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ABSTRACT

In this paper we deal with a multi-period mean-variance port-
folio selection problem with the market parameters subjectto
Markov random regime switching. We analytically derive an
optimal control policy for this mean-variance formulationin
a closed form. Such a policy is obtained from a set of in-
terconnected Riccati difference equations. Additionally, an
explicit expression for the efficient frontier corresponding to
this control law is identified and numerical examples are pre-
sented.

KEYWORDS: optimal control, Markov chain, stochastic sys-
tems, portfolio optimization, multi-period mean-variance.

RESUMO

Investiga-se um modelo multi-dimensional de seleção de car-
teiras em média-variância, no qual os parâmetros de mer-
cado estão sujeitos a saltos Markovianos. Deriva-se ana-
liticamente uma estratégia de controle ótima em forma fe-
chada para esta formulação de média-variância. Esta estraté-
gia é obtida através de um conjunto de equações a diferenças
de Riccati. Adicionalmente, uma expressão explícita para
a fronteira eficiente correspondente a este controle ótimo é
identificada e exemplos numéricos são apresentados.
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1 INTRODUCTION

Since the seminal work of (Markowitz, 1952), the research
on the mean-variance approach to portfolio selection has in-
creased in order to provide financial models with more real-
istic assumptions. One of the main advantages of the mean-
variance criterion is that it has a simple and clear interpreta-
tion in terms of individual portfolio choice and utility opti-
mization, although some of its drawbacks are nowadays well
known. The original Markowitz’s formulation aims at select-
ing a single portfolio which yields the greatest expected final
wealth subject to a maximal final risk level (terminal wealth
variance), or to find the single portfolio which produces the
smallest terminal wealth variance subject to minimal final ex-
pected wealth. Recently (see (Li and Ng, 2000)) these two
formulations were extended into a multi-period framework,
in which the objective is to select a set of intermediate portfo-
lios instead of just one as originally proposed (see the mathe-
matical formulation of these problems in (4) and (5)). When
applying dynamic programming to analytically solve these
multi-period mean-variance problems a technical difficulty
arises due to the existence of a nonlinear term of the form
U (E (·)) (or specificallyE (V (T ))2), whereU is nonlin-
ear utility function, in the objective function. This difficulty
was overcome in (Li and Ng, 2000) by the introduction of an
auxiliary problem.
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In (Li and Ng, 2000) the market uncertainties are repro-
duced by stochastic models in which the key parameters,
expected return and volatility, are deterministic. As stated
by (Zhang, 2000), such models are good only for a short
period since they would not respond appropriately to ran-
dom changes in these parameters due to some sudden mar-
ket discontinuities (for example, the one caused by a terrorist
strike). As a result, there has been an increasing interest in
the study of financial models in which the key parameters are
modulated by a Markov chain, see for instance (Bauerle and
Rieder, 2004), (Yin and Zhou, 2004), (Zhang, 2000), (Zhou
and Yin, 2003) and (Çakmak and Özekici, 2006). Indeed,
such models can better reflect the market environment as the
overall assets usually move according to a major trend given
by the state of the underlying economy or by the general
mood of the investors.

In (Çakmak and Özekici, 2006) and in (Yin and Zhou, 2004),
discrete-time models for the mean-variance portfolio selec-
tion problem with Markov switching were considered. It is
important to stress the main differences between our work
and these works. The basic idea in (Yin and Zhou, 2004)
is to use the optimal strategy of the limit continuous time
problem obtained in (Zhou and Yin, 2003) to derive a nearly
optimal portfolio for the discrete time model presented in
equation (6) of (Yin and Zhou, 2004). In (Çakmak and
Özekici, 2006), the authors adopt a more direct approach to
tackle the problem, avoiding any kind of approximating as-
sumption as required in (Yin and Zhou, 2004), and obtain-
ing optimal results, instead of nearly optimal as in (Yin and
Zhou, 2004). However, all assets in the financial market con-
sidered in (Çakmak and Özekici, 2006), including the risk
free one, depend on a Markov chain. In our paper we follow
a direct approach as in (Çakmak and Özekici, 2006), extend-
ing their work in two other directions. First we consider a
financial model more general than that in (Çakmak and Öze-
kici, 2006), in which all assets are risky and dependent of
a Markov chain. After that we consider a financial model
in which there is a riskless asset independent of any source
of uncertainty, even the Markov chain, and the risky ones,
which depend on a Markov chain. In this case more spe-
cific and interesting results can be analytically derived for
the mean-variance portfolio selection problem with regime
switching.

This paper is organized as follows. In Section 2 we formulate
the model and the problems to be investigated. In Section 3,
an optimal control policy for an auxiliary problem as well
as the expected value and variance of the terminal wealth are
analytically derived. Such a policy can be obtained by the so-
lution of a set of interconnected Riccati difference equations.
The solution of the mean-variance problems and an explicit
expression for the efficient frontier are derived in Section4.
The case in which there is a riskless asset is considered in

Section 5. Numerical examples are presented in Section 6.
The paper is concluded in Section 7 with some final remarks.

2 PROBLEM FORMULATION

Throughout the paper we shall denote byR
n the n-

dimensional Euclidean real space and byR
n×m the Eu-

clidean space of alln × m real matrices. For a sequence
of numbersa1, . . . , am, we shall denote bydiag(ai) the di-
agonal matrix inRm×m formed by the elementai in the ith

diagonal,i = 1, . . . , m. The superscript′ will denote the
transpose of a vector or matrix. We will consider a finan-
cial market withn + 1 risky securities on a complete filtered
probability space(Ω,F , {Ft} ,P). The assets’ price will be
described by the random vectorS̄ (t) = (S0 (t) , . . . ,Sn (t))

′

taking values inR
n+1 with t = 0, . . . , T . Set R̄ (t) =

(R0(t), . . . ,Rn(t))′, with Ri(t) = Si(t+1)
Si(t)

. We assume that

the random vector̄R (t) satisfies the following equation:

R̄ (t) = [ē + µ̄ (t, θ (t))] + σ̄ (t, θ (t))W (t) , (1)

where ē = (1, e)′, with e ∈ R
n a vector with 1′s

in all its components. Here{θ (t) ; t = 0, . . . , T} is a
finite-state discrete-time Markov chain with state space
M = {1, . . . , m}, and {W (t); t = 0, . . . , T} is
a sequence of(n + 1)-dimensional independent random
vectors with zero mean and covarianceI (identity ma-
trix). We assume that{W (t) , θ (t)} are mutually in-
dependent. The setM represents the possible opera-
tions mode of the market. P is a probability mea-
sure such thatP (θ (t + 1) = j |θ (0) , . . . , θ (t) = i) =
P (θ (t + 1) = j |θ (t) = i) = pij (t), pij (t) ≥ 0 and∑

j∈M pij (t) = 1, for t = 0, . . . , T − 1 and i, j ∈ M.
We set fort = 0, . . . , T , P (t) = [pij (t)]

m×m
, πi (t) =

P (θ (t) = i), π (t) = (π1 (t) , . . . , πm (t))
′. As in (Costa

et al., 2005), forz = (z1, . . . , zm)
′
∈ R

m, we define the
operatorE (z, t) = (E1 (z, t) , . . . , Em (z, t)) asEi (z, t) =
m∑

j=1

pij (t) zj, for i ∈ M. For notational simplicity, we shall

omit from now on the variablet in pij (t) andEi (z, t). The
filtration Ft is such that the random vectors {S̄ (k) ; k =
0, . . . , t} and Markov chain{θ (k) ; k = 0, . . . , t} are Ft-
measurable.

When the market operation mode isθ(t) = i ∈ M,
µ̄ (t, i) ∈ R

n+1 represents the vector with the ex-
pected returns of the assets, whilēσ (t, i) σ̄ (t, i)

′
∈

R
(n+1)×(n+1) is the covariance matrix of the returns. It

will be convenient to decomposēµ (t, i) and σ̄ (t, i) as

µ̄ (t, i) =

[
µ0 (t, i)
µ (t, i)

]
and σ̄ (t, i) =

[
σ0 (t, i)
σ (t, i)

]
, with

µ (t, i) = (µ1 (t, i) , . . . , µn (t, i))
′

∈ R
n, σ0 (t, i) =

(σ00 (t, i) , . . . , σ0n (t, i)) ∈ R
1×n+1, and σ (t, i) =

[σℓ,j (t, i)] ∈ R
n×n+1. We shall assume in this paper that
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E
(
R̄ (t) R̄ (t)

′
|θ(t) = i

)
> 0, for eacht = 0, . . . , T − 1

andi ∈ M.

The set of admissible investment strategiesU = {u =
(u (0) , . . . , u (T − 1))} is such that for eachi = 0, . . . , n
and t = 0, . . . , T − 1, u (t) = (u1 (t) , . . . , un (t))′, is
a Ft-measurable random vector taking values inR

n. We
have thatu (t) represents the amount of the wealth allocated
among then securities. Associated to each admissible in-
vestment strategyu we have the portfolio’s value process
{V u (t) ; t = 0, . . . , T − 1}, which represents the investor’s
wealth at the end of timet. For notational simplicity, we shall
suppress the superscriptu whenever no confusion may arise.
Assuming that the initial wealthV (0) = V0 > 0 and that the
portfolio is self-financed, the wealth process is represented
by (see, for instance, (Li and Ng, 2000)):

V (t + 1) = V (t) [1 + µ0 (t, θ (t)) + σ0 (t, θ (t))W (t)]

+ u (t)
′
[µ (t, θ (t)) − eµ0 (t, θ (t))

+ (σ (t, θ (t)) − eσ0 (t, θ (t)))W (t)] . (2)

Note that the amount of wealth allocated to the asseti = 0
is determined byV (t) − e′u(t). Defining Āθ(t) (t) = 1 +

µ0(t, θ(t)), Ãθ(t)(t) = σ0(t, θ(t)), B̄θ(t)(t) = µ(t, θ(t)) −

eµ0(t, θ(t)), andB̃θ(t)(t) = σ(t, θ(t))−eσ0(t, θ(t)), we can
rewrite (2) as:

V (t + 1) = Aθ(t) (t)V (t) + Bθ(t) (t)
′
u (t) , (3)

where

Aθ(t) (t) = Āθ(t) (t) + Ãθ(t) (t)W (t)

and
Bθ(t) (t) = B̄θ(t) (t) + B̃θ(t) (t)W (t) .

The multi-period mean-variance problem aims at selecting
u ∈ U which has the greatest expected terminal wealth given
an affordable terminal wealth variance, or which produces
the lesser variance of the final wealth given a desirable ex-
pected terminal wealth. Formally these problems, named re-
spectivelyP1

(
σ2
)

andP2 (ǫ), can be posed as:

P1
(
σ2
)

: min
u∈U

− E (V (T ))

subject to :V ar (V (T )) ≤ σ2 (4)

P2 (ǫ) : min
u∈U

V ar (V (T ))

subject to :E (V (T )) ≥ ǫ (5)

Alternatively, an unconstrained form would be:

P3 (ν) : min
u∈U

νV ar (V (T )) − E (V (T )) , (6)

where ν ∈ [0,∞) represents the investor’s risk aversion
coefficient, giving his trade-off preference between the ex-
pected terminal wealth and the associated risk level. Due

to the difficulty in solving directly the three problems above
we shall consider, as in (Li and Ng, 2000), an auxiliary for-
mulation. Using the fact thatνV ar (V (T )) − E (V (T )) =

νE
(
V (T )

2
)
−
[
νE2 (V (T )) + E (V (T ))

]
, we can asso-

ciate toP3 (ν) the following auxiliary problem:

A (λ, ν) : min
u∈U

E
{
νV (T )

2
− λV (T )

}
. (7)

3 OPTIMAL CONTROL POLICY FOR THE
AUXILIARY PROBLEM

In this section we obtain an explicit expression for the value
function and optimal control policy for the auxiliary problem
A (λ, ν) by applying dynamic programming. We also ob-
tain closed expressions for the expected value and variance
of the terminal wealth. As in the classical stochastic linear
quadratic problem, this optimal control law depends on the
solution of a set of recursive coupled Riccati difference equa-
tions (see (8) below). Before going to the main result, let us
define some intermediate problems. The value function for
the auxiliary problem at timek ∈ {0, . . . , T − 1} is defined
by:

J (V (k) , θ (k) , k) = min
uk∈Uk

E
{

νV (T )
2
− λV (T )

∣∣∣Fk

}
,

whereUk = {uk = (u (k) , . . . , u (T − 1))′ ; u (t) is Ft

measurable for eacht = k, . . . , T − 1}. We shall need the
following definitions. For eachi ∈ M andt = 0, . . . , T , set:

χi (t) = E (Bi (t)) = B̄i (t) ,

φi (t) = E
(
Bi (t)Bi (t)

′)
= B̄i (t) B̄i (t)

′
+ B̃i (t) B̃i (t)

′
,

δi (t) = E
(
Ai (t)2

)
= Āi (t)2 +

∥∥∥Ãi (t)
∥∥∥

2

,

ϕi (t)′ = E
(
Ai (t)Bi (t)′

)
= Āi (t) B̄i (t)′ + Ãi (t) B̃i (t)′ ,

βi (t) = χi (t)
′
φi (t)

−1
χi (t) ,

Qi (t) = δi (t) − ϕi (t)
′
φi (t)

−1
ϕi (t) ,

Q (t) = diag(Qi(t)),

Ri (t) = Āi (t) − χi (t)
′
φi (t)

−1
ϕi (t) ,

R (t) = diag(Ri(t)).

Notice that from the hypothesis that
E
(
R̄ (t) R̄ (t)

′
|θ(t) = i

)
> 0, the inverse ofφi (t) is

well defined andQi (t) > 0. We compute backwards
the m dimensional vectorsK (t) = (K1 (t) , . . . ,
Km (t))′, Z (t) = (Z1 (t) , . . . , Zm (t))′ and
D (t) = (D1 (t) , . . . , Dm (t))

′, with Ki (t), Zi (t) and
Di (t) as follows: Fort = T − 1, . . . , 0 andi ∈ M :




Ki (t) = Qi (t) Ei [K (t + 1)] , Ki (T ) = ν,
Zi (t) = Ri (t) Ei [Z (t + 1)] , Zi (T ) = −λ,

Di (t) = Ei[Z(t+1)]2

4Ei[K(t+1)]βi (t) + Ei [D (t + 1)] , Di (T ) = 0.

(8)
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From (8) we have by backward iteration that

K (t) = (Q (t)P (t) · . . . · Q (T − 1)P (T − 1)) eν

= νK(t),

and

Z (t) = − (R (t)P (t) · . . . · R (T − 1)P (T − 1)) eλ

= −λZ(t),

whereK (T ) = νe, andZ (T ) = −λe, and fort = 0, . . . , T ,
K(t) ∈ R

m andZ(t) ∈ R
m are defined as follows:

K(t) =

(
T−1∏

k=t

Q (t)P (t)

)
e, Z(t) =

(
T−1∏

k=t

R (t)P (t)

)
e.

(9)
Equations (8) and (9) are related to the solution of problem
(7) as stated in the next theorem.

We have the following theorem.

Theorem 1 The optimal control law for problem (7) is given
by

u (t) = −φθ(t) (t)
−1

ϕθ(t) (t)V (t)

−
Eθ(t) [Z (t + 1)]

2Eθ(t) [K (t + 1)]
φθ(t) (t)

−1
χθ(t) (t) .(10)

Furthermore, the value function for the intermediate problem
is

J (V (t) , θ (t) , t) = Kθ(t) (t)V (t)
2
+ Zθ(t) (t)V (t)

+Dθ(t) (t) . (11)

Proof: Let us apply induction ont. Fort = T we have that

J (V (T ) , θ (T ) , T ) = νV (T )
2
− λV (T )

= Kθ(T ) (T )V (T )
2
+ Zθ(T ) (T )V (T ) + Dθ(T ) (T ) ,

in agreement with Theorem 1. Suppose the result holds for
t = k + 1. We show next that the solution also holds for
t = k. Forθ(k) = i ∈ M andV (k) = v we have from the
Bellman’s principle of optimality that

J (v, i, k) = min
u(k)

E {J (V (k + 1) , θ (k + 1) , k + 1)| Fk}

= min
u(k)

E
{
Kθ(k+1) (k + 1)V (k + 1)

2

+ Zθ(k+1) (k + 1)V (k + 1)

+Dθ(k+1) (k + 1)
∣∣Fk

}

= min
u(k)

{Ei [K (k + 1)]
[
δ (k, i) v2

+2ϕ (k, i)
′
u (k) v + u (k)

′
φ (k, i)u (k)

]

+ Ei [Z (k + 1)]
[
Ā (k, i) v + χ (k, i)

′
u (k)

]

+Ei [D (k + 1)]} . (12)

Taking the derivative of (12) overu (k) and making the result
equal to zero yields

2Ei [K (k + 1)] [ϕ (k, i) v + φ (k, i)u (k)]

+Ei [Z (k + 1)]χ (k, i) = 0 (13)

and from (13) we get (10). Substituting (10) into (12) yields
the value function expressed in (11), providing the desired
result. 2

Next we analytically derive expressions for the expected
value and variance of the terminal wealth under the optimal
control law (10). These expressions will be written in terms
of some key parametersa, b, c andd. First we make the fol-
lowing definitions, related to the calculation of the expected
value and variance of the portfolio, and used in the proof of
Theorem 2. For eachj ∈ M andt = 0, . . . , T , define

hj (t) =
1

2

m∑

i=1

pijπi (t)
Ei [Z(t + 1)]

Ei [K(t + 1)]
βi (t) ,

h̃ (t) = (h1 (t) , . . . , hm (t))
′
, (14)

rj (t) =
1

4

m∑

i=1

pijπi (t)

(
Ei [Z(t + 1)]

Ei [K(t + 1)]

)2

βi (t) ,

r̃ (t) = (r1 (t) , . . . , rm (t))′ , (15)

a = V (0)π (0)′ Z(0), b =
T−1∑

k=0

h̃ (k)′ Z(k + 1),

(16)

c = V (0)2 π (0)′ K(0), d =
T−1∑

k=0

r̃ (k)′ K(k + 1).

(17)

Notice that from (14) and (15),2r̃ (k)′ K(k + 1) =

h̃ (k)
′
Z(k + 1) and thus from (16) and (17),2d = b. The

constanta represents the expected amount the investor ob-
tains by investing in the reference assetj = 0 and similarly
b multiplied by the ratioλ

ν
yields the expected amount the

investor gets by investing in the assetsj 6= 0. The case in
which b = 0 represents the situation in which it is not worth
investing in these assets, as seen in the next theorem.

Theorem 2 Under the optimal control law (10), the ex-
pected value and variance of the terminal wealth are:

E (V (T )) = a +
λ

ν
b, (18)

V ar (V (T )) = c − a2 −

(
λ

ν

)
·
b

2

(
4a −

(
λ

ν

)
(1 − 2b)

)
.

(19)

with a, b andc as in (16) and (17), respectively.
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Proof: First we proceed to find the expression for the ex-
pected value of the final wealth. Using the control law (10)
into (3), we get

V (t + 1) =
(
Aθ(t) (t) − Bθ(t) (t)

′
φθ(t) (t)

−1
ϕθ(t) (t)

)

· V (t) −
Eθ(t) [Z (t + 1)]

2Eθ(t) [K (t + 1)]
Bθ(t) (t)

′
φθ(t) (t)

−1
χθ(t) (t) .

(20)

Let qj (t) = E
(
V (t) 1{θ(t)=j}

)
. From (Costa et al., 2005)

and (20) it follows that

qj (t + 1) =
m∑

i=1

pijRi (t) qi (t)

−
1

2

m∑

i=1

pijπi (t)
Ei [Z (t + 1)]

Ei [K (t + 1)]
βi (t) . (21)

Definingq̃ (t) = (q1 (t) , . . . , qm (t))
′ and replacing (14) into

(21) leads to

q̃ (t + 1)
′
= q̃ (t)

′
R (t)P (t) +

λ

ν
h̃ (t)

′
,

and thus

q̃ (T )
′
= q̃ (0)

′
T−1∏

k=0

R (k)P (k)

+
λ

ν

T−1∑

k=0

h̃ (k)
′

T−1∏

l=k+1

R (l)P (l) .

Noting that E (V (T )) =
∑m

j=1 E
[
V (T ) 1{θ(T )=j}

]
=

q̃ (T )
′
e, we have from (9) that

E (V (T )) = q̃ (0)′ Z(0) +
λ

ν

T−1∑

k=0

h̃ (k)′ Z(k + 1). (22)

Substitutinga andb from (16) into (22), we get (18). Now
we proceed to derive the expression for the variance of the
final wealth as in (19). Taking square on both sides of (20)
yields

V (t + 1)
2

=
(
Aθ(t) (t)

2
− 2Aθ(t) (t) Bθ(t) (t)

′
φθ(t) (t)

−1

· ϕθ(t) (t) + ϕθ(t) (t)
′
φθ(t) (t)

−1

· Bθ(t) (t)Bθ(t) (t)
′
φθ(t) (t)

−1
ϕθ(t) (t)

)
V (t)

2

−
[(

Aθ(t) (t) − Bθ(t) (t)
′
φθ(t) (t)

−1
ϕθ(t) (t)

)

·
Eθ(t) [Z (t + 1)]

Eθ(t) [K (t + 1)]
Bθ(t) (t)

′
φθ(t) (t)

−1
χθ(t) (t)

]

· V (t) +
1

4

(
Eθ(t) [Z (t + 1)]

Eθ(t) [K (t + 1)]

)2

χθ(t) (t)
′

· φθ(t) (t)
−1

Bθ(t) (t)Bθ(t) (t)
′
φθ(t) (t)

−1

· χθ(t) (t) . (23)

Let gj (t) = E
(
V (t)

2
1{θ(t)=j}

)
. From (Costa et al., 2005)

and (23) it follows that

gj (t + 1) =

m∑

i=1

pijQi (t) gi (t)

+
1

4

m∑

i=1

pijπi (t)

(
Ei [Z (t + 1)]

Ei [K (t + 1)]

)2

βi (t) .

(24)

Defining g̃ (t) = (g1 (t) , . . . , gm (t))
′ and from (15) we can

rewrite (24) as

g̃ (t + 1)′ = g̃ (t)′ Q (t)P (t) +

(
λ

ν

)2

r̃ (t)′

and thus

g̃ (T )
′
= g̃ (0)

′
T−1∏

k=0

Q (k)P (k)

+

(
λ

ν

)2 T−1∑

k=0

r̃ (k)
′

T−1∏

l=k+1

Q (l)P (l) .

Recalling thatE
(
V (T )

2
)

= g̃ (T )
′
e, we have from (9) that

E
(
V (T )2

)
= g̃ (0)′ K(0) +

(
λ

ν

)2 T−1∑

k=0

r̃ (k)′ K(k + 1).

(25)
Replacingc andd from (17) into (25) and recalling thatd =
b
2 , we obtain the expected square value of the final wealth as

E
(
V (T )

2
)

= c +
(

λ
ν

)2 b
2 .

Hence, from (18), we get that

V ar (V (T )) = E
(
V (T )

2
)
− E (V (T ))

2

= c − a2 −

(
λ

ν

)
b

2

(
4a −

(
λ

ν

)
(1 − 2b)

)
,

which is the desired equation (19) for the variance of the final
wealth. 2

4 SOLUTION OF THE PROBLEMS

We solve in this section the three mean-variance problems
posed in Section 2 and explicitly derive an expression for the
efficient frontier. LetΠ

(
P1
(
σ2
))

, Π(P2 (ǫ)), Π(P3 (ν))
andΠ(A (λ, ν)) denote, respectively, the set of optimal so-
lutions for problemsP1

(
σ2
)
, P2 (ǫ), P3 (ν) andA (λ, ν).

We recall the following results, proved in (Li and Ng, 2000).

Proposition 1 If u ∈ Π(P3 (ν)) thenu ∈ Π(A (λ, ν)) with
λ = 1 + 2νE (V u (T )).
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Proposition 2 Suppose thatν ≥ 0 and u ∈ Π(P3 (ν)).
a) If V ar (V u (T )) = σ2 then u ∈ Π

(
P1
(
σ2
))

. b) If
E (V u (T )) = ǫ thenu ∈ Π(P2 (ǫ)).

Next we present the solution of problemsP3 (ν), P1
(
σ2
)

andP2 (ǫ).

Theorem 3 An optimal strategyu for problemsP3 (ν),
P1
(
σ2
)

andP2 (ǫ) is given by (10) withKi (t) andZi (t)

as in (8) andλ = 1+2νa
1−2b

. For problemsP1
(
σ2
)

andP2 (ǫ),
ν is given by

ν =





√
b

2a2−2(1−2b)(c−σ2) for problemP1
(
σ2
)

b
ǫ(1−2b)−a

for problemP2 (ǫ)
.

The expected value and variance of the terminal wealth are,
respectively, given by

E (V (T )) =
aν + b

ν (1 − 2b)
, (26)

V ar (V (T )) = c −
a2

(1 − 2b)
+

b

2ν2 (1 − 2b)
. (27)

Finally the efficient frontier of the multi-period mean-
variance problem with regime switching is given by:

V ar (V (T )) =

(
c −

a2

(1 − 2b)

)

+
(1 − 2b)

2b

(
E (V (T )) −

a

(1 − 2b)

)2

.

(28)

Proof: From Proposition 1 ifu ∈ Π(A (λ, ν)) is such that
λ = 1 + 2νE (V u (T )) thenu ∈ Π(P3 (ν)). Combining
(18) and Proposition 1, we have

λ = 1 + 2νE (V u (T ))

= 1 + 2ν

(
a +

λ

ν
b

)
=⇒ λ =

1 + 2νa

1 − 2b
. (29)

Substituting (29) into (18) leads to (26). Replacing (29) into
(19), we have (27). For problemP1

(
σ2
)

we have from
Proposition 2 and (27) that

σ2 = V ar (V u (T )) = c −
a2

(1 − 2b)
+

b

2ν2 (1 − 2b)
,

and thusν =
√

b
2a2−2(1−2b)(c−σ2) . For problemP2 (ǫ) we

have from Proposition 2 and (26) that

ǫ = E (V u (T )) =
aν + b

ν (1 − 2b)
,

and thusν = b
ǫ(1−2b)−a

. Finally by combining (26) and (27)
and eliminating the parameterν, we have (28), completing
the proof. 2

Notice that the efficient frontier equation has an hyperbolic

shape with center
(
0, a

(1−2b)

)
. The minimum variance of the

terminal wealth is given byV ar (V (T ))min = c − a2

(1−2b)
and the expected terminal wealth associated to this portfolio
is E (V (T ))min = a

(1−2b) .

Remark 1 Comparing Theorems 1 and 2, in which the fi-
nancial market consists only of risky assets, with equations
(20) and (34) to (38) in (Çakmak and Özekici, 2006), we can
see that the hypothesis of the existence of a riskless asset
depending on the Markov chain, as in (Çakmak and Öze-
kici, 2006), produces no simplification on the final expres-
sions for the control law and for the expected value and vari-
ance of the final wealth.

5 THE SPECIAL CASE WITH ONE RISK-
LESS ASSET

Let us investigate now the special case in which one of the
assets is riskless, that is, it has no volatility and it is unaf-
fected by the Markov chain. We assume the asseti = 0 as
the riskless one. The price of the risk-free asset evolves as
in (1), with σ0 (t, i) = 0 andµ0 (t, i) = rf (t) for all t and
i ∈ M . The existence of a riskless asset allows us to simplify
some equations in our model. Indeed, for eachi ∈ M and
t = 0, . . . , T , it follows that

Āi (t) = Ā (t) = 1 + rf (t) ,

δi (t) = E
(
Ai (t)

2
)

= Ā (t)
2
,

ϕi (t)
′
= E

(
Ai (t) Bi (t)

′)

= Ā (t)E
(
Bi (t)′

)

= Ā (t)χi (t)′ ,

Ri (t) = Ā (t) (1 − βi (t))

and

Qi (t) = Ā (t)Ri (t) = Ā (t)
2
(1 − βi (t)) .

Set

ρ(t) =

T−1∏

k=t

Ā(k),

β̃ (t) = diag(βi (t)),

and

Z̃(t) =

[
T−1∏

k=t

(I − β̃(k))P (k)

]
e.

We have that
K(t) = ρ(t)Z(t),

h̃(t)′ =
1

2ρ(t + 1)
π(t)′β̃(t)P (t),
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Z(t) = ρ(t)Z̃(t),

and
a = ρ(0)V (0)π (0)

′
Z̃(0),

c = (ρ(0)V (0))
2
π (0)

′
Z̃(0),

so thata
2

c
= π (0)

′
Z̃(0). We have the following result.

Theorem 4 An optimal strategyu for problemsP3 (ν),
P1
(
σ2
)

andP2 (ǫ) is given by

u (t) = −φθ(t) (t)
−1

χθ(t) (t)

(
Ā (t)V (t) −

λ

2νρ(t + 1)

)

(30)
with λ and ν as in Theorem 3. Moreover, for this opti-
mal control law, we have thatE (V (T )) satisfies (26) and
V ar (V (T )) = b

2ν2(1−2b) . The efficient frontier equation is
given by

V ar (V (T )) =
(1 − 2b)

2b

(
E (V (T )) −

a

(1 − 2b)

)2

.

(31)

Proof: Suppose thatc = a2/ (1 − 2b). Then the result is a
straightforward consequence of Theorem 3 observing that in
(10),

Ei [Z(t + 1)]

Ei [K(t + 1)]
= −

λ

νρ(t + 1)
.

Remains to show thatc = a2/ (1 − 2b). In order to show
that we show by induction onℓ = 0, . . . , T that

π(0)′Z̃(0)+

ℓ−1∑

t=0

π(t)′β̃(t)P (t)Z̃(t+1) = π(ℓ)′Z̃(ℓ). (32)

Clearly (32) holds forℓ = 0. Suppose it holds forℓ. Then
recalling thatZ̃(ℓ) = [(I − β̃(ℓ))P (ℓ)]Z̃(ℓ + 1), we have
from (32) that

π(0)′Z̃(0) +
ℓ∑

t=0

π(t)′β̃(t)P (t)Z̃(t + 1)

= π(ℓ)′Z̃(ℓ) + π(ℓ)′β̃(ℓ)P (ℓ)Z̃(ℓ + 1)

= π(ℓ)′
(
P (ℓ) − β̃(ℓ)P (ℓ) + β̃(ℓ)P (ℓ)

)
Z̃(ℓ + 1)

= π(ℓ + 1)′Z̃(ℓ + 1)

sinceπ(ℓ)′P (ℓ) = π(ℓ + 1)′, showing (32). Noting that
Z̃(T ) = e so thatπ(T )′Z̃(T ) = 1, it follows from (32) that

2b =

T−1∑

t=0

π(t)′β̃(t)P (t)Z̃(t + 1)

= 1 − π(0)′Z̃(0)

= 1 −
a2

c
,

completing the proof. 2

As a consequence of the existence of a risk-free asset, the
minimum variance of the final wealth is zero with corre-
sponding expected value of the terminal wealth given by
E (V (T ))min = a

(1−2b) .

Remark 2 It should be noticed that the results of Theorems
3 and 4 coincide with those in (Li and Ng, 2000) for the case
in which there are no switching parameters. Moreover, it
is worth pointing out the difference between the expressions
for the control strategy and for the expected value and vari-
ance of the final wealth we find here considering the case
in which there exists a riskless asset free of any source of
uncertainty, and those expressions derived in (Çakmak and
Özekici, 2006), in which the risk free security depends on
the Markov chain.

6 NUMERICAL EXAMPLES

In this section we compare the model proposed in this paper
with the one presented in (Li and Ng, 2000). The first exam-
ple is the case in which all assets are risky while the second
one includes a risk-free asset.

Example 1 Consider the case in which an investor with one
unit wealth and an investment horizonT = 4 has to allocate
his possession among four risky assets in order to maximize
his expected final wealthE (V (4)), while keeping the vari-
ance of the terminal wealth not exceeding2, i.e.,σ2 (4) ≤ 2.
To simplify, we assume the multi-period process as station-
ary. To determine the market trends we choose the S&P
500 Index (SPX) and, for the risky assets, we picked the
four stocks which have more weight in this index: General
Eletric (GE), Exxon Mobil (XOM), Citigroup (C) and Mi-
crosoft (MSFT). The daily closing prices of these stocks,
starting from 2000 until the end of 2004, are used to esti-
mate the mean and variance of them. In this example, there
are two major trends: up- or down-trend, i.e.,M = {1, 2},
respectively. To identify which mode is leading the market
we used a moving average. Whenever the monthly closing
price of the index is above its three period moving aver-
age, we define that month as an up-trend and whereas the
monthly closing price of the index is bellow its three pe-
riod moving average, we define the period as a down-trend.
To estimate the mean returnµ(t, θ (t)) and covariance ma-
trix σ2 (t, θ (t)) of the assets we follow an approach simi-
lar to that adopted in (Zhang, 2000). From the daily closes
of the stocks from 2000 until 2004, we obtain the vector of
yearly mean returns (252 trading days) and yearly covari-
ance matrix for each market mode and fort = 0, 1, 2, 3, re-
spectively, asµ (t, 1) = (25.4%, 24.4%, 70.8%, 19.8%)′,
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Figure 1: Efficient frontier

µ (t, 2) = (−26.1%, −5.4%, −31.0%, −38.7%)
′, and

σ2 (t, 1) =




8.9 1.7 5.6 3.9
1.7 5.2 2.2 1.3
5.6 2.2 9.0 4.0
3.9 1.3 4.0 12.7


 /100,

σ2 (t, 2) =




14.1 3.9 9.5 8.0
3.9 7.4 3.9 3.7
9.5 3.9 15.7 8.2
8.0 3.7 8.2 19.6


 /100.

As the number of up-trend days was almost 50% of the to-
tal days, we choosepij = 0.5, i, j ∈ M, as the transition
probabilities. From (28), the mean-variance efficient frontier
equation is given as follows:V ar (V (4)) = 0.029 + 0.108 ·

(E (V (4)) − 0.207)
2. For the maximum selected risk level(

σ2 (4) = 2
)
, the corresponding expected final wealth in the

efficient frontier isE (V (4)) = 4.47. We implemented the
model proposed in (Li and Ng, 2000) to compare with the
present one. To estimate the mean return and covariance ma-
trix of the assets we use the whole period of the above sample
(2000 - 2004) without separating the trend periods, obtaining
for t = 0, 1, 2, 3, µ (t) = (−4.2%, 8.1%, 7.6%, −14.2%)′

and

σ2 (t) =




11.6% 2.9% 7.6% 6.1%
2.9% 6.3% 3.1% 2.5%
7.6% 3.1% 12.5% 6.2%
6.1% 2.5% 6.2% 16.4%


 .

For this case, the mean-variance efficient frontier equation is
given byV ar (V (4)) = 0.15 + 0.39 · (E (V (4)) − 0.94)

2.
The expected terminal wealth corresponding to the selected
risk level

(
σ2 (4) = 2

)
is E (V (4)) = 3.12. In Fig. 1 we

can see the efficient frontier for both cases. The continuous
line represent the efficient frontier for the case with regime

switching while the dotted line is the efficient frontier follow-
ing the model proposed in (Li and Ng, 2000). The expected
terminal wealth corresponding to the selected risk level is
pointed out in Fig. 1 by an asterisk and by a cross, respec-
tively for the case with and without Markov switching pa-
rameters. Therefore, in this example, for the same accepted
final risk level

(
σ2 (4) = 2

)
, the first case delivered an ex-

pected final wealth above the case without jumps. This out-
come illustrates the advantage of the present model to better
capture the market movements.

Example 2 Now we examine the situation with the exis-
tence of a riskless asset. In this example we use the same
assets presented above plus a risk-free asset. The riskless
asset is represented by the two years Fed Fund rate (GT2).
Although this interest rate also changes following the mar-
ket movements, we considered it constant and equal to its
average in the period:rf (t) = 3.3%, for t = 0, 1, 2, 3.
The objective is the same as above and we use the same
assets and conditions as presented in the former example,
just adding the riskless asset. We get the following mean-
variance efficient frontier equation:V ar (V (4)) = 0.009 ·

(E (V (4)) − 1.14)2. Now, considering the model presented
in (Li and Ng, 2000), with the same data as in the last ex-
ample and adding the riskless asseti = 0 we get the fol-
lowing efficient frontier equation:V ar (V (4)) = 0.30 ·

(E (V (4)) − 1.14)2. The expected terminal wealth in each
situation isE (V (4)) = 16.41 andE (V (4)) = 3.72, re-
spectively. These two points are plotted in Fig. 2 by an as-
terisk and a cross, respectively for the case with and without
regime switching. In Fig. 2, we plotted the two efficient fron-
tier equations. As in the former example, the outcome of the
case with the key parameters modulated by a Markov chain
(solid line) beat by far the case without this feature (dotted
line).

7 CONCLUSIONS

In this paper we extended the work of (Çakmak and Öze-
kici, 2006) by studying a discrete-time multi-period mean-
variance portfolio selection problem subject to Markovian
jumps in the parameters. An optimal investment strategy
for this mean-variance problem was analytically derived in
a closed form. We showed that this optimal policy depends
upon a set of interconnected Riccati difference equations pre-
sented in (8). As a result, an explicit expression for the
efficient frontier was identified. Our results coincide with
those in (Li and Ng, 2000) for the case in which there are
no switching parameters. The advantage of this model is to
better respond to drastic movements of the market as a result
of stress situations or discontinuity changes due to external
factors.

Finally it is worth mentioning that extensions of the for-
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Figure 2: Efficient frontier with a riskless asset

mulation presented here could be obtained by considering a
generalized multi-period mean variance portfolio optimiza-
tion problem with Markov switching parameters, as studied
in (Costa and Araujo, 2008). The generalized multi-period
mean-variance problem can be seen as an stochastic con-
trol problem in which the objective function is formed by a
weighted sum of a linear combination of the expected value
and square of the expected value of the wealth, and the ex-
pected value of the square of the wealth. A great variety of
mean-variance models with intermediate restrictions and/or
intermediate costs in the objective function can be derived
from this generalized formulation. The usefulness of adopt-
ing this kind of criterion is that in several situations investor
managers have to report their portfolio’s return in a periodic
basis to their beneficiaries, clients or to governmental au-
thorities, so that intermediate performances are as important
as the final one. Moreover intermediate restrictions could
also be included in this formulation (see also (Costa and
Nabholz, 2007)). Therefore more traditional mean-variance
problems, which regards the performance only at the final
value, would not be the most appropriate for these situations.
On the other hand the price one pays by adopting this more
general approach is that a solution for the problem usually
requires a numerical procedure based on a Lagrangian dual
minimization problem (see (Zhu et al., 2004), (Costa and
Araujo, 2008)).
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