has been selected because it presents no 
missing data and its consistency was evaluated in previous 
studies (Pereira et al. 2018; Blain et al. 2018). There were 
considered daily extremes of precipitation (Pre), minimum 
(Tmin) and maximum (Tmax) air temperature data. 
Campinas is situated in the State of São Paulo, a tropical/
subtropical South American Region in which the rainy 
season occurs in the austral summer while in the winter 
predominates the high-pressure system of the South Atlantic 
(Vera et al. 2006). Further information on the climate of this 
region can be found in several studies (Raia and Cavalcanti 
2008; Vera et al. 2006; Gan et al. 2004; Carvalho et al. 2004; 
Zhou and Lau 1998).

Climate models

The Hadley Centre Global Environmental Model 
(HadGEM2-ES) (Collins et al. 2011; Martin et al. 2011) 
is a grid-point model presenting a resolution equivalent 
to ~1.275° in latitude and ~1.875° in longitude (Chou 
et al. 2014b). The HadGEM2-ES can be regarded as an 
earth system model capable of representing the carbon 
cycle. The Model for Interdisciplinary Research on Climate 
(MIROC5) presents a horizontal resolution of ~1.408° in 
latitude and ~1.406° in longitude. It is coupled to COCO 
and SPRINTARS models (Chou et al. 2014b) and uses the 
MATSIRO land surface scheme (Takata et al. 2003) with six 
soil layers. The Eta model, adopted for downscaling, uses 
the Betts-Miller scheme (Betts and Miller 1986; Janjić 1994) 
to parameterize shallow and deep convections. While the 

NOAH scheme is used to describe land-surface processes, 
cloud microphysics follow Zhao scheme (Zhao et al. 1997). 
Further information on these three models can be found in 
Chou et al. (2014a; 2014b) and references therein.

Statistical analyses
Trend and stationary test

As previously described, datasets generated from 
any climate model within a control run (1961-2005) are 
expected to present feasible statistical distributions of the 
meteorological variables. Therefore, parameters shaping 
these distributions should be as close as possible to those 
parameters obtained from their corresponding observational 
data (Frei et al. 2006, Kharin et al. 2007; 2013; Cooley 
and Sain 2010; Um et al. 2017). Considering the presence 
of trends and other non-stationaries components may 
affect the probabilistic structure of any time series, both 
Mann-Kendall trend test (Kendall and Stuart 1967) and 
Kwiatkowski-Phillips-Schmidt-Shin stationary test (KPSS) 
have been applied to the observational datasets as well 
as to those datasets generated from the climate models 
(Um et al. 2017).

The Mann-Kendall test is widely used and its algorithm, 
which was originally designated for uncorrelated data, has 
been described in several studies (e.g. Yue et al. 2002). 
With regard to the datasets used in this study, the time 
span between two consecutive records is, in general, one 
year (block maxima approach). Therefore, we assumed the 
presence of no significant serial correlation. The Kwiatkowski-
Phillips-Schmidt-Shin test (Kwiatkowski et al. 1992) was 
used to evaluate the hypothesis (H0) that the datasets are 
stationaries around a [possible] deterministic trend. The 
algorithm of this latter test, including its critical values, 
can be found in Kwiatkowski et al. (1992).

Generalized Extreme Value distribution and 
goodness-of-fit tests

The GEV is a parametric distribution in which the 
cumulative probability of a particular event x is given by 
its three parameters: location (μ), scale (σ) and shape (ξ). 
These parameters can be estimated from distinct methods, 
including maximum likelihood, generalized maximum 
likelihood and L-moments. As pointed out by Wilks (2011), 
the results of both maximum likelihood and L-moments 
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are frequently similar for large and moderate sample sizes. 
For small samples, the L-moments usually lead to better 
estimates than the maximum likelihood does. Since the GEV 
distribution was applied to a 30-year period (1941-2070), 
which is usually regarded as the lowest length of record 
required for climatic characterizations, the L-moments 
method (Hosking 1990; 1992) has been adopted in this study.

The cumulative density and the quantile functions of 
the GEV distribution are given by Eqs. 1 and 2, respectively. 
The 95% confidence interval for each parameter estimates 
has been calculated by the bootstrap method described in 
Khaliq et al. (2006).

fact that the three GEV parameters define the position of 
the distribution with regards to its origin (μ parameter), 
its spread (σ parameter) and its tail behavior (ξ parameter; 
Coles 2001). In other words, the correction factors (CF) 
calculated from Eq. 3 approach the distribution of the data 
generated by the climate models to those of the observed 
data.

Both Lilliefors (Lilliefors 1967) and Anderson-Darling 
(Anderson and Darling 1954) goodness-of-fit tests were 
used to verify if the GEV distribution can be used to 
assess the probability of daily-extremes obtained from the 
three data sources of this study. These two tests have been 
widely used in climatological studies and their calculation 
algorithm can be found in (Wilks 2011; Shin et al. 2011). 
These two goodness-of-fit tests have been performed at 5% 
significance level. The outcomes of both Mann-Kendall and 
Kwiatkowski-Phillips-Schmidt-Shin have been evaluated 
at 5 and 10% significance level.

As previously described, estimates provided by climate 
models are likely to exhibit biases in respect to their 
corresponding observational data. These biases may be 
corrected by using the Universal Downscaling Method (e.g. 
Ines and Hansen 2006; Bárdossy and Pegram 2011). Within 
a control run, this latter method relates the distribution 
of data generated by a climate model with that of the 
corresponding observational data (Themeßl et al. 2011; 
Bárdossy and Pegram 2011). Therefore, the idea behind this 
statistical correction method is to approach distributions of 
datasets generated by a climate model to their corresponding 
distributions obtained from observational datasets. Since 
this study uses the GEV to assess models’ performance, 
such correction can be performed by a simple numerical 
comparison between the GEV parameters generated from 
the nested models (Eta-HadGEM2-ES or Eta-MIROC5) with 
those GEV parameters obtained from the weather station 
of Campinas (Eq. 3). This latter statement is based on the 

where: θweather station is a the GEV parameter estimated from 
the weather station data and θclimate model is the corresponding 
GEV parameter estimated from Eta-HadGEM2-ES or 
Eta-MIROC5.

The use of Eq. 3 (correction factor) in the climate scenario 
(2041-2070; RCP 4.5 and RCP 8.5) is described in Fig. 1.

1. Estimate the paramaters (θinitial_climate.model) of the GEV 
distribution to the variable (X), climate scenario 

and climate model

2. Apply the correction factor to their corresponding GEV
 parameter (θcorrected_climate.model)

3. Estimate the new/corrected  data through the GEV
 quantil function for a giving cumulative  
probability (P) by using θcorrected_climate.model

CorrectedData = QGEV(P|θcorrected_climate.model)

Figure 1. Applying the correction factors proposed in this study to 
Eta-HadGEM2-ES or Eta-MIROC5 extreme-daily data.

RESULTS AND DISCUSSION
Control Run (1961-2005)
Trend and stationary test

Both precipitation and minimum air temperature 
data obtained from the weather station of Campinas 
presented significant increasing trends respectively at 5 and 
10% significance level (Mann-Kendall test; Table 1). This result 
is consistent with previous studies describing signs of climate 
change in the location of Campinas (Blain 2011; Pereira 
et al. 2018). For both climate models, such a trend could only 
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be detected in the precipitation series, with data generated 
by the Eta-MIROC5 reaching the 5% significance level. In 
other words, none of the models was able to reproduce the 
trend observed in the Tmin observational data. Finally, 
no trend has been detected in the three Tmax datasets 
(observational and simulated). This lack of trend in these 
latter series is in line with previous studies (e.g. Blain 2013) 
investigating trends in the Tmax series of Campinas. The 
Kwiatkowski-Phillips-Schmidt-Shin test indicated that all 
series are stationaries around a significant/non-significant 
deterministic trend (Um et al. 2017). Therefore, this latter 
test supports the assumption that apart from trends there 
is no other non-random component (e.g. serial correlation) 
affecting the GEV estimates. This lack of significant auto-
correlation holds true for the three data sources used 
in this study (weather station, Eta-HadGEM2-ES and 
Eta-MIROC5), supporting the use of a parametric 
distribution such as the GEV.

the data derived from the two climate models as well as 
those obtained from the weather station of Campinas were 
drawn from populations approaching the GEV distribution. 
This statement is in line with (i) previous studies using the 
GEV to assess the probability of Tmin, Tmax and Pre data 
derived from climate models (Kharin et al. 2007; 2013) 
as well as with (ii) other studies that applied this latter 
function to assess the probability of such extreme data in 
the location of Campinas (Blain 2013). Finally, the results 
of Table 2 further support the use of the GEV distribution 
(Eqs. 1 and 2) for evaluating the ability of both nested 
models to assess the probability of air temperature and 
precipitation daily extremes in the location of Campinas.

Table 1. Mann Kendall (trend) test and Kwiatkowski–Phillips–
Schmidt–Shin stationary tests applied to daily extremes of minimum 
(Tmin), maximum (Tmax) air temperature and precipitation (Pre) 
data. The data datasets have been obtained from the weather 
station of Campinas (state of São Paulo, Brazil) and two nested 
models: Eta-HadGEM2-ES or Eta-MIROC5.

Mann Kendall (trend) test: p-value

Weather station Eta-Hadgem Eta-Miroc

Tmin 0.03** 0.24 0.27

Tmax 0.52 0.84 0.14

Pre 0.07* 0.08* 0.00*

Kwiatkowski–Phillips–Schmidt–Shin

Tmin > 0.10 > 0.10 > 0.10

Tmax > 0.10 > 0.10 > 0.10

Pre > 0.10 > 0.10 > 0.10

* Significant at 10%; ** significant at 5%.

Generalized Extreme Value distribution and 
goodness-of-fit tests (control run)

The hypothesis that daily-extremes obtained from the 
weather of station of Campinas have been drawn from a 
GEV distribution is supported by both goodness-of-fit 
tests (Table 2). These tests also indicated that this latter 
parametric distribution could be used to assess the probability 
of daily-extreme data generated by both climate models 
(Eta-HadGEM2-ES and Eta-MIROC5). In other words, 
the outcomes of the two goodness-of-fit tests indicate that 

Table 2. Goodness-of-fit tests (Lilliefors and Anderson-Darling; AD 
performed at 5% significance level) applied to daily extremes of 
minimum (Tmin), maximum (Tmax) air temperature and precipitation 
(Pre) data. The data datasets have been obtained from the weather 
station of Campinas (state of São Paulo, Brazil) and two nested 
models: Eta-HadGEM2-ES or Eta-MIROC5.

Source Lilliefors Lillieforscrit AD ADcrit 

Weather station

0.072 0.098 0.320 0.659

0.045 0.097 0.253 0.592

0.086 0.104 0.505 0.537

Eta-HadGEM2-ES

0.067 0.098 0.386 0.703

0.051 0.098 0.203 0.590

0.078 0.099 0.320 0.608

Eta-MIROC5

0.050 0.098 0.150 0.624

0.072 0.098 0.352 0.619

0.049 0.097 0.113 0.601

Considering the sign correction performed when the 
GEV was applied to extreme minima (–1*Tmin; Coles 
2001; Wilks 2011), the Eta-HadGEM2-ES model tend to 
systematically underestimate the Tmin leading to a location 
parameter, which defines the position of the distribution 
with respect to the origin (Delgado et al. 2010), significantly 
lower than that obtained from the weather station 
(~9.5 °C; Fig. 2a). For this model, the other two GEV 
parameters representing the spread (scale parameter) and the 
tail behavior of the distribution (shape parameter) presented 
no significant difference in respect to those derived from 
the weather station. In other words, the dispersion/spread 
of the Tmin data generated from the Eta-HadGEM2-ES 
is statistically equal to that of the observational data. In 
addition, both distributions converge to the Weibull or 
Fisher-Tippett Type III form (ξ > 0; Delgado et al. 2010; 
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Wilks 2011). Therefore, the correction factor (Eq. 3) to 
be used for Eta-Hadgem2-ES Tmin data derived from 
this latter model for the location of Campinas may only 
address the numeric difference between location parameters 
(Fig. 2a; Eta-HadGEM2-ES vs. weather station).

	 With regard to the Eta-MIROC5, the results 
of Fig. 2b also indicate that this latter model tends to 
underestimate the Tmin data in the location of Campinas. 
Although the location parameter estimated from this latter 
model is higher than that of the Eta-HadGEM2-ES, it is 
still significantly lower (~5. °C) than that obtained from 
the weather station. Thus, the Eta-MIROC5 Tmin values 
tend to be, on average, 5. °C lower than those observed 
at the weather station of Campinas. In addition, different 
from the Eta-HadGEM2-ES, the scale parameter derived 
from the Eta-MIROC5 is also significantly lower than that 
obtained from the weather station data (Fig. 2b; the sign 
correction does not affect the scale and shape parameters 
of the GEV distribution; Coles 2001; Blain 2011). In other 
words, the dispersion/spread of the Tmin data generated 
from the Eta-MIROC5 is also significantly lower than that 

of the ground data (different scale parameters). Therefore, 
the correction factor (Eq. 3) to be used for Tmin data 
derived from the Eta-MIROC5 model should address 
the numeric difference between the location and scale 
parameters of these two datasets (Fig. 2b; Eta-MIROC5 
and weather station).

Considering the maximum air temperature, both nested 
models presented location parameters significantly lower 
than those obtained from the weather station (~1.3 °C for 
the Eta-HadGEM2-ES and ~5.1 °C for the Eta-MIROC5; 
Figs. 2c, 2d). For both models, the other two parameters 
of the GEV distribution (scale and shape) presented no 
significant difference in respect to those obtained from 
the weather station. The Tmax data of both models also 
converge to the Weibull or Fisher-Tippett Type III form 
(equivalents shape parameters; Delgado et al. 2010; 
Wilks 2011). Therefore, the correction factor (Eq. 3) to 
be used for Tmax data may only address the numeric 
difference between location parameters of the models 
(Eta-HadGEM2-ES or Eta-MIROC5) and the weather 
station (Figs. 2c, 2d; climate models vs weather station).

Figure 2. Parameters of the generalized extreme value distribution estimated from daily extremes of minimum air temperature (a, b and 
c), maximum air temperature (d, e and f) and precipitation (g, h and i). Campinas, state of São Paulo, Brazil (1961-2005).
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With regard to the precipitation series, the three GEV 
parameters derived from the data generated by the Eta-
MIROC5 are statistically equal to those obtained from 
the weather station (Fig. 2e), suggesting the use of no 
correction factor. As observed for the air temperature 
series (Tmax and Tmin), the precipitation data generated 
by the Eta-HadGEM2-ES presented location parameter 
significantly lower than that obtained from the weather 
station (~16.7 mm; Fig. 2e). The other two parameters 
of the GEV distribution (scale and shape) presented no 
significant difference in respect to those derived from the 
weather station. Therefore, the correction factor to be used 
for Pre data derived from this latter model in the location 
of Campinas may only address the numeric difference 
between the location parameters of these two datasets.

Case study: climate scenarios RCP 4.5 and RCP 8.5 
(1941-2070)

Before evaluating changes in the probabilistic structure 
of Tmin, Tmax and Pre series, it is worth mentioning that 
there were no significant numerical differences between the 

shape parameters estimated in the control run (1961-2005; 
including weather station data – Fig. 3) and those estimated 
within each RCP scenario (2041-2070). This result is in 
line with the statement that the GEV-shape parameter is 
unlikely to change under climate change (Wilson and Toumi 
2005).

With regards to minimum air temperature, both Eta-
HadGEM2-ES and Eta-MIROC5 project changes to warmer 
conditions in respect to 1961-2005 data. However, it is 
interesting to note that these two models show no remarkable 
difference between both climate scenarios (4.5 and 8.5). In 
fact, considering cumulative probabilities ranging from ~0.15 
and ~0.85, the Eta-MIROC5 simulates for the RCP 8.5 Tmin 
values numeric lower than those simulated for the RCP 4.5 
scenario (Figs. 3a, 3b). The Eta-HadGEM2-ES presented 
the greatest change to warmer conditions. According to this 
latter model, Tmin values lower than 12 °C would become 
unlikely to be observed (cumulative probability lower than 
0.02). From the agronomic standpoint, air temperature 
values lower than 5 °C may cause damages to susceptible 
crops (e.g. Banana). For crops such as coffee and citrus, this 
critical low limit is 2 °C (Sentelhas et al. 1995). Therefore, 
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Figure 3. Cumulative probability of daily extremes of minimum and maximum air temperature and precipitation, considering two 
concentration paths of greenhouse gases: RCP 4.5 (a, b and c) and RCP 8.5 (d, e, f) and two nested climate models (Eta-Miroc5 and 
Eta-Hadgem2-ES) Campinas, state of São Paulo, Brazil.
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the climate scenarios projected by the Eta-Hadgem2-ES 
diff ers signifi cantly from that projected by the Eta-Miroc5 
(2041-2070). With regard to the Eta-Hadgem2-ES, the results 
depicted in Fig. 3b suggests that the location of Campinas will 
be virtually free from agronomic frost events (2041-2070).
Nevertheless, the results of the Eta-Miroc5 (2041-2070) 
indicate that Tmin values equal to or lower than 5 °C and
2 °C will present a cumulative probability of ~0.20 and ~0.05, 
respectively (8.5 scenario). In other words, the Eta-Miroc5 
projections do not support the assumption that the location 
of Campinas will be free from agronomic frost events during 
the analyzed period (2041-2070).

Th e changes projected by both models for the maximum 
air temperature series were similar to those projected for 
the Tmin series (Figs. 3c, 3d). In other words, both Eta-
Hadgem2-ES and Eta-Miroc5 projected changes to warmer 
conditions with the Eta-Hadgem2-ES showing the greatest 
shift  in respect to the observed period (1961-2005). However, 
diff erently from the Tmin series, there was no signifi cant 
diff erence between the two climate scenarios (RCP 4.5 and 
RCP 8.5) considered in this study. Th is latter statement is 
particularly true for the Eta-Hadgem2-ES. As observed 
for both Tmin and Tmax series, the Eta-Hadgem2-ES 
model projected the greatest change in the probabilistic 
structure of extreme precipitation data (Figs. 3e, 3f). In fact, 
this model seems to overestimate the eff ect of both RCP 
scenarios on the extreme precipitation data. For instance, 
daily amounts as higher as 350 mm presented cumulative 
probability ~0.50 (median of the series). Even without the 
use of the correction factor, the Pre value associated with 
such probability level is ~330 mm. Th e Eta-Hadgem2-ES 
also projected no signifi cant diff erence for the two climate 
scenarios (RCP 4.5 and RCP 8.5). On the other hand, the 
Eta-Miroc5 generated a feasible distribution describing
a decrease in the extreme precipitation amounts. The 
greatest decreased is observed for the RCP 8.5 scenario 
(Fig. 3f). In summary, the response of Eta-Hadgem2-ES to 
both RCPs scenarios is larger than those of the Eta-Miroc5. 
Th is latter statement holds true for all variables analyzed 
in this study (Tmin, Tmax and Pre) and, as discussed in 
next section, it is in line with those observed by Chou
et al. (2014b) for seasonal mean values of air temperature 
and precipitation series.

FINAL REMARKS

As previously described, Chou et al. (2014b) have already 
used both Eta-Hadgem2-ES and Eta-Miroc5 to assess climate 
change over South America (2011-2100). Based on seasonal 
mean values, this latter study projected changes to warmer 
conditions with the Eta-Hadgem2-ES simulating the largest 
warming (RCP 8.5; with respect to the 1961-1990 period). 
Th e results found in this local scale study suggest the changes 
in daily-extremes of air temperature (Tmax and Tmin) in the 
location of Campinas, São Paulo will follow the same pattern 
observed by Chou et al. (2014b) at seasonal scale. Th e changes 
to more extreme events observed in the air temperature series 
of this study are also in line with those observed by Kharin
et al. (2007; 2013) for tropical/subtropical regions of the globe. 
With regard to the precipitation series, Chou et al. (2014b) 
observed a reduction in the Southeast of Brazil, with the regions 
between Southeast and South exhibiting the most mixed signs 
of change. Th is pattern (or uncertainty) was also observed 
in this study. While the Eta-Miroc5 projected a reduction in
the extreme precipitation amounts, the Eta-Hadgem2-ES 
projected a large increase in the occurrence of such events. 
At this point, it has to be mentioned that this latter nested 
model projected unfeasible statistical distributions for the Pre 
series with virtually implausible daily-precipitation amounts.

In summary, the above-mentioned results along with 
those of the control run (1961-2005) indicate the Eta-Miroc5 
performs better than the Eta-Hadgem2-ES for assessing the 
probability of air temperature and precipitation in the location 
of Campinas, state of São Paulo, Brazil. Th is latter statement 
holds particularly true for daily-extreme precipitation data.
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