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RESUMO

NEWAVE Versus ODIN: Comparação entre Modelo Es-
tocástico e Determinístico no Planejamento da Operação
Energética do Sistema Interligado Nacional
Este artigo compara o modelo NEWAVE, uma abordagem
baseada em programação dinâmica dual estocástica usada no
Brasil para o planejamento da operação de médio prazo, com
o modelo ODIN (Otimização de Despacho Interligado Na-
cional), uma abordagem determinística baseada em modelo
de controle preditivo. A primeira adota uma representação
agregada do sistema e aproximações lineares para possibili-
tar a aplicação da técnica de programação dinâmica ao sis-
tema brasileiro. A última usa um algoritmo de otimização
não linear considerando vazões futuras previstas com uma
representação detalhada das usinas individualmente. Dados
de fontes oficiais foram usados para formular um caso de es-
tudo sobre o planejamento mensal de Janeiro de 2011 que
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considera os planos de expansão até dezembro de 2015. Os
testes foram realizados por simulação utilizando 75 séries
históricos de vazões. Em comparação com o planejamento
fornecido pela abordagem estocástica em vigor, a abordagem
determinística proposta apresentou desempenho superior de-
vido ao uso mais eficiente dos recursos hídricos, levando a
uma operação mais segura e econômica.

PALAVRAS-CHAVE: Sistemas de potência, planejamento
hydrotérmico, otimização não linear, otimização estocástica,
operação de reservatório, modelo NEWAVE, modelo ODIN.

ABSTRACT

This paper compares the NEWAVE model, a stochastic dual
dynamic programming based approach used in Brazil for
the long term hydropower scheduling of the interconnected
Brazilian power system, to the ODIN model (Optimal Dis-
patch for the Interconnected Brazilian National system), a
deterministic approach based on model predictive control.
The former adopts a composite representation of the hydro
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system and piecewise linear approximations to make the ap-
plication of dynamic programming solution technique possi-
ble to the Brazilian system. The latter uses a nonlinear opti-
mization algorithm considering predicted future inflows with
a detailed representation of the individual power plants. Data
from official sources were used to formulate a case study on
the monthly operation planning of January 2011 that con-
siders the projected expansion plans up to December 2015.
Tests were performed by simulation using 75 historical in-
flow scenarios. In comparison to the scheduling provided by
the stochastic approach, the proposed deterministic one was
found to provide a superior performance due to the more ef-
ficient use of water resources, leading to a more secure and
economic operation.

KEYWORDS: Power systems, long term hydrothermal
scheduling, nonlinear optimization, stochastic optimization,
reservoir operation, NEWAVE model, ODIN model.

1 INTRODUCTION

The hydropower scheduling is designed to meet the load de-
mands of a power system using a reliable and cost effective
power plant dispatching. This involves using the available
hydropower resources optimally to reduce operating costs
without compromising the security of system operation in
the future.

Long term hydropower scheduling (LTHS) for a multireser-
voir system consists on a quite complex optimization prob-
lem due to issues such as the long planning horizon to be
analyzed (several years), the time dependence of decisions,
the coupling of hydro plants in the same river basin, and the
nonlinear relations involved in the hydro power generation
functions and thermal costs.

In Brazil the operation planning of the hydrothermal system
is coordinated by the independent system operator (ONS) in
accordance with the electric sector agents providing a coordi-
nated dispatch for the whole system. The continental dimen-
sion of the country presents an extra challenge, since the sys-
tem consists of a large number of thermal and hydro plants
and an extensive transmission network linking the plants to
the load centers.

Above all this, the major concern in hydrothermal scheduling
is the stochastic nature of inflows. Various approaches have
been proposed to solve the LTHS problem and they can all
be classified as either stochastic or deterministic according
to the modeling of inflows (Labadie, 2004).

Stochastic approaches usually consider the uncertainty of
water inflows on the basis of probability distribution func-
tions and most of the applications use stochastic dynamic

programming (SDP) as optimization tool (Stedinger et.al.,
1984). SDP has been the most commonly used technique
in the solution of the strategic (long term) problem of reser-
voir operation. Among its advantages is the possibility to
explicitly model the uncertainty of inflows and to represent
important nonlinear relations inherent to the problem. How-
ever, for multireservoir systems, they require some kind of
simplification due to the intense computational requirements
(Bellman, 1957).

One way of overcoming this problem is by aggregating mul-
tiple reservoirs to form a composite reservoir of energy (Ar-
vanitidis and Rosing, 1970; Turgeon, 1980; Valdes et.al.,
1995), and/or by piecewise linear approximation of nonlin-
ear functions (Diniz et.al., 2008; Dias et.al., 2010). This
is the case of the methodology currently used in Brazil, the
NEWAVE model, which is based on stochastic dual dynamic
programming (SDDP) (Pereira and Pinto, 1991), using Ben-
ders decomposition (Pereira and Pinto, 1985) with nonlinear-
ities in the power generation and future cost functions mod-
eled as piecewise linear.

Deterministic approaches, on the other hand, take into con-
sideration specific hydrological scenarios and provide solu-
tions for individual plants. The stochastic aspects of the
problem can thus be implicitly handled by the selection of
such inflow scenarios and by the analysis of the optimal
deterministic solutions associated with each one of them
(Dembo, 1991; Escudero et.al., 1996). The advantage of this
approach, also known as implicit stochastic optimization or
Monte Carlo optimization, is that nonlinear models can be di-
rectly applied even to large scale hydropower systems. The
primary disadvantage is that optimal operational policies are
specific to the assumed hydrologic time series and deriving a
general optimal operation rule is not straightforward.

Few articles have been published comparing the application
of stochastic and deterministic approaches to the solution of
LTHS problems (Zambelli et.al., 2006; Martinez and Soares,
2002; Philbrick and Kitanidis, 1999; Dagli and Miles, 1980;
Boshier and Read, 1982). Case studies comprise only sys-
tems with a limited number of reservoirs (most of them, a
single one) and general conclusions diverge, indicating that
the best optimization approach is not yet defined by the liter-
ature.

This paper proposes the application of a new deterministic
approach for the LTHS of the Brazilian National Intercon-
nected System (SIN). The model named Optimal Dispatch
for the Interconnected Brazilian National system (ODIN) is
based on adaptive model predictive control (MPC), an opti-
mization framework widely applied in real-time control and
industrial processes which can provide high quality subopti-
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mal solutions for the LTHS problem with no computational
burden.

The performance of the proposed approach is evaluated by
simulation taking into account detailed plant data and all op-
erational constraints from official data sources (CCEE). Sim-
ulations were performed for the 75 scenarios contained in the
historical records of inflows.

Results from the ODIN model are compared to those pro-
vided by the stochastic approach given by the NEWAVE
model using the SUISHI-O model to disaggregate the for-
mer’s optimal rules and make the comparison possible on
the basis of individual hydro plants. Both tools are used offi-
cially by the Brazilian Electric Sector (SEB) in the planning
and operation of SIN.

This work is organized into four sections. Section 2 presents
the problem formulation. Sections 3 and 4 describe, respec-
tively, the proposed deterministic approach ODIN and the
stochastic approach determined by official SEB models. Sec-
tion 5 presents the case study and its results while Section 6
summarizes the main conclusions.

2 PROBLEM FORMULATION

The LTHS for large scale power systems is generally bro-
ken into separable sub-problems to make a solution possible.
The primary goal is to supply the total load demand Dt at
minimum expected operating costs, which leads to the hydro
scheduling optimization problem that follows:

min
q

ε
y

T
∑

t=1

{λt.Ψ(Dt − pt)} (1)

Subject to:

pt =
I
∑

i=1

pi,t + PC t (2)

pi,t = ki.hi,t.qi,t (3)

hi,t = hM i(x
avg
i,t ) − hJ i(ui,t) − hP i(qi,t) (4)

xavg
i,t =

xi,t−1 + xi,t

2
(5)

xi,t = xi,t−1 +

(

yi,t +
∑

k∈Ωi

uk,t − ui,t − ev − UC

)

.γt

(6)

ui,t = qi,t + vi,t (7)

Xmin
i,t ≤ xi,t ≤ Xmax

i,t (8)

ui,t ≥ Umin
i,t (9)

qi,t ≤ qmax
i,t (hi,t) (10)

vi,t ≥ 0 (11)

where:

t : time stage index (months);

T : number of time stages in planning period;

I : number of hydro plants;

(i, t) : plant i during stage t;

λt : discount rate for stage t;

p : power generation [MW ];

PCt : hydropower from small generators [MW ];

D : load demand [MW ];

k : constant efficiency factor [MW/m3/s/m];

h : water head [m]

hM : forebay elevation function [m];

hJ : tailrace elevation function [m];

hP : penstock head loss function [m];

x : reservoir storage at end of current stage [hm3];

xavg : average reservoir storage [hm3];

Xmin, Xmax:bounds on reservoir operation [hm3];

u :water release from reservoir [m3/s];

q :water discharge through turbines [m3/s];
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v :water spill from reservoir [m3/s];

y :incremental water inflow [m3/s];

ev:water evaporated from reservoir [m3/s];

UC :water taken for alternative uses [m3/s]

γ :factor for conversion of flow from m3/s to hm3/month;

Ωi:set of plants located immediately above hydro plant i in
the same river basin.

The cost function Ψ(.) represents generation fuel costs as-
sociated to non-hydraulic sources dispatched supplementary
to attend the load demand. Costs associated with hydroelec-
tric power generation are considered to be negligible in re-
lation to those of thermal generation and were thus ignored
in this model. The coefficient λt represents the interest rate
adopted to calculate the present value of the operating costs
on a monthly basis.

Hydro power generation at stage t is calculated in (2) as the
sum of the power generation of each individual plant plus
that of small generators (less than 30MW) from hydro and
alternative sources PCt, which are not explicitly controlled
by the ONS. For each individual plant, the hydro power gen-
eration pi is a nonlinear function of the water head and the
discharge (3) .

Water head (4) , in turn, is a nonlinear function of average
reservoir storage, water discharge through the turbines, and
water spillage from the reservoir. The constant k represents
the product of the water density, the gravity acceleration, and
average turbine/generator efficiency. The forebay hM (x) and
tailrace hJ(u) elevations are calculated by 4th degree poly-
nomial functions and the penstock head loss hP (q) is deter-
mined by a quadratic function of discharge, a constant, or a
percentage of the water head, depending on the data available
for the plant.

The equality constraint (6) describes the system dynamics
based on the water balance in the reservoir. Amounts of wa-
ter taken from the reservoir for alternative purposes are in-
cluded in term UC . Evaporation ev is a nonlinear function of
the reservoir storage and despite being properly calculated in
simulation time, it was not considered during optimization in
order to preserve the linearity of constraint (6).

Lower and upper bounds on variables, expressed by con-
straints (8) -(11) , are imposed by the physical operational
limits of the hydro plants, as well as the limitations asso-
ciated with multiple uses of water. For example, the lower
bound for reservoir and release can vary over time to allow
navigation, water supply, irrigation and recreation. The up-
per bound for reservoir can be imposed for purpose of dam

safety and flood control. The upper limit of the discharge in
equation (10) is also a nonlinear function of water head.

Since spillage v does not produce energy, and therefore
does not reduce thermal generation costs, it is considered
a slack variable, which will only be different from zero if
the release is greater than the maximum possible discharge
(u>qmax) so the reservoir cannot accommodate any more
water (x=Xmax).

The total thermal generation zt to be produced at a given
stage t, can be calculated as the total power needed, sup-
plementary to total hydro generation pt, to guarantee the full
supply of load demand Dt.

zt = Dt − pt (12)

Substituting (12) in (1) and specifying Ψ(.) as the product of
thermal unit generation for its variable costs, a thermal op-
timization problem is formulated to determine the economic
dispatch of individual thermal units (El-Hawary and Chris-
tensen, 1979) as presented in equations (13) -(15)

Ψ(zt) = min
J
∑

j=1

Cj,t.zj,t (13)

zt =

J
∑

j=1

zj,t (14)

Zmin
j,t ≤ zj,t ≤ Zmax

j,t (15)

where:

J :number of thermal plants;

C :thermal unit generation cost [R$/MW ];

z :thermal generation [MW ];

Zmin, Zmax:bounds on thermal generation [MW ];

The coefficients Cj,t are variable unitary costs for each ther-
mal plant j and stage t. Costs related to importing electricity
from neighboring markets and energy deficits can be mod-
eled in a similar way.

In equation (15) the minimum limit for thermal generation
at a stage t is defined by operational limits or imposed by
contracts for the fuel supply (thermal inflexibility), if any.
The upper limit is determined by the generation capacity of
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the plant, which is the installed capacity discounting mainte-
nance and unexpected outage factors.

According to the current SIN model the hydro plants are ag-
gregated in four subsystems that correspond to distinct geo-
graphic areas of Brazil. The main interconnections between
these subsystems are explicitly considered in the model, so
that energy balance within each subsystem s is assured and
implicit active power flow os,t in the main network is calcu-
lated by equations (16) -(20) .

os,t + ps,t + zs,t = Ds,t (16)

zs,t =
∑

∀j∈s

zj,t (17)

ps,t =
∑

∀i∈s

pi,t +
∑

∀k∈s

PC k,t (18)

os,t =
∑

n∈Ns

o(n,s),t (19)

−Omax
(s,n),t ≤ o(n,s),t ≤ Omax

(n,s),t (20)

where

(s, t):subsystem s during stage t;

o:power flow on a connection [MW ];

Ns:set of subsystems connected to s;

(n, s):connection between two subsystems n and s;

Omax:active power flow capacity of a connection [MW ];

Equations (16) , (17) and (18) are analogous to (12) , (14)
and (2) respectively but in this context power generation is
summarized for each subsystem.

3 THE DETERMINISTIC APPROACH

The deterministic operating policy ODIN proposed here is an
open-loop approach where strategic decisions are not calcu-
lated prior to the simulation process for all stages of the plan-
ning horizon, but rather determined at each stage during the
simulation. It is an operating policy based on MPC where de-
cisions are determined, at each stage of the planning period,
by a two step procedure: in the first step the future inflows
are forecasted for a limited time horizon. Then, in a second

step the system is optimized for the forecasted inflows by a
nonlinear deterministic optimization model.

The simulation of the system’s operation with such an
open-loop approach results on a "forecast-optimize-update"
scheme that runs for all stages until the end of the planning
horizon.

Previous tests with this approach, focusing specifically on
the uncertainty of inflows, evaluated the results for single
reservoir systems where dimension is not an issue (Martinez
and Soares, 2002; Zambelli et.al. 2009). The approach has
shown results equivalent to those of standard methods based
on stochastic dynamic programming.

Figure 1 presents a diagram for the predictive control operat-
ing policy at a certain stage t.

 

xt 

Deterministic Operating Policy 

 yt 

xt-1 

 yt-1 

xt-1 

Optimal 
Decision: u*t 

Optimizer 

Predicted Inflow:  *..Tty

Predictor 

 
Simulator 

Figure 1: Predictive control scheme.

During the simulation, for each stage t of the planning hori-
zon, the reservoir storage level at the end of the previous
stage is observed and used as an initial condition for solving
a deterministic optimization problem for a specific optimiza-
tion horizon [t, T*].

This optimization considers a series of predicted values for
the unknown parameters to be considered, in this case, water
inflows, determined by the Predictor module, based on past
observed values.

The Optimizer module then provides optimal releases for
each hydro plant for the optimization horizon but only the
discharge solution for the first stage u∗t is selected and sub-
mitted to a simulation model. The latter tests the feasibility
of results and makes the necessary corrections if needed, ac-
cording to formulation (2) -(20) . Corrections are frequently
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needed due to differences between the predicted inflow se-
ries ȳ and the simulated inflow series y and eventually due to
subsystems’ interchange constraints.

In the next stage t + 1, the storage level of the reservoirs
resulting from simulation is observed, and a new forecast-
ing of inflows can be given based on the latest available in-
formation. This procedure of "forecast-optimize-update" is
repeated until the end of the planning horizon T .

In this paper the monthly average of historical inflow records
(MLT) was adopted as the forecasting values for the inflow
series during optimization, which neglects the benefits of the
updating scheme. This means that the performance of the ap-
proach implemented can probably be improved significantly
with the use of more efficient forecasting techniques.

In the ODIN approach the deterministic nonlinear optimiza-
tion model (1) -(11) can be solved using specialized opti-
mization techniques to such as network flow algorithms with
capacitated arcs (Oliveira and Soares, 1995) or interior point
methods (Azevedo, et. al. 2009). The former was used in this
case study since it is much more efficient than conventional
nonlinear programming models for solving hydro scheduling
problems (Rosenthal, 1981). Its structure allows a detailed
representation of the hydropower system, including specific
aspects of individual plants and nonlinear production func-
tions.

The optimization horizon T* adopted starts at the current
stage t and consists on a rolling window of at least 13 months
and at most 24 months, depending on the current monthly
stage. Full reservoir storage is imposed as a boundary condi-
tion at the end of this horizon, adjusted to match the month
of April, since reservoirs are expected to be close to full by
the end of the wet seasons. These two parameters were esti-
mated based on successive simulation tests with various con-
siderations and have shown to maximize the approach per-
formance.

Since the optimization algorithm used by ODIN is based on
a network flow algorithm, it can not consider limits on inter-
change between subsystems. Therefore, heuristic operating
rules can be applied to the optimal solution during simula-
tion in order to enforce the limits of transmission capacity
between subsystems and verify the supply of local load de-
mands, according to Eq. (16) -(20) (Zambelli, 2009).

4 THE STOCHASTIC APPROACH

The stochastic operating policy adopted by the ONS in Brazil
is a closed-loop approach performed in two steps: first the
optimal strategy is calculated by an optimization model and

then the system is simulated using this strategy over different
hydrological scenarios in order to evaluate its performance.

The first step is done by the NEWAVE model (CEPEL, 2001)
and is based on SDDP, a technique derived from the standard
stochastic dynamic programming by the hypothesis that the
inflows at the beginning of each stage are known. With this
hypothesis, the classical “decision-hazard” Belman’s recur-
sive equation can be substituted by a “hazard-decision” re-
cursion which can be solved through a nested resolution of
two stage problems during the planning period using Benders
decomposition. These two stage problems optimize the im-
mediate present operation cost during the actual stage plus
the minimum expected future operation costs at the end of
that stage.

According to this approach, the minimum expected future
cost function (FCF) at each stage, which indeed is a non-
linear function of storage, is approximated by its external
linearization (Benders cuts). The construction of such an
approximation is performed by an iterative procedure con-
stituted by forward and backward simulations over synthetic
inflows generated by periodic autoregressive models of order
p, PAR(p), until convergence is achieved which results in a
piecewise linear FCF.

The NEWAVE model, developed by the Electric Energy Re-
search Center (CEPEL) is the first in the chain of models
(Maceira et.al., 2002) used to guide the planning and op-
eration of the Brazilian power system. It uses the SDDP
technique to determine an optimal operation for the SIN
represented as four interconnected subsystems: North (N),
Northeast (NE), Southeast and Center-West (SE/CO), and
South(S). Each of these is associated to a single composite
energy reservoir, a thermal system, a load demand and lim-
ited energy interchange capacity. The composite represen-
tation was necessary since SDDP application to large scale
problems is very CPU-time consuming.

The outcomes from the NEWAVE model are the FCF func-
tions for each subsystem and each stage of the planning hori-
zon which will be used next.

The second step in the closed-loop approach is the simula-
tion of the system using the strategy (FCF) calculated by
NEWAVE in the previous step. In this paper, the simula-
tion was performed by the SUISHI-O model (CEPEL, 2007),
also developed by CEPEL, that disaggregates the dispatch for
the individual plants based on the FCF functions provided by
NEWAVE.

This disaggregation is accomplished for each stage also in
two steps: in the first step a linear programming model op-
timizes the hydrothermal dispatch of the subsystems tak-
ing into account the FCF functions (Benders cuts) provided
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by the NEWAVE model and the interchange capacity lim-
its. In the second step, the hydro generation of each sub-
system is disaggregated into its individual hydro plants by
using heuristic reservoir operation rules that try to maintain
the reservoirs at the same storage levels (parallel operation).
Although using a heuristic approach, the SUISHI-O model
computes the precise consequences of the decisions since its
formulation represents the nonlinear aspects of hydro pro-
duction.

In summary, this approach, which will be referred to as NW-
SUISHI, has the following modeling simplifications:

1. Composite representation of hydro subsystems;

2. Inflow knowledge at the beginning of each stage;

3. Recursive equation of “hazard-decision” type;

4. Piecewise linear approximation of hydro production and
future cost functions;

5. Heuristic reservoir operation rules.

5 CASE STUDY

The performance of the two approaches was analyzed using
simulation in a support decision system developed at UNI-
CAMP. A data importation module was created so that the
system could contemplate all the operating data available in
official sources (www.ccee.org.br). For this paper work the
January 2011 data deck (NW201101) was imported to create
a case study which takes into consideration the dynamic evo-
lution of the power plants and load demand projections up to
December 2015.

The hydrothermal planning performed in Brazil considers a
time horizon of up to five years on a monthly basis, thus
the simulation studies involved the 75 inflows scenarios con-
tained in the historical data from 1931 to 2009, starting in
January of each year and comprising 60 monthly periods.

5.1 Systems Results

In Table 1, the simulation results for the stochastic (NW-
SUISHI) and deterministic (ODIN) approaches are summa-
rized. Average values of hydropower generation, stored en-
ergy associated with reservoir storage at the end of the plan-
ning period, and operating costs updated to present values
according to a discount rate of 12% per year, are presented.

The average results indicate that the deterministic approach
provided 8.23% lower operating costs, with 0.81% greater
hydropower generation, and almost 38.9% more stored en-
ergy by the end of 2015.

Table 1: General Statistical Simulation Results
Operating
Cost*
(Million
US$)

Hydropower
Generation
(MWmonth)

Final
Stored En-
ergy(MWmonth)

NW-SUISHI 18820 50763 102867

ODIN 17270 51174 142879

* Currency conversion on 22/02/2011: 1US$ = 1,67R$

These results are a consequence of the more efficient oper-
ation of hydro plants resulting from deterministic modeling,
which frequently operate with greater reservoir storage. The
greater efficiency helps meeting load demands using less wa-
ter from the reservoirs, which also provides a more reliable
operation.

Figures 2 and 3 present the evolution of average hydropower
generation and operating costs, respectively, for the simu-
lated models.
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Figure 2: SIN average hydropower generation.
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Figure 3: SIN average operating costs.

Figure 2 shows that both policies follow the same seasonal
pattern of hydropower generation, following the fluctuation
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of inflows throughout the year, with peaks of generation in
the month of March. Although the two models present sim-
ilar hydro generation values for the first two years (with
greater power generation of the NW-SUISHI model in the
wet months near the peaks), for the following three years of
the planning horizon, especially in the dry season, the ODIN
model provides significantly greater hydro generation due to
the better management of reservoir storage during the annual
emptying and filling of the reservoirs in cascade.

During dry periods, when the water supply is reduced, SIN
incurs on higher operational costs, as seen in the trajectory
of operating costs shown in Figure 3. The graph of operating
costs presents peaks in October for the NW-SUISHI model,
while the ODIN model anticipates the use of thermal gener-
ation to avoid these peaks and reduce costs over almost the
entire planning period.

To provide a better view of each scenario, the graph in Figure
4 presents the difference in costs (NW-SUISHI minus ODIN)
for each scenario. Differences in final reservoir storage were
uniformly distributed over the five-year period, multiplied by
average marginal costs and added to original operating costs
to state a single base of comparison.
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Figure 4: ODIN minus NW-SUISHI operating costs for each
inflow scenario.

As can be observed in Figure 4, the ODIN model provided a
more economic operation for the vast majority of the scenar-
ios studied. Indeed the results were significantly improved
by the NW-SUISHI model only in one of the 75 hydrologic
scenarios simulated.

Figure 5 presents the trajectory of average stored energy re-
sulting from simulation with the two models.

It is shown that the ODIN model tries to maintain a greater
stock of stored energy throughout the planning period in or-
der to increase efficiency in operation of the hydro plants. It
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Figure 5: SIN average stored energy.

also shows that operating according to the ODIN model the
system makes it possible to recover maximum energy storage
at the end of each dry season in April, whereas operating with
the NW-SUISHI model gradually reduces the stored energy
supply each year.

This difference is of special importance to the case study con-
ducted. Apparently, the solution of the NW-SUISHI model
does not provide a steady state operation, and leading to a
continuous depletion of the reservoirs, which suggests that
this operating policy is not sustainable in the long run. This
characteristic may be a consequence of the simplifications
adopted, specially the linearization of nonlinear functions,
the “hazard-decision” recursive equation of SDDP, and the
heuristic rule of reservoir parallel operation of SUISHI-O
model.

It is also possible to say that operation according to the NW-
SUISHI model is less reliable than that proposed by the
ODIN model, since the former makes use of the water stored
in the system beyond what is sustainable in the long run, ex-
posing the system to greater risk of rationing.

Perhaps this fact explains why it was necessary for the
ONS to introduce a Risk Aversion Curve (CAR) in the SIN
monthly operation program, once noticed that the model
could lead to expressive depletion. One major advantage of
the ODIN model is that it requires no CAR or any other extra-
model procedures to ensure safe operation and avoid deep
shortages that would have deep economic impact.

5.2 Subsystems Results

In this Section results are presented for the four subsys-
tems that compose the SIN according to geographic re-
gions. These are Southeast/Central-west (SE/CO), South (S),
Northeast (NE) and North (N).
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Tables 2 and 3 show, respectively, the mean and standard de-
viation values of the marginal operating costs for each sub-
system, concerning the whole planning period and the 75
simulated scenarios. The expected value of marginal operat-
ing costs is used as indicative price of energy in the Brazilian
spot market.

Table 2: Expected Values of Marginal Operating Costs for
Subsystems

SE/CO
($/MWh)

S
($/MWh)

NE
($/MWh)

N
($/MWh)

NW-SUISHI 104,94 102,09 67,15 89,77
ODIN 82,54 82,65 80,44 81,76

Table 3: Standard Deviations of Marginal Operating Costs for
Subsystems

SE/CO
($/MWh)

S
($/MWh)

NE
($/MWh)

N
($/MWh)

NW-SUISHI 43,52 40,12 14,12 40,86
ODIN 23,62 23,68 21,24 23,68

It is shown that the deterministic methodology provides
lower average marginal costs for all subsystems, as well as
lower standard deviations, indicating that there is less price
volatility using this methodology. Moreover, the differences
between subsystems are much lower indicating that the limits
on interchange were riched less frequently.

Figure 6 shows the average trajectories of the marginal op-
erating costs according to the two approaches for the SE/CO
subsystem, which is the largest one, corresponding to 61%
of the hydro installed capacity of the SIN as a whole.
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Figure 6: Marginal Operating Costs for SE/CO subsystem.

It can be observed that the NW-SUISHI model reports lower
marginal costs along the whole first year but it fails to main-
tain this advantage for the entire planning period, incurring

in higher prices especially during the dry seasons (May to
November).

These results are directly related to the management of the
reservoirs, as shown in Figure 5. The strategy of the ODIN
model is to hold more water in the reservoirs at the begin-
ning of the planning horizon in order to increase the sys-
tem’s storage and be able to operate it with more efficiency
in the remaining planning period. This increases the opera-
tion costs at the first year, but assures lower and more stable
prices along the whole planning horizon.

5.3 Hydro Plants Results

Four hydro plants, located in different river basins, were se-
lected to illustrate the simulation results for individual plants.
These are Emborcação (A), Foz do Areia (B), Sobradinho
(C) and Serra da Mesa (D).

Figures 7 to 10 show the average evolution of storage in the
reservoirs for these hydro plants, resultant from the scenario
simulation using the two approaches considered. The maxi-
mum limit for storage xMax is also presented.
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Figure 7: Average Reservoir Storage for Emborcação Plant
(A).

It can be observed that the operation according to the ODIN
model leaves the reservoirs with greater water storage than
does the NW-SUISHI model. A similar pattern has been ob-
served for most of the reservoirs in the SIN, which explains
the results in Figure 5.

Indeed there is a strategic difference between the models con-
cerning reservoir management: the ODIN model always tries
to increase the level of water stored in the reservoirs, espe-
cially those whose inflows are greater (downstream plants).
This is a result of the influence of water head on hydro effi-
ciency and is only possible to be captured by nonlinear mod-
els (eq.(3) -(4) ).
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Figure 8: Average Reservoir Storage for Sobradinho Plant
(B).
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Figure 9: Average Reservoir Storage for Foz do Areia Plant
(C).

Considering the individual hydro plants presented, this trend
is easily observed for plants A and B. Plant C presents two
quite different profiles according to both approaches but it is
clear that the use of the ODIN approach provided more sta-
ble reservoir operation in response to the seasonable inflow
profile for the region. Plant D shows no apparent difference
in reservoir evolution with the two approaches. The differ-
ences noted are strongly related to characteristics of individ-
ual plants and their location in the river basins. Plant C is
the one among these four with the smallest storage capac-
ity (3805 hm3), whereas plant D has the largest reservoir on
SIN (43250 hm3), indicating that perhaps the NW-SUISHI-
O approach, based on a piecewise linear production func-
tion, would lead to a more instable behavior in small storage
plants.

Tables 4 and 5 present the average values for hydro genera-
tion, efficiency and reservoir storage at the end of the plan-
ning horizon for each plant, according to the stochastic and
deterministic approaches, respectively.
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Figure 10: Average Reservoir Storage for Serra da Mesa
Plant (D).

Table 4: Results for hydro plants determined by
NEWAVE/SUISHI-O model

Generation
(MW/month)

Efficiency
(MW/m3/s)

Final Stored
Energy
(MWmonth)

A 461,6 1,070 37,6
B 664,5 1,075 49,7
C 508,6 0,209 12,0
D 644,3 1,034 58,0

It can be observed that differences in the power generation
diverge from one hydro plant to the other, with the stochastic
model providing greater average generation for plants A and
B, and the deterministic model doing so for plants C and D.

Average reservoir storages at the end of the planning period,
however, were greater with the ODIN model for the four hy-
dro plants. The greatest increase was observed for plant C,
with final reservoir level being more than double of that de-
termined by the NW-SUISHI model.

The benefits of greater storage in reservoirs go beyond a mere
hedge against droughts; the increase in water head also re-
sults in greater efficiency for the plant. Indeed, for all the
hydro plants presented in Tables 4 and 5, the ODIN model
has shown greater efficiency, with the greatest increase in re-

Table 5: Results for hydro plants determined by ODIN model

Generation
(MW/month)

Efficiency
(MW/m3/s)

Final Stored
Energy
(MWmonth)

A 460,5 1,108 59,1
B 505,6 1,155 75,8
C 687,1 0,221 26,2
D 675,7 1,034 61,7
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lation to that of the NW-SUISHI model being observed for
plant B (7.44%).

These results have shown that the deterministic approach
provides better performance than the stochastic method for
the long term hydrothermal scheduling of the multi-reservoir
Brazilian power system. Moreover, for this case study, it led
to an even more efficient operation of reservoirs which can be
supported by the Certainty Equivalent principle (Bryson and
Ho, 1975) (Tse and Shalom, 1975) that is believed to be true
for reservoir operation problems when the performance cri-
terion is the maximization of hydroelectric power generation
(Philbrick and Kitanidis, 1999).

6 CONCLUSIONS

This paper has presented a comparison of stochastic and
deterministic approaches for the long term hydrothermal
scheduling of the Brazilian Power System.

The stochastic solution was represented by the stochastic
dual dynamic programming approach used by the NEWAVE
model in conjunction with the linear programming and
heuristic rules used by the SUISHI-O model to disaggregate
the former’s results for individual plants.

The deterministic solution was represented by the predictive
control model framework used by the ODIN, where optimal
operational decisions for individual hydro plant are provided
by a nonlinear optimization model based on expected values
for the future inflows.

The two approaches have been evaluated by simulation over
the 75 inflow scenarios contained in historical records for
a case study that considers the interconnected Brazilian hy-
drothermal system with official data from the monthly oper-
ation program of January 2011.

The expected operating costs based on the deterministic
model were 8.23% smaller than those established by the
stochastic model. This was a consequence of the better man-
agement of the reservoirs of the system according to ODIN
model, which made it possible to increase hydro power gen-
eration by 0.81% and still leave the system with almost
38.9% more stored energy by the end of the 60-month plan-
ning period.

In general, the deterministic ODIN model can present a more
efficient operation, resulting in greater hydropower genera-
tion and reduced costs. The ODIN model can also guarantee
a safer and more reliable operation, as it maintains the reser-
voirs fuller while providing a more efficient use of the water
resources.

Future work includes testing the performance of the ODIN
model when using specialized inflow prediction models
based on artificial intelligence techniques.
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