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ABSTRACT PALAVRAS-CHAVE : controle 6timo, cadeia de Markov, sis-

temas estocasticos, otimizacdo de portfélio, média-naida
In this paper we deal with a multi-period mean-variance-porem multi-periodo.

folio selection problem with the market parameters sulifect
Markov random regime switching. We analytically derive arh_
optimal control policy for this mean-variance formulation

a closed form. Such a policy is obtained from a set of in-S
terconnected Riccati difference equations. Additionadly
explicit expression for the efficient frontier correspamglto
this control law is identified and numerical examples are pr
sented.

INTRODUCTION

ince the seminal work of (Markowitz, 1952), the research
on the mean-variance approach to portfolio selection has in
creased in order to provide financial models with more real-
fstic assumptions. One of the main advantages of the mean-
variance criterion is that it has a simple and clear intagpre
KEYWORDS: optimal control, Markov chain, stochastic sys-tin in terms of individual portfolio choice and utility dpt
tems, portfolio optimization, multi-period mean-varianc mization, altho_ugh some of |Fs drawbacks_ are _nowadays well
known. The original Markowitz’s formulation aims at select
ing a single portfolio which yields the greatest expectedlfin
wealth subject to a maximal final risk level (terminal wealth

variance), or to find the single portfolio which produces the

Inyestlga-se um mod.eAIo multl-dlmensmnal d? seledo de “Umallest terminal wealth variance subject to minimal fixal e
teiras em média-variancia, no qual os parametros de m’%-

~ - . ) ected wealth. Recently (see (Li and Ng, 2000)) these two
cado estdo sujeitos a saltos Markovianos. Deriva-se a

S o . rmulations were extended into a multi-period framework,
liicamente uma estrategli;\ de cor)tr_ole ot_qna_em forrpa f?ﬁ which the objective is to select a set of intermediatefpert

Cha‘?a para esta fgrmulagao de_ medla-var|anc~|a. ESt?&EStr"ﬁBs instead of just one as originally proposed (see the exath
gia é obtida através de um conjunto de equacdes a diferen ical formulation of these problems in (4) and (5)). When
de Riccati. Adicionalmente, uma expressdo explicita pa%-I

RESUMO

. . . lying dynamic programming to analytically solve these
a fronteira eficiente correspondente a este controle 6timo plying dy brog g y y

identificad | - ~ tad [ti-period mean-variance problems a technical difficult
identificada € exemplos NUMErIcos Sao apresentados. arises due to the existence of a nonlinear term of the form
U (E(-)) (or specifically E (V (T'))?), whereU is nonlin-
Artigo submetido em 24/05/2007 ear utility functl_on, in the objective functlorj. This dllfmly

1a. Revisio em 04/06/2007 was overcome in (Li and Ng, 2000) by the introduction of an

2a. Revisfo em 12/03/2008 auxiliary problem.
Aceito sob recomendacéo do Editor Associado
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In (Li and Ng, 2000) the market uncertainties are reproSection 5. Numerical examples are presented in Section 6.
duced by stochastic models in which the key parametershe paper is concluded in Section 7 with some final remarks.
expected return and volatility, are deterministic. As extiat

by (Zhang, 2000), such models are good only for a shog PROBLEM FORMULATION
period since they would not respond appropriately to ran-

dom changes in these parameters due to some sudden M&roughout the paper we shall denote B the n-
ket discontinuities (for example, the one caused by a tistror gimensjonal Euclidean real space and Ry*™ the Eu-
strike). As a result, there has been an increasing intemestdjigean space of ath x m real matrices. For a sequence
the study of financial models in which the key parameters ag numbersay, . . ., a,,, we shall denote byliag(a;) the di-
modulated by a Markov chain, see for instance (Bauerle angonal matrix ink™*™ formed by the element; in the it
Rieder, 2004), (Yin and Zhou, 2004), (Zhang, 2000), (Zhoiagonal,i = 1,...,m. The superscript will denote the
and Yin, 2003) and (Cakmak and Ozekici, 2006). Indeedranspose of a vector or matrix. We will consider a finan-
such models can better reflect the market environment as thg| market withn + 1 risky securities on a complete filtered
overall assets usually move according to a major trend giv@iiobability spacé(, 7, {F;} , P). The assets’ price will be
by the state of the underlying economy or by the generglescribed by the random vectrt) = (So (), ..., S, ()

mood of the investors. taking values inR"** with t = 0,...,7. SetR(t) =
.. i (4) — Si(t+1)
In (Cakmak and Ozekici, 2006) and in (Yin and Zhou, 2004),Ro(1); - -» Ra (1)), with Ri(t) = =g~ We assume that

discrete-time models for the mean-variance portfoliocele the random vectoR (t) satisfies the following equation:
tion problem with Markov switching were considered. It is S _

important to stress the main differences between our work RO =le+nto@N+ao®o@m)WE), Q1)
and these works. The basic idea in (Yin and Zhou, 2004yhere ¢ = (176)’, with ¢ € R" a vector with 1’s

is to use the optimal strategy of the limit continuous timen all its components. Herdd (t);t=0,...,T} is a
problem obtained in (Zhou and Yin, 2003) to derive a nearlfinite-state discrete-time Markov chain with state space
optimal portfolio for the discrete time model presented in = {1,...,m}, and {W(t); t = 0,...,T} is
equation (6) of (Yin and Zhou, 2004). In (Cakmak anch sequence ofn + 1)-dimensional independent random
Ozekici, 2006), the authors adopt a more direct approach @ctors with zero mean and covarianée(identity ma-
tackle the problem, avoiding any kind of approximating astrix). ~We assume tha W (t),6 (t)} are mutually in-
sumption as required in (Yin and Zhou, 2004), and obtainjependent. The setM represents the possible opera-
ing optimal results, instead of nearly optimal as in (Yin andions mode of the market. P is a probability mea-
Zhou, 2004). However, all_assets in the financial market coryre such thatP Ot+1)=7510(0),...,0(t)=1i) =
sidered in (Cakmak and Ozekici, 2006), including the riskp (9 (t + 1) = j |0 (t) = i) = pi; (t), pij () > 0 and
free one, depend on a Markov chain. !p our paper we fOHO‘EjeM pij(t) = 1,fort = 0,...,7 — 1 andi,j € M.

a direct approach as in (Cakmak and Ozekici, 2006), extendse set fort = 0,...,7, P(t) = [pij (t)],, s i (t) =
ing their work in two other directions. First we consider ap Ot)=1), 7(t) = (71 (t),....,mm (t)). Asin (Costa
financial model more general than that in (Cakmak and Ozg; al., 2005), forz = (z1,...,2n) € R™, we define the
kici, 2006), in which all assets are risky and dependent ijperators (z,t) = (&1 (2, 1) Em (2,t)) asé&;(z,t) =

a Markov chain. After that we consider a financial modelm ) R

in which there is a riskless asset independent of any souré_‘e pij (t) z;, fori € M. For notational simplicity, we shall

. . . =1
of uncertainty, even the Markov.chaln, and the risky one%mit from now on the variablein p;; (t) andé; (=, ¢). The
which depend on a Markov chain. In this case more Spgation F, is such that the random vectors {k) : k =
cific and interesting results can be analytically derived fo, t} and Markov chain{d (k) k =0, ... ¢} ar’e 7, -

the mean-variance portfolio selection problem with regimﬁ’]
switching.

easurable.

hi . ed as foll _ ; | When the market operation mode 6§t) = ¢ € M,
This paper is organized as follows. In Section 2 we formu ate(t i) € R™! represents the vector with the ex-

the model and the problems to be investigated. In Sectionéec’ted returns of the assets, white(t,i)a (t,i) ¢

an optimal control policy for an auxiliary problem as wellp (n+1)x (n+1) is the covariance matrix of the returns. It
as the expected value and variance of the terminal wealth Al be convenient to decomposg (4, i) and & (t,i) as

analytically derived. Such a policy can be obtained by the so . .

. : B S ] o (t9) o T ootd) .

lution of a set of interconnected Riccati difference ecuragi /2 (,7) = ~ | anda (t,i) = V|, with
. . o w(t, ) o(t,i)

The solution of the mean-variance problems and an explicit

. _ . N\ n . _
expression for the efficient frontier are derived in Sectlon /(Lg(t’l(i z)_ (2 E‘t’l)(;'li)')’ uz(t’ﬁ)gxnﬁ Rar;d?((:’z‘l)) _
H H H H H H OO b AR | 077/ b) 1 ) =

The case in which there is a riskless asset is con3|dered[!7n&j (t.9)] € R™"+1 We shall assume in this paper that
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E(R#)R®) |6(t)=i) > 0, foreacht = 0,...,7 — 1 to the difficulty in solving directly the three problems akov
andi € M. we shall consider, as in (Li and Ng, 2000), an auxiliary for-
- ¢ admissible ” : mulation. Using the fact thatVar (V (T)) — E(V (T)) =

e set of admissible investment strateglés= {u = 2\ 2 )
(u(0),...,u(T —1))} is such that for eachh = 0,...,n VE (V (T) ) vE (V_ () +.E (V/(T))], we can asso
andt = 0,....7 — 1, u(t) = (w1 (t),...,u, (2)), is ciate toP3 (v) the following auxiliary problem:
a F;-measurable random vector taking valuesRih. We o 2
have that: (t) represents the amount of the wealth allocated Ay) weu E {VV (T)" = v (T)} ' ()
among then securities. Associated to each admissible in-
vestment strategy. we have the portfolio’s value process3 OPTIMAL CONTROL POLICY FOR THE

{V¥(t);t =0,...,T — 1}, which represents the investor’s AUXILIARY PROBLEM
wealth at the end of timeé For notational simplicity, we shall

suppress the superscriptvhenever no confusion may arise.In this section we obtain an explicit expression for the ealu

Assuming that the initial wealth’ (0) = Vo > 0 and thatthe function and optimal control policy for the auxiliary preih

portfolio is self-financed, the wealth process is represent A (), v) by applying dynamic programming. We also ob-

by (see, for instance, (Li and Ng, 2000)): tain closed expressions for the expected value and variance

of the terminal wealth. As in the classical stochastic Imea

V(E+1) =V () [1+po(t0(t)+oo(t01)W(t) quadratic problem, this optimal control law depends on the

() [ (8,0(1) — epo (£, 0 (1)) solution of a set of recursive coupled Riccati differenceaeq

+ (o (t,0(t) —eoo (¢,0 (1)) W (1)]. (2) tions (see (8) below). Before going to the main result, let us

) define some intermediate problems. The value function for
Note that the amount of wealth allocated to the asset0 i, auxiliary problem at timé ¢ {0,...,7 — 1} is defined

is determined by () — €/u(t). Defining Ay (t) = 1 + by:
po(t,0(t)), Aoy (t) = a0 (t,0(t)), Boy(t) = n(t,0(t)) — . )
epo(t, 000, andBiac (1) = o0, 6(0)) e, 61, we can 7 (V (0)-0 (). 1) = i 22{uV (T)" =V (D) 73}

rewrite (2) as: wherely = {up = (u(k),...,u(T— 1)) ;u(t) is F,
V(t+1) = Apuy () V (t) + By 1) u(t), (3) measurable for each= k,...,T — 1}. We shall need the
following definitions. For eache M andt = 0,...,T, set:

e ()= B(B: (1) = B (1
_ ~ Xi(t) = E(Bi(t)) = Bi (),
d Ag(ry (1) = Agry (t) + Apgry (1) W (1) 61 (8) = B (Bs (1) B (8)) = Bs (6) B (&) + B (6) B (2)
an _ - 2
BO(t) (t) = Bg(t) (t) + EO(t) )W (t). d; (t) = (Az (t)2) = A, (ﬁ)2 + || A (t) )

The multi-period mean-variance problem aims at selectmg
u € U which has the greatest expected terminal wealth giver: (¢
an affordable terminal wealth variance, or which produceg),
the lesser variance of the final wealth given a desirable ex— o
pected terminal wealth. Formally these problems, named re—
R; (t

) =

) =

) = (Qz(ﬁ)
spectivelyP1 (o2) and P2 (e), can be posed as: )=
) =

P1 (0.) mln _ ( ( )) ( d (Rz(ﬁ))
Notice that from the hypothesis that
subject to Var( (1) <o® @) EBER@®RE®|0(t)=i) > 0, the inverse ofe; (t) is
P2 (¢) : min Var (V (1)) well defined and@; (t) > 0. We compute backwards
et the m dimensional vectorsK(t) = (Ki(t),...,
subjectt0:E (V' (T)) > e ® K.y, z@®) = (A0, Zu(1) and
Alternatively, an unconstrained form would be: (t) (D1 (t),... D (1)), with K (1), Z;(t) and
D; (t) as foIIows Fo =T-1,...,0andi € M:
P3(v) :minvVar (V(T))— E(V(T)), (6)
)y pVer VD) = BVAD) Ko ()= Qu ()& [ (t+ 1), K, (T) =
wherev € [0,00) represents the investor's risk aversiony Zi (1) = : [(Z()t+1)[ (t+1)], Zi(T)=
coefficient, giving his trade-off preference between the ex| Di (t) = ety Fi (1) + & [D (¢ + )] D;(T) = 0.
pected terminal wealth and the associated risk level. Due (8)
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From (8) we have by backward iteration that Taking the derivative of (12) over (k) and making the result
equal to zero yields
K{t)=(Q@U)P{)-...-Q(T—1)P(T—1))ev a y
= vK(t), 28 [K (k+ )] [p (k,9) v+ ¢ (k, i) u (k)]
+&[Z (k+1)]x(k,i)=0 (13)

and
Z({t)=—(RA)P(t)-...-R(T —1)P (T —1))er and from (13) we get (10). Substituting (10) into (12) yields
_ the value function expressed in (11), providing the desired
=—-)\Z(t)
' result. O

whereK (T') = ve,andZ (T') = —Xe,andfort = 0,...,T,

K(t) € R™ andZ(t) € R™ are defined as follows: Next we analytically derive expressions for the expected

T—1 T—1 value and variance of the terminal wealth under the optimal
K(t) = (H Q(t)P (ﬂ) e, Z(t)= (H R(t)P (ﬂ) e. control law (10). These expressions will be written in terms
k=t k=t of some key parametets b, ¢ andd. First we make the fol-
i i lowing definitions, related to the calculation of the exjeelct
Equations (8) and (9) are related to the solution of proble%lue and variance of the portfolio, and used in the proof of

(7) as stated in the next theorem. Theorem 2. For eache M andt = 0,..., T, define

We have the following theorem.

1 & E[Z(t+1)]
hj t) = — i3 T4 t) ————= i t 5
Theorem 1 The optimal control law for problem (7) is given © 2 ;p i @) & [K(t+ 1)]ﬁ )
by h(t) = (b1 (). h (1)) (14)
u(t) = —doy (1) wor (1) V (2) 1 & 2+ D]\’
o) [Z (t+1)] 1 rj () = 2_pimi () (&- Kt + 1)]) Bi 1)
—m%(w (1)~ xo (t) (10) i=1
o) )= (1 (t) sy rm (1) (15)
Furthermore, the value function for the intermediate peshl T—1
is a=V0)7(0)Z(0), b= h(k) Z(k+1),
TV (1),0(8),0) = Ko )V () + Zogy (1) V (1) 0 (16)
+ Do) (1) - (11) T—1
c=V (0 (0)K(0), d= Y 7 (k) K(k+1).
Proof: Let us apply induction on. Fort = T" we have that k=0
J(V(T),0(T),T)=vV (T)> = AV (T) a7
= Ko(r) (T)V (T)2 + Zo(r) (T)V (T) + Dy(ry (T), L\lOtiCG that from (14) and (15),277(/€)/IC(]€ +1) =

. . h (k) Z(k + 1) and thus from (16) and (174 = b. The

in agreement with Theorem 1. Suppose the result holds fpnstant, represents the expected amount the investor ob-
t = k+ 1. We show next that the solution also holds foring py investing in the reference asget 0 and similarly

t = k. Ford(k) =i € MandV (k) = v we have fromthe , myttiplied by the ratio? yields the expected amount the
Bellman's principle of optimality that investor gets by investing in the assgts: 0. The case in

J(v,i,k) = minE {J (V(k+1),0(k+1),k+1)| Fr} yvhich_b :_0 represents the situatio_n in which it is not worth
u(k) investing in these assets, as seen in the next theorem.

— minE {KG(,M) (E+1)V (k+1)°

u(k) Theorem 2 Under the optimal control law (10), the ex-
+ Zogepry (k+ 1)V (k +1) pected value and variance of the terminal wealth are:
+Dogen) (b + D] 7i} E(V(T) =a+ b, (18)
= H}}Cr)l {& K (k+1)] [5 (k1) v? v \ . \

“ - —_— 2 —_— —_— . — _— —_— —
2 (ki) u (B) v+ u (k) 6 (ki) u (B)] Var(V(T)) =c—a <y) 2 <4“ <y) (a 2b)> :
&2 (k+ 1)) [A (ki) v+ x (k1) u (k)] (19)
+& [D(k+1)]}. (12)  witha, bandcas in (16) and (17), respectively.
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Proof: First we proceed to find the expression for the extetg, () = F (v( )? Lo J}) From (Costa et al., 2005)
pected value of the final wealth. Using the control law (10}, (23) it follows that
into (3), we get

V(t+1) = (Ao (1) = Bogey (8) do ()" ooy (1)) (t+1) pr@z 9
Eory [Z (1 +1)] -1 2
— o= Boy (1) Gagy (1) Xoqo) (8- i[Z(t+1)]
Wy [K (1 1)] P25 o (S .
20) &= <& E) ,
Letg; (t) = E(V (t) 1{g(t)=;3)- From (Costa et al., 2005)
and (20) it follows that Definingg (t) = (g1 (t),...,gm (t))" and from (15) we can

rewrite (24) as

i (t+1) pr

Z (¢ +1)]
szﬂrz mﬂ t). (22)

FEED =30 QP+ (—) 7 (1)
and thus

Definingq (t) = (q1 (1), ..., qm (t)) and replacing (14) into
(21) leads to

k=0
- ~ A~ T—1 T-1
W+ =qO ROPEO+ThE, +(i)2 Fe) T e Pw
and thus - I=k41
T—1 2\
3(T) = (o) H R(k) P (k) Recalling thatE( (T) ) =g (T) e, we have from (9) that
T 1k:0 T-1 A2
A - - 2 _ / n ~ / )
L2500 I R0 PO, E(V (1)) =5 (0) K(0) + (V) gr(k) K(k+1)
k=0 I=k+1 - (25)
Noting that E (V (")) = 7, B[V (T) Lipery=sy] = Replacinge andd from (17) into (25) and recalling that=
G(T) e, we have from (9) thatj % we obtain the expected square value of the final wealth as

E(V(T)) =c+(2)"4.

E(WV(T)) = Z h(k) 2(k+1). (22) Hence, from (18), we get that

Substitutinga andb from (16) into (22), we get (18). Now /4y (V (7)) = E (V (T)Q) — E(V(T))?

we proceed to derive the expression for the variance of the

final wealth as in (19). Taking square on both sides of (20) —c—a?_ (i) 9 (4a _ (é) (1- Qb))

yields v)2 v 7

V(t+ 1)2 _ (Ae(t) (t)2 — 240 (t) By t) ot (ﬁ)—l which is the desired equation (19) for the variance of thd fina
/ L wealth. g

o) () + woq) (1) dag) (t)

+ By (t) By (1) doqey (1) @or) (t)) V(> 4 SOLUTION OF THE PROBLEMS

— {(Ag(t (t) — By () doc O ©ot) (t)) We solve in this section the three mean-variance problems
Eoiy 12 (t + 1)] posed in Section 2 and explicitly derive an expression fer th
: —Be(t) ®) by (1) Xoce) (t)} efficient frontier. Letll (P1(c?)), IL (P2 (¢)), I (P3 (v))
Eo) K (¢ +1)] andII (A (\,v)) denote, respectively, the set of optimal so-
1 (&) lZ (t+1)] , lutions for problemsP1 (02), P2 (¢), P3 (v) and A (X, v).
V(1) + 1 (m) Xo() (1) We recall the following results, proved in (Li and Ng, 2000).
0 Ok Bygs) (1) Bogr) (1) Gocr Ok Proposition 1 If u € IT (P3 (v)) thenu € I1 (A (A, v)) with
“Xo) (). (23) A=1+4+20vE(V“(T)).
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Proposition 2 Suppose thay > 0 andu € II(P3(v)).
a) If Var (V*(T)) = o2 thenu € II(P1(0?)). b) If
E (V" (T)) = ethenu € TI (P2 (¢)).

Next we present the solution of problem®s (v), P1 (o)
andP2 (e).

Theorem 3 An optimal strategyu for problems P3 (v),
P1 (0?) and P2 (e) is given by (10) withk; (t) and Z; (t)

asin (8) and\ = 22 For problemsP1 (o2) and P2 (e),
v is given by
L= \/WM fOF pI‘OblemPI (0'2) .
ﬁ for problemP?2 (¢)

Notice that the efficient frontier equation has an hyperboli
shape with cente(() - Qb)) The minimum variance of the
terminal wealth is given bW ar (V (1)), = ¢ —

and the expected termlnal wealth associated to '[hIS pmtfol
isE(V(T))

2

min — (172b)

Remark 1 Comparing Theorems 1 and 2, in which the fi-
nancial market consists only of risky assets, with equation
(20) and (34) to (38) in (Cakmak and Ozekici, 2006), we can
see that the hypothesis of the existence of a riskless asset
depending on the Markov chain, as in (Cakmak and Oze-
kici, 2006), produces no simplification on the final expres-
sions for the control law and for the expected value and vari-
ance of the final wealth.

The expected value and variance of the terminal wealth are,

respectively, given by

E(V(T)) = ﬁ (26)
a® b
Var(V(T)):c—(1721))—1—21/2(17%). (27)

5 THE SPECIAL CASE WITH ONE RISK-
LESS ASSET

Let us investigate now the special case in which one of the
assets is riskless, that is, it has no volatility and it isfuna
fected by the Markov chain. We assume the asset( as

Finally the efficient frontier of the multi-period mean-the riskless one. The price of the risk-free asset evolves as

variance problem with regime switching is given by:

Var (V(T)) = (c (1%2%))

(1 2)
o (B @) -

(28)

Proof: From Proposition 1 ifu € IT(A (X
A =14+2vE(V*(T)) thenu € II(P3(v)).

Combining
(18) and Proposition 1, we have
A=14+2vE (V" (T))
— 1+ <a+3b) = LR o)
v 1-2b

Substituting (29) into (18) leads to (26). Replacing (22pin

,v)) is such that

in (1), with og (¢,4) = 0 andpyo (¢,7) = ¢ (¢) for all ¢t and
1 € M. The existence of a riskless asset allows us to simplify
some equations in our model. Indeed, for each M and

t=0,...,T,itfollows that
Ait)y=At)=1+rs(t),
6: (1) = B (4;(1)°) = A1)’
i (1) = E (A (1) Bi(t)')
=A@t E(B: (1))
=AM xi (),
R (t)=A(t) (1 -5 (1)
and

(19), we have (27). For problem?1 (¢%) we have from get

Proposition 2 and (27) that
a? b
+ ;
(1—-2b) 2v2(1—2b)

o? =Var(V*(T)) = c —

— b
and thusy = G o B
have from Proposition 2 and (26) that

“ _av+b
and thusy = W Finally by combining (26) and (27)

and eliminating the parameter we have (28), completing

the proof. |
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Z(t) = p(t)Z(1), As a consequence of the existence of a risk-free asset, the
and minimum variance of the final wealth is zero with corre-
p(O)V(O)W(O)/}E(O) sponding expected value of the terminal wealth given by

- EV (T
¢ = (p(0)V(0))* 7 (0)" Z(0), )

so that> =  (0)' Z(0). We have the following result.

_ a
min — (1-2b)"

Remark 2 It should be noticed that the results of Theorems
3 and 4 coincide with those in (Li and Ng, 2000) for the case
in which there are no switching parameters. Moreover, it
. _ A is worth pointing out the difference between the expression
u(t) = =dow) (1) Xoe) (t) (A &)V () - m) for the control strategy and for the expected value and vari-
(30) ance of the final wealth we find here considering the case
with A\ and v as in Theorem 3. Moreover, for this opti- N Which there exists a riskless asset free of any source of
mal control law, we have thak (V (T')) satisfies (26) and uncertainty, and those expressions derived in (Cakmak and
Var (V(T)) = m The efficient frontier equation is Ozekici, 2006), in which the risk free security depends on
given by the Markov chain.

Theorem 4 An optimal strategyu for problems P3 (v),
P1 (%) and P2 (e) is given by

. _ (1-2p) _a Y
Var (V(T)) % (E(V(T» (1—2b>) ('31) 6 NUMERICAL EXAMPLES

) . In this section we compare the model proposed in this paper

Proof: Suppose that = a”/ (1 — 2b). Then the resultis a with the one presented in (Li and Ng, 2000). The first exam-
straightforward consequence of Theorem 3 observing that e is the case in which all assets are risky while the second
(10), one includes a risk-free asset.

EZ(t+1)) o A

EK(t+1)] wvplt+1)
Remains to show that = a2/ (1 — 2b). In order to show
that we show by induction oh= 0, ..., 7 that

Example 1 Consider the case in which an investor with one
unit wealth and an investment horiz@h= 4 has to allocate
his possession among four risky assets in order to maximize
+Z Z(t+1) =m(¢) Z(¢). (32) his expected final wealthy (V' (4)), while keeping the vari-
ance of the terminal wealth not exceedinhg.e.,o? (4) < 2.
Clearly (32) holds fo = 0. Suppose it holds fof. Then To sin_?_plifdy, twe stutr;:e the kmt:ltti-pe(;iod prozess astﬁtatgg‘l;
B ary. To determine the market trends we choose the
][reocnzill(lgg)ttr;]zt?( ) =1 6(6)) (02 (6 + 1), we have 500 Index (SPX) and, for the risky assets, we picked the
four stocks which have more weight in this index: General
Eletric (GE), Exxon Mobil (XOM), Citigroup (C) and Mi-

MN

m(0)'Z(0) + ) w(t)BEHPH)Z(t+1) crosoft (MSFT). The daily closing prices of these stocks,
=0 starting from 2000 until the end of 2004, are used to esti-
=7(0)Z(0) + n(0) BOP(OZ(L +1) mate the mean and variance of them. In this example, there

()
y = are two major trends: up- or down-trend, i.84 = {1, 2},
m(6) (P - ﬁ (OP@) + (E)P(E)) 2(+1) respectively. To identify which mode is leading tr{me m}arket
(0 + Z(g +1) we used a moving average. Whenever the monthly closing
) _ ) price of the index is above its three period moving aver-
sincer(()'P(¢) = m(f + 1), showing (32). Noting that 446 e define that month as an up-trend and whereas the
Z(T) =eso thatW(T)'Z( ) = 1, it follows from (32) that  monthly closing price of the index is bellow its three pe-

1 riod moving average, we define the period as a down-trend.
20 = ﬁ(t)/g(t)p(t)g(t +1) To estimate the mean retugr(t, # (¢)) and covariance ma-
=0 trix o2 (¢,0 (t)) of the assets we follow an approach simi-
—1_ 77(0)’5(0) lar to that adopted in (Zhang, 2000). From the daily closes
) of the stocks from 2000 until 2004, we obtain the vector of
1% yearly mean returns (252 trading days) and yearly covari-
c’ ance matrix for each market mode and fot 0,1, 2, 3, re-
completing the proof. O  spectively, asu (t,1) = (25.4%, 24.4%, 70.8%, 19.8%)’,
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6 ‘ ‘ ‘ ‘ ‘ ‘ switching while the dotted line is the efficient frontierfmy-

ing the model proposed in (Li and Ng, 2000). The expected
terminal wealth corresponding to the selected risk level is
pointed out in Fig. 1 by an asterisk and by a cross, respec-
tively for the case with and without Markov switching pa-
rameters. Therefore, in this example, for the same accepted
final risk level (o2 (4) = 2) , the first case delivered an ex-
pected final wealth above the case without jumps. This out-
come illustrates the advantage of the present model torbette
capture the market movements.

ol
T

S

Expected Final Wealth
N w

Example2 Now we examine the situation with the exis-
‘ ‘ ‘ ‘ ‘ ‘ tence of a riskless asset. In this example we use the same
0 05 1 Rilsf(\/ariarfce) 2.5 3 3.5 assets presented above plus a risk-free asset. The riskless
asset is represented by the two years Fed Fund rate (GT2).
Although this interest rate also changes following the mar-
ket movements, we considered it constant and equal to its
average in the periodrs (t) = 3.3%, fort = 0,1,2,3.
The objective is the same as above and we use the same
w(t,2) = (—26.1%, —5.4%, —31.0%, —38.7%)’, and assets and conditions as presented in the former example,
just adding the riskless asset. We get the following mean-
89 L7 56 39 variance efficient frontier equatioi/ar (V (4)) = 0.009 -
o? (t,1) = ég 2; 3(2) 411:(3) /100, (E (V (4)) — 1.14)>. Now, considering the model presented
: : : : in (Li and Ng, 2000), with the same data as in the last ex-
3.9 1.3 4.0 127 ample and adding the riskless asset 0 we get the fol-

Figure 1: Efficient frontier

141 39 95 80 lowing efficient frontier equation:Var (V (4)) = 0.30 -
2y g | B9 T4 B9 37 | (E(V(4) - 1.14)%. The expected terminal wealth in each
g ( ) )* 95 39 157 8.2 / . S|tuat!0n ISk (V (4)) = 1641 andE(V (4)) : 3.72, re-
80 37 82 196 spectively. These two points are plotted in Fig. 2 by an as-

terisk and a cross, respectively for the case with and withou
As the number of up-trend days was almost 50% of the tQagime switching. In Fig. 2, we plotted the two efficient fron
tal days, we choosg;; = 0.5, i,j € M, as the transition ey equations. As in the former example, the outcome of the
probabilities. From (28), the mean-variance efficientfi@n 556 with the key parameters modulated by a Markov chain

equation is given as followd?ar (V' (4)) = 0.029+ 0108+ (s0lid line) beat by far the case without this feature (dbtte
(£ (V (4)) —0.207)". For the maximum selected risk level|jing).

(02 (4) = 2), the corresponding expected final wealth in the

efficient frontier isE' (V' (4)) = 4.47. We implemented the

model proposed in (Li and Ng, 2000) to compare with th(.z CONCLUSIONS
present one. To estimate the mean return and covariance mﬁl'this paper we extended the work of (Cakmak and Oze-
trix of the assets we use the whole period of the above sample.

(2000- 2001 wihout sepsratng e vend peroc, g | 2009 S0 8 S5 e Tl erd e
fort = 0,1,2,3, pu(t) = (—4.2%, 8.1%, 7.6%, —14.2%)’

jumps in the parameters. An optimal investment strategy

and . . . . .
for this mean-variance problem was analytically derived in
11.6% 2.9% 7.6% 6.1% a closed form. We showed that this optimal policy depends
9 29% 6.3% 3.1% 25% upon a set of interconnected Riccati difference equatioss p
o (t) = 7.6% 3.1% 125% 6.2% |- sented in (8). As a result, an explicit expression for the
6.1% 25% 6.2% 16.4% efficient frontier was identified. Our results coincide with

those in (Li and Ng, 2000) for the case in which there are
For this case, the mean-variance efficient frontier equasio no switching parameters. The advantage of this model is to
given byVar (V (4)) = 0.15+0.39 - (E(V (4)) = 0.94)".  petter respond to drastic movements of the market as a result
The expected terminal wealth corresponding to the selectgg siress sjtuations or discontinuity changes due to eatern
risk level (o2 (4) =2) is E(V (4)) = 3.12. In Fig. 1 we factors.
can see the efficient frontier for both cases. The continuous
line represent the efficient frontier for the case with regimFinally it is worth mentioning that extensions of the for-
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25 ‘ \ ‘ tions and helpful comments.
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