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ABSTRACT

This paper deals with the fuzzy-model-based control design
for a class of Markovian jump nonlinear systems. A fuzzy
system modeling is proposed to represent the dynamics of
this class of systems. The structure of the fuzzy system is
composed of two levels, a crisp level which describes the
Markovian jumps and a fuzzy level which describes the sys-
tem nonlinearities. A sufficient condition on the existence
of a stochastically stabilizing controller using a Lyapunov
function approach is presented. The fuzzy-model-based con-
trol design is formulated in terms of a set of linear matrix
inequalities. Simulation results for a single-machine infinite-
bus power system which is modeled as a Markovian jump
nonlinear system in the infinite-bus voltage are presented to
illustrate the applicability of the technique.

KEYWORDS: Markovian jump nonlinear systems, Marko-
vian jump fuzzy systems, fuzzy-model-based control,
stochastic stabilizability.

RESUMO

Neste artigo, apresentam-se projetos de controladores fuzzy
para uma classe de sistemas não-lineares com saltos Marko-
vianos. Uma modelagem fuzzy é apresentada para represen-
tar esta classe de sistemas na vizinhança de pontos de opera-
ção escolhidos. A estrutura do sistema fuzzy é composta de
dois níveis, um para descrição dos saltos Markovianos e ou-
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tro para descrição das não-linearidades no estado do sistema.
Uma condição suficiente para a estabilização estocástica do
sistema fuzzy considerado é derivada usando uma função de
Lyapunov acoplada. O projeto de controle fuzzy é então for-
mulado a partir de um conjunto de desigualdades matriciais
lineares. Resultados de simulações em um sistema de potên-
cia máquina-barramento infinito modelado como um sistema
não-linear com saltos Markovianos na tensão do barramento
infinito são apresentados para ilustrar a aplicabilidade da téc-
nica.

PALAVRAS-CHAVE: Sistemas não-lineares com saltos Mar-
kovianos, sistemas fuzzy com saltos Markovianos, controle
fuzzy, estabilização estocástica.

1 INTRODUCTION

The class of nonlinear systems considered in this paper is a
class of hybrid systems, which has different operation modes
governed by a Markov process. They are described by a
state vector with two components where the first refers to
the system modes and the second to the system state. The
system modes are represented by a finite-mode Markov pro-
cess and the system state in each mode by a system of non-
linear differential equations. This class of systems can be
used to represent complex real systems, which may experi-
ence abrupt changes in their structure and parameters caused
by phenomena such as component failures or repairs, chang-
ing of subsystem interconnections and abrupt environmental
disturbances.

Because of the difficulties inherent in the analysis of non-
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linear dynamics, most attention has been given to the lin-
ear representation of Markovian jump systems. The Marko-
vian jump linear systems (MJLS) were first introduced
by Krasovskii and Lidskii (1961) and have been used to
model manufacturing management systems, power systems,
telecommunication and economic systems (Mariton, 1990).
In this context, the linear quadratic control problem was ad-
dressed (Boukas and Liu, 2001; Costa et al., 1999; Mariton
and Bertrand, 1985a; Mariton and Bertrand, 1985b; Sworder,
1969). Lately, considerable attention has been paid to the ro-
bust control, robust stochastic stability and stabilizability of
jumping linear uncertain systems (Farias et al., 2000; Boukas
et al., 1999; Boukas and Yang, 1999; Costa and Boukas,
1998). In general, the system uncertainties considered ap-
pear as norm-bounded uncertainties, which facilitates the ex-
tension of the deterministic robust and optimal control tech-
niques to the Markovian jump linear systems. Despite this,
a more realistic model should consider the nonlinearities of
a real system. To the best of our knowledge, the control for
Markovian jump nonlinear system (MJNLS) was only con-
sidered in Rishel (1975) wherein the optimal control problem
is formulated in terms of dynamic programming.

Recently, there have been many successful applications of
fuzzy control to nonlinear systems (Arrifano and Oliveira,
2002a; Arrifano and Oliveira, 2002b; Nascimento et al.,
2002; Teixeira and Żak, 1999; Tanaka et al., 1998; Wang
et al., 1996). In general, the fuzzy control design considers a
nonlocal approach which is conceptually simple and straight-
forward, where linear feedback control techniques can be
used (Wang et al., 1996). To accomplish this, the nonlinear
system is represented by a Takagi-Sugeno (TS) fuzzy sys-
tem (Takagi and Sugeno, 1985), which is described by fuzzy
IF-THEN rules representing local input-output relations of
the nonlinear system. The basic idea of this approach is to de-
compose the input space into many subspaces, approximat-
ing the nonlinear system by a fuzzy blending of local linear
systems associated to each subspace. In fact, it is proved that
the TS fuzzy systems are universal approximators (Tanaka
and Wang, 2001).

The fuzzy-model based control design uses the so-called par-
allel distributed compensation (PDC) scheme and Lyapunov
stability. The idea of the PDC scheme is that a linear control
is designed for each local linear system. The overall con-
troller is again a fuzzy blending of all local linear controllers,
which is nonlinear in general. This approach requires a com-
mon positive definite matrix that is a solution of all the Lya-
punov inequalities built from the local linear systems of the
global feedback TS fuzzy system, which are usually formu-
lated in terms of linear matrix inequalities (LMI’s) in both the
feedback control gain and Lyapunov matrix. However, for a
large number of local linear approximations this approach
may not provide feasible results because it is not possible to

find a common positive definite Lyapunov matrix as a solu-
tion of several Lyapunov inequalities. In order to relax the
conservativeness of the stability and stabilization problems,
piecewise Lyapunov function approaches have received in-
creasing attention (Cao et al., 1997; Cao et al., 1996). With
the same purposes, a fuzzy Lyapunov function defined by a
fuzzy blending quadratic Lyapunov functions is considered
in (Tanaka et al., 2003). The fuzzy Lyapunov function, un-
like the piecewise Lyapunov function is smooth.

In this paper, we consider the use of two different fuzzy-
model-based control designs for stochastic stabilization of
a class of MJNLS. We propose a fuzzy system modeling
with two levels of structure, a crisp level which describes
the jumps of the Markov process and a fuzzy level which de-
scribes the system nonlinearities. Using the state feedback
fuzzy system and a coupled Lyapunov function, we formu-
late a control design in terms of LMI’s and the stochastic sta-
bilizability concept. The remainder of this paper is organized
as follows. Section 2 introduces the fuzzy system modeling.
Section 3 presents the fuzzy-model-based control. Section
4 deals with the stabilizing fuzzy control design. Simulation
results are presented in Section 5 to illustrate the applicability
of the proposed approach. Concluding remarks are presented
in Section 6.

2 FUZZY SYSTEM MODELING

Consider a class of Markovian jump nonlinear dynamic sys-
tems depicted by

ẋ = f(x, u, r); x0 = x(0); r0 = r(0) (1)

where x ∈ R
n is the system state vector, u ∈ R

m is
the control input vector, {r} is a continuous-time Marko-
vian process taking values in a finite space state denoted
by S = {1, 2, ..., N}, f(·, ·, ·) is a smooth nonlinear func-
tion with respect to the first and the second arguments with
f(0, 0, .) = 0, x0 and r0 are the initial values of the state
and the mode at time t = 0, respectively. The evolution of
the stochastic process {r, t ≥ 0} that determines the mode of
the system at each time t is assumed to be described by the
following transition probability

Pr{r(t + ∆) = j|r(t) = i} :=

{

πij∆ + o(∆), i 6= j
1 − πi∆ + o(∆), i = j

(2)
where ∆ > 0, lim∆→0 o(∆)∆−1 = 0, πij ≥ 0 is the prob-
ability rate between modes i and j, for i 6= j; i, j ∈ S and
∀i ∈ S, πi := −πii =

∑N

j=1,j 6=i πij . A matrix Π := [πij ] is
called transition rate matrix. We assume that the Markov pro-
cess {r} has stationary distribution µ = (µ1, µ2, · · · , µN )
with µi = Pr(r = i)

In order to model jumps in a fuzzy system modeling, we pro-
pose a Markovian jump fuzzy system (MJFS) following the
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idea of a switching fuzzy system (SFS) proposed by Tanaka
et al. (2000). The SFS have a region rule level which is crisp
and a local rule level which is fuzzy. Likewise, the MJFS is
structured in upper and lower levels for the modes assumed
by the Markov process {r} and for the fuzzy rule in each
mode which describes the nonlinearities in the state vector x,
respectively. Thus, the ith mode assumed by the MJNLS is
represented as follows

Mode i :

If z is Mi

Then
Rule j :

If x1 is Nij1 and . . . and xn is Nijn

Then ẋ = Aijx + Biju

i ∈ S; j = 1, 2, . . . , R (3)

where z ∈ R
1 is a mode indicator variable, x and u are as

defined before, Aij and Bij are matrices of appropriate di-
mensions, which describe local linear representations of the
nonlinear system in the vicinity of chosen operation points,
Mi and Nijk are crisp and fuzzy sets, respectively, and R is
the number of inference rules in each mode. In the frame-
work of fuzzy systems, the IF-part of the MJFS is referred to
as the premise part and the THEN-part is referred to as the
consequent part, variables x and z in the IF-part are known
as premise variables. Usually, the premise variables may
be functions of state variables, external disturbances, and/or
time (Li et al., 2000).

Thus, the MJFS is inferred by a fuzzy blending of the local
linear representations (Aij , Bij), i ∈ S, j = 1, 2, . . . , R,
which are selected according to the mode assumed by the
Markov process {r}. Thus, given the triple (x, u, r), the
overall fuzzy system is inferred as follows

ẋ = f̂(x, u, r)

=
N
∑

i=1

R
∑

j=1

mi(z)nij(x)(Aijx + Biju) (4)

where mi(z) is the mode indicator which yields mi(z) = 1
when r = i, i.e., z ∈ Mi and mi(z) = 0 otherwise, and
nij(x) normalized membership functions given by

nij(x) =

∏n
k=1

Nijk(xk)
∑R

l=1

∏n
k=1

Nilk(xk)
(5)

with Nijk(x) ∈ [0, 1] the grade of membership of xk, k =
1, 2, . . . , n in the fuzzy set Nijk. In addition, considering
the fact that in (5) Nijk(xk) ≥ 0, j = 1, 2, . . . , R, we have
nij(x) ≥ 0 and

∑R
j=1

nij(x) = 1.

The universe of discourse X : R
n × S → R

n for the MJFS is
given by

X =
N
∪

i=1
Mode i = Mode 1 ∪ Mode 2 ∪ . . . ∪ Mode N

Mode i ∩ Mode ` = φ, i 6= `, i, ` ∈ S.

Remark 1 The local linear representations of the MJFS
can be constructed via the linearization formula proposed
by Teixeira and Żak (1999) which yields a good linear ap-
proximation of the nonlinear system in the vicinity of a spec-
ified operation point even if it is not an equilibrium point.

3 FUZZY-MODEL-BASED CONTROL

The fuzzy-model-based control is in general developed using
the PDC scheme. Following this trend, the fuzzy controller
proposed here shares the same structure of the MJFS (3) in
its premise part, i.e.,

Mode i :

If z is Mi

Then
Rule j :

If x1 is Nij1 and . . . and xn is Nijn

Then u = −Fijx

i ∈ S; j = 1, 2, . . . , R (6)

where z, x, Mi, Nij and R are as defined before and Fij ∈
R

m×n are the local feedback gains to be designed. Following
the same lines as in the derivation of the MJFS, we obtain the
overall fuzzy controller as

u = −
N
∑

i=1

R
∑

j=1

mi(z)nij(x)Fijx. (7)

In order to obtain the state feedback MJFS as following, we
substitute (7) in (4), it results

ẋ =

N
∑

i=1

R
∑

j=1

mi(z)nij(x) [Aij

−

(

N
∑

k=1

R
∑

l=1

mk(z)nkl(x)BijKkl

)]

x. (8)

Using the fact that mi(z)mk(z) = 0, i 6= k, i, k ∈ S, we
can write (8) as

ẋ =
N
∑

i=1

mi(z)





R
∑

j=1

R
∑

k=1

nij(x)nik(x)(Aij − BijKik)



x.

(9)
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Now, using the fact that

R
∑

j=1

R
∑

k=1

nij(x)nik(x) =

R
∑

j=1

n2

ij(x) + 2

R
∑

j<k

nij(x)nik(x)

and
∑R

j=1
nij(x) = 1, system (9) can be rewritten as

ẋ =

N
∑

i=1

mi(z)





R
∑

j=1

n2
ij(x)Gij + 2

R
∑

j<k

nij(x)nik(x)Hijk



x

with Gij := Aij − BijFij and Hijk := 1

2
(Aij − BijFik +

Aik − BikFij), i ∈ S, j, k = 1, 2, . . . , R. In (10), notation
∑R

j<k means, for instance for R = 3,
∑3

j<k ajk ⇔ a12 +
a13 + a23.

Remark 2 The use of (10) instead of (9) is valuable to re-
duce the number of LMI’s conditions in the formulation of
the fuzzy control design.

4 STABILIZING FUZZY CONTROL
DESIGN

In this section, we present a sufficient condition for the
stochastic stabilization of the MJFS using a coupled Lya-
punov function. In order to obtain a systematic fuzzy control
design, we formulate the stabilizing control problem in the
context of the convex analysis using LMI’s. In the follow-
ing, E[·] denotes the expectancy operator and λmin[·] and
λmax[·] denote the minimum and the maximum eigenvalues,
respectively.

Definition 1 The MJFS (4) with infinitesimal generator A is
exponentially stable in mean square (ESMS) if there exists a
coupled Lyapunov function of the type

V (x, i) = xT Pix (10)

∀i ∈ S with Pi := Pr=i a symmetric positive definite con-
stant matrix of appropriate dimensions such that

1. V (0, r = i) = 0;

2. V (·, ·) is continuous and has bounded first derivatives
with respect to the first argument;

3. c1 ‖x‖
2 ≤ V (x, i) ≤ c2 ‖x‖

2;

4. AV (x, i) ≤ −c3 ‖x‖
2;

for c1, c2 and c3 positive real numbers (Mariton, 1990).

Definition 2 The MJFS (4) is said to be stochastically stable
if, for all the initial conditions x0 and r0 there exists a state
feedback fuzzy control law (7) satisfying

lim
T→∞

E

[

∫ T

0

x(t, x0, r0, u)T x(t, x0, r0, u)dt|x0, r0

]

≤ xT
0 Mx0 (11)

for some symmetric positive definite matrix M of appropri-
ate dimensions (Ji and Chizeck, 1990).

Proposition 1 The MJFS (4) is stochastically stabilizable
with state feedback fuzzy control law (7) if there exist a set of
positive definite matrices Xi and a set of matrices Yij of ap-
propriate dimensions satisfying the following LMI’s ∀i ∈ S

[

Tij Zi

ZT
i −Wi

]

< 0;

j = 1, 2, . . . , R (12a)

and
[

Uijk Zi

ZT
i −Wi

]

< 0;

j < k; j, k = 1, 2, . . . , R (12b)

where
Tij := XiA

T
ij + AijXi − Y T

ij BT
ij − BijYij −

1

2
πiXi

Uijk :=
XiA

T
ij + AijXi − Y T

ik BT
ij − BijYik

+XiA
T
ik + AikXi − Y T

ij BT
ik − BikYij −

1

2
πiXi

Zi :=
[

π
1/2

i1 Xi . . . π
1/2

ii−1Xi π
1/2

ii+1Xi . . . π
1/2

iN Xi

]

Wi := diag
{

X1 . . . Xi−1 Xi+1 . . . XN

}

Yij := FijXi

Xi := P−1

i .

Proof: Let mode at time t be i, i.e., r = i, i ∈ S. In what
follows, for simplicity of notation x denotes the solution
x(t, x0, r0, u) of the MJFS (4) under the initial conditions
x0 and r0 with fuzzy control law (7).

Take the coupled Lyapunov function as in (10). The weak
infinitesimal operator of (10) is given by (Ji and Chizeck,
1990)

AV (x, i) := lim
δ→0

1

δ
{E [V (x(t + δ), r(t + δ))| x, r = i]

− V (x, r = i)} . (13)

The weak infinitesimal operator A of a function of the joint
stochastic process {x, r} is the natural stochastic analog of
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the deterministic derivative. Using Mariton (1990), from
(13) it is possible to obtain

AV (x, i) = ẋT ∂

∂x
V (x, i) +

N
∑

`=1

πi`V (x, `)

= ẋT Pix + xT Piẋ + xT

(

N
∑

`=1

πi`Pi

)

x.

(14)

Substituting (10) in (14) and using the fact that mi(z) = 1
when z ∈ Mi, we obtain

AV (x, i) = xT





R
∑

j=1

n2

ij(x)(GT
ijPi + PiGij)

+2
R
∑

j<k

nij(x)nik(x)(HT
ijkPi + PiHijk)



x

+xT

(

N
∑

`=1

πi`Pi

)

x (15)

for Gij and Hijk as defined before. Now, using the Schur
complements (Boyd et al., 1994) and substituting Tij , Uijk,
Zi, Wi, Yij and Xi as defined before, LMI’s in (12) can be
reduced to

GT
ijPi + PiGij +

N
∑

`=1

πi`P` < 0;

j = 1, 2, . . . , R (16a)

and

HT
ijkPi + PiHijk +

N
∑

`=1

πi`P` < 0;

j < k; j, k = 1, 2, . . . , R. (16b)

Multiplying (16a) by n2
ij(x) and (16b) by 2nij(x)nik(x), we

have
R
∑

j=1

n2

ij(x)[GT
ijPi + PiGij ]

+

R
∑

j=1

n2

ij(x)

N
∑

`=1

πi`P` < 0 (17a)

and

2

R
∑

j<k

nij(x)nik(x)[HT
ijkPi + PiHijk]

+2

R
∑

j<k

nij(x)nik(x)

N
∑

`=1

πi`P` < 0. (17b)

Now, adding (17a) to (17b) and again using the fact that

R
∑

j=1

R
∑

k=1

nij(x)nik(x) =
R
∑

j=1

n2

ij(x) + 2
R
∑

j<k

nij(x)nik(x)

and
∑R

j=1
nij(x) = 1, we obtain AV (x, i) < 0 for x 6= 0.

Now, defining

L(Ḡij, H̄ijk, Pi) := ḠT
ijPi + PiḠij

+2(H̄T
ijkPi + PiH̄ijk) +

N
∑

`=1

πi`P` (18)

with Ḡij =
∑R

j=1
n2

ij(x)Gij and H̄ijk =
∑R

j<k

nij(x)nik(x)Hijk and substituting (18) in (15), we obtain

AV (x, i) = xTL(Ḡij, H̄ijk, Pi)x. (19)

Therefore, we have for all x 6= 0 and i ∈ S

AV (x, i)

V (x, i)
=

xTL(Ḡij, H̄ijk, Pi)x

xT Pix

≤ −ρ (20)

where ρ is a positive real number given by

ρ = min
i∈S

λmin

[

−L(Ḡij , H̄ijk, Pi)
]

λmax [Pi]
. (21)

By the Dynkin’s formula (Kushner, 1967), we have

E [V (x(t), r(t))]−V (x0, r0) = E

[∫ t

0

AV (x(s), r(s))ds

]

.

(22)

Then, substituting (20) in (22), we obtain

E [V (x(t), r(t))]− V (x0, r0)

≤ E

[∫ t

0

−ρV (x(s), r(s)) ds

]

= −ρ

∫ t

0

E [V (x(s), r(s)) ds] . (23)

Using the Gronwall-Bellman Lemma (Khalil, 1996) in (23),
we have

E [V (x(t), r(t))] ≤ V (x0, r0) exp(−ρt). (24)

Integrating both sides of (24) and taking the limit as T → ∞,
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it results

lim
T→∞

E

[

∫ T

0

xT Prxdt|x0, r0

]

≤
1

ρ
xT

0 Prx0

≤
1

ρ
λmax [Pr] x

T
0 x0.

(25)

Considering the fact that in (25) Pr is a symmetric positive
definite matrix for all r ∈ S, the result follows by Defini-
tions 1 and 2. 2

4.1 Performance indices in the fuzzy con-
trol design

Like stability, performance indices, such as decay rate and
control input, play a key role in the stabilizing fuzzy control
design. The speed response of a controlled system is related
to decay rate, that is, the largest Lyapunov exponent. In ad-
dition, there are some applications in real systems, where the
control input has to be limited to guarantee the system oper-
ation conditions. In what follows, we formulate the stabiliz-
ing fuzzy control design using the decay rate αi := αr=i and
control input γi : γr=i, i ∈ S in the context of LMI’s.

Proposition 2 Assume that the decay rate αi > 0, i ∈ S is
known. The condition

AV (x, i) ≤ −2αiV (x, i) (26)

is enforced to all trajectories of the MJFS (4) with state feed-
back fuzzy control law (7), if there exist a set of positive
definite matrices Xi and a set of matrices Yij of appropriate
dimensions satisfying the following LMI’s ∀i ∈ S

[

Tij Zi

ZT
i −Wi

]

< −2αi

[

Xi 0
0 0

]

;

j = 1, 2, . . . , R (27a)

and
[

Uijk Zi

ZT
i −Wi

]

< −2αi

[

Xi 0
0 0

]

;

j < k; j, k = 1, 2, . . . , R (27b)

where Tij , Uijk, Zi, Wi, Xi and Yij are as defined before.

Proof: The proof follows the same lines of the proof of
Proposition 1. 2

Proposition 3 Assume that the initial condition x0 is
known. The constraint

E[uT u |x, r = i ] ≤ γ2

i (28)

is enforced to all trajectories of the MJFS (4) with state
feedback fuzzy control law (7), if the following LMI’s hold
∀i ∈ S

[

1 xT
0

x0 Xi

]

≥ 0 (29a)

and
[

Xi Y T
ij

Yij γiI

]

≥ 0;

j = 1, 2, . . . , R (29b)

where Xi and Yij are as defined before.

Proof: Assume that V (x, i) in (10) is a Lyapunov function
for all trajectories of the MJFS (4) with state feedback fuzzy
control law (7). Substituting (7) in (28) and using the fact
that mi(z)m`(z) = 0, i 6= `, i, ` ∈ S, we have

E





R
∑

i=1

m2

i (z)





R
∑

j=1

R
∑

k=1

nij(x)nik(x)xT FT
ij Fijx







 ≤ γ2

i .

(30)

Let the mode at time t be i, i.e., r = i, i ∈ S. Thus, (30) can
be written as

R
∑

j=1

R
∑

k=1

nij(x)nik(x)xT

(

1

γ2
i

FT
ij Fij

)

x ≤ 1. (31)

Now, we use (29a) in order to obtain (31). Using the Schur
complements in (29a) and (29b), it results for all i ∈ S

xT
0 Pix0 ≤ 1 (32a)

and

1

γ2
FT

ij Fij − Pi ≤ 0;

j = 1, 2, ..., R. (32b)

Multiplying (32b) by nij(x) and using the fact that
∑R

j=1
nij(x) = 1, we obtain

R
∑

j=1

nij(x)xT

(

1

γ2
i

FT
ij Fij − Pi

)

x ≤ 0. (33)

It can be shown that (Tanaka and Wang, 2001)

R
∑

j=1

R
∑

k=1

nij(x)nik(x)xT

(

1

γ2
FT

ij Fij − Pi

)

x

≤

R
∑

j=1

nij(x)xT

(

1

γ2
i

FT
ij Fij − Pi

)

x. (34)
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Thus, using (33) in (34), we have

R
∑

j=1

R
∑

k=1

nij(x)nik(x)xT

(

1

γ2
FT

ij Fij − Pi

)

x ≤ 0 (35)

which is the same as
R
∑

j=1

R
∑

k=1

nij(x)nik(x)xT

(

1

γ2
FT

ij Fij

)

x ≤ xT Pix. (36)

Finally, as V (x, i) ≤ xT
0 Pix0 by (32a), from (36), we ob-

tain (31) and the result follows. 2

A stabilizing control design with the decay rate and the con-
trol input constraints can be defined as follows: Find a set
of positive definite matrices Xi and a set of matrices Yij of
appropriate dimensions satisfying (27) and (29) ∀i ∈ S.

Remark 3 In the approach given, the fuzzy-model-based
control design is based on the matrices (Aij , Bij , Π), i ∈ S,
j = 1, 2, . . . , R. Thus, the control design based on LMI’s
conditions is strongly related to the number of inference
rules and to the modes assumed by the Markov process.
The properties of the normalized membership functions can
be explored in order to reduce the number of intersections
among the fuzzy sets and thus producing more relaxed LMI
conditions. Examples of fuzzy-model-based control design
using relaxed LMI conditions are given in Teixeira et al.
(2003), Teixeira et al. (2000), and Tanaka et al. (1998).

Remark 4 In order to consider the stochastic stabilization
of the MJNLS in case the equilibrium point is not the ori-
gin, that is, (x, u) 6= 0, one should perform a change of
coordinates to make the origin the new equilibrium, before
designing the fuzzy control (7) using Propositions 1, 2 and 3.

5 SIMULATION RESULTS

In this section, an illustrative example of the application of
the developed approach is given. We consider the same ex-
ample as in Guo et al. (2001), a single-machine-infinite-bus
(SMIB) power system shown in Figure 1. The dynamic op-
eration of the SMIB power system was modeled as being a
Markovian jump nonlinear system described by

ẋ1 = x2

ẋ2 = −

D

2H
x2 +

ω0

2H
(Pm − x3)

ẋ3 =
xds

x
′

dsT
′

do

[

T
′

do(xd − x
′

d)

(

z sin(x1)

xds

)2

x2 + Pm − x3

]

+
cos(x1)

sin(x1)
x2x3 +

xds

x
′

dsT
′

do

(

z sin(x1)

xds

)

kcu

(37)

Figure 1: Single-machine-infinite-bus power system.

Figure 2: Transition modes of the SMIB power system.

where {x, z} is a joint Markov process with stationary distri-
bution µ = (0.3, 0.5, 0.2), x1 the power angle of the gen-
erator [rad], x2 the relative speed of the generator [rad/s], x3

the active power delivered to bus [p.u.], u the input voltage
of the SCR amplifier of the generator [p.u.], z := Vs the in-
finite bus voltage [p.u.], D the damping constant [p.u.], H
the inertia constant [s], ω0 the synchronous machine speed
[rad/s], Pm the mechanical input power [p.u.], T

′

do the direct
axis transient short-circuit time constant [s], xd, x

′

d, xds and
x

′

ds the system reactances [p.u.]. In the simulations, we adopt
the following numerical values of the physical parameters:
D = 5, H = 4, ω0 = 314.159, T

′

do = 6.9, Kc = 1,
xd = 1.8623, x

′

d = 0.257, xds = 2.4753 and x
′

ds = 0.8693.

System (37) presents the following equilibrium point xe =
[2π/5 0 0.9]T and ue = 0. As mentioned in Remark 4, it
is necessary to perform a change of coordinates to bring the
equilibrium of the system (37) to the origin. For this purpose,
we adopt ξ = x − xe and υ = u − ue. Using these new
coordinates, we may write (37) as

ξ̇1 = ξ2

ξ̇2 = −

D

2H
ξ2 +

ω0

2H
(ξ3 + 0.9)

ξ̇3 =
xds

x
′

dsT
′

do

[

T
′

do(xd − x
′

d)

(

z sin(ξ1 + 2π/5)

xds

)2

ξ2

]

−

xds

x
′

dsT
′

do

(ξ3 + 0.9) +
cos(ξ1 + 2π/5)

sin(ξ1 + 2π/5)
ξ2(ξ3 + 0.9)

+
xds

x
′

dsT
′

do

(

z sin(ξ1 + 2π/5)

xds

)

kcυ.

(38)

The infinite-bus voltage z is modeled as a Markov chain
with three different modes (N = 3) corresponding to the
influence of an external disturbance in the equivalent load of
the infinite-bus as following, mode 1: 1.2144 p.u. (low load),
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mode 2: 1.1040 p.u. (normal load) and mode 3: 0.9936 p.u.
(heavy load). The transitions among the modes are illustrated
in Figure 2. In accordance with the stationary distribution µ
for the Markov process r, we adopt the following transition
probability rate matrix for z

Π =





0.1 −0.1 0
−0.06 0.1 −0.04

0 −0.1 0.1



 .

In order to obtain the local linear representations of sys-
tem (38) in each mode, we adopt R = 2 and consider
deviations of ±π/5 in x1, which gives the following lin-
earization points x̄: mode 1: x̄R=1 = [π/5 0 1.089] and
x̄R=2 = [3π/5 0 1.089], mode 2: x̄R=1 = [π/5 0 0.9] and
x̄R=2 = [3π/5 0 0.9] and mode 3: x̄R=1 = [π/5 0 0.729]
and x̄R=2 = [3π/5 0 0.729]. Thus, using the pro-
cedure given in the Appendix, the following matrices
(Aij , Bij), i = 1, 2, 3, j = 1, 2 for the SMIB system are
obtained

A11 =





0 1.0000 0
0 −0.6250 −39.2699
0 1.8792 −0.4127



 ;B11 =





0
0

0.1190



 ;

A12 =





0 1.0000 0
0 −0.6250 −39.2699
0 0.6418 −0.4127



 ;B12 =





0
0

0.1926



 ;

A21 =





0 1.0000 0
0 −0.6250 −39.2699
0 1.5530 −0.4127



 ;B21 =





0
0

0.1082



 ;

A22 =





0 1.0000 0
0 −0.6250 −39.2699
0 0.5304 −0.4127



 ;B22 =





0
0

0.1750



 ;

A31 =





0 1.0000 0
0 −0.6250 −39.2699
0 1.2580 −0.4127



 ;B31 =





0
0

0.0974



 ;

A32 =





0 1.0000 0
0 −0.6250 −39.2699
0 0.4296 −0.4127



 ;B32 =





0
0

0.1575



 .

The mode indicator membership functions mi(.), i = 1, 2, 3
are crisp functions which represent the operating modes, in
this case mi(z) = 1, if r = i and mi(z) = 0, otherwise. The
normalized membership functions nij(.), j = 1, 2 describe
the range of the state variables x1 and x3 in each mode as
shown in Figure 3 and are obtained from standard member-
ship functions available in the Fuzzy Logic Toolbox of Mat-
lab. A suitable range for the state variables can be determined
by constraining x1 in the interval [π/5, 3π/5].

Thus, the fuzzy modeling for the SMIB power system (38) is
given by

Mode 1:

If z is “1.2144 p.u.”

Then

Rule 1:

If x1 is “about π/5 rad/s” and

x3 is “closer to 1.089 p.u.”

Then ẋ = A11x + B11

Rule 2:

If x1 is “about 3π/5 rad/s” and

x3 is “far from 1.089 p.u.”

Then ẋ = A12x + B12

Mode 2:

If z is “1.1040 p.u.”

Then

Rule 1:

If x1 is “about π/5 rad/s” and

x3 is “closer to 0.9 p.u.”

Then ẋ = A21x + B21

Rule 2:

If x1 is “about 3π/5 rad/s” and

x3 is “far from 0.9 p.u.”

Then ẋ = A22x + B22

Mode 3:

If z is “0.9936 p.u.”

Then

Rule 1:

If x1 is “about π/5 rad/s” and

x3 is “closer to 0.729 p.u.”

Then ẋ = A31x + B31

Rule 2:

If x1 is “about 3π/5 rad/s” and

x3 is “far from 0.729 p.u.”

Then ẋ = A32x + B32.

Therefore, using (Aij , Bij , Π), i = 1, 2, 3, j = 1, 2, we
obtain the feedback gains for the stabilization of the SMIB
power system (38) by solving the LMI’s in Proposition 1 us-
ing the LMI Control Toolbox of Matlab. In order to use per-
formance indices in the stabilizing control design, we adopt
decay rates α1 = 5, α2 = 0 and α3 = 5 and control input
constraints γi = 6 for i = 1, 2, 3. We take the initial condi-
tions as x0 = [2π/5 0−0.01 0.9] and r0 = 1.1040. Simula-
tion results obtained with different stabilizing control designs
given in Section 4 are divided in two cases: Case 1 - SMIB
power system with stabilizing fuzzy control and Case 2 -
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Figure 3: Membership functions adopted.
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Figure 4: Deviations in the infinite-bus voltage z following
the transition rate matrix Π.

SMIB power system with stabilizing fuzzy control + decay
rate + input control constraint. In both cases, we use the soft-
ware provided in Waner and Costenoble (2002) to simulate
z which is shown in Figure 4 for a period of time. Figures 5
and 6 show the main system responses and Table 1 presents
the control design results for both Cases 1 and 2.

The obtained results are comparable to the results presented
in Guo et al. (2001). Note that, in both Cases 1 and 2 the
system stabilization is satisfactory. In Case 2, the use of con-
straints in the stabilizing control design reduces the fluctua-
tions in both state variables and control input. The advantage
of using Markov jump systems to model the SMIB power
system can be clearly seen as we include in the SMIB power
system a more refined description of the infinite-bus voltage
as compared to that used in Guo et al. (2001). For instance,
there, one considers a constant value for the infinite-bus volt-
age and the changes in the external load during time are not
represented. Taking into account the information on how the
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Figure 5: Case 1 - SMIB power system state variables and
control.

infinite-bus voltage can vary, we can provide less restrictive
conditions for the system stability using controllers with bet-
ter performance. Another important point concerns the sta-
bility of the SMIB power system. Using the technique pro-
posed in Guo et al. (2001), the system must be stable for all
deviations in the infinite-bus voltage, whereas in the stochas-
tic stability framework, stability of all operation modes is not
even required.

6 CONCLUDING REMARKS

This paper presents a systematic fuzzy-model-based-control
design for a class of nonlinear systems with Markovian jump
parameters which employees recently developed fuzzy con-
trol techniques formulated in the context of LMI’s. The class
of systems considered is represented by a fuzzy system with
two levels in its structure, one to represent the system modes
and the other the nonlinearities in the system state. In this
approach, the number of inference rules is directly related to
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Table 1: Control design results.
Mode Case 1

1 F11 =
[

−13.9060 −56.9870 5.2482
]

F12 =
[

− 9.2534 −43.2570 6.5994
]

2 F21 =
[

−14.5150 −60.7340 6.5752
]

F22 =
[

− 9.6708 −45.2000 8.0468
]

3 F31 =
[

−15.3360 −65.5510 8.2105
]

F32 =
[

−10.2320 −47.8480 9.8305
]

Mode Case 2

1 F11 =
[

−8.64 × 10−9 0.8244 7.7447
]

F12 =
[

2.02 × 10−9 −1.1686 7.1610
]

2 F21 =
[

−7.58 × 10−9 0.7866 7.5597
]

F22 =
[

−5.58 × 10−9 −1.0637 6.9946
]

3 F31 =
[

−4.82 × 10−9 0.6616 6.7462
]

F32 =
[

−5.20 × 10−9 −0.8643 6.2894
]

the nonlinear system complexity and the number of LMI con-
ditions is basically a combination of the number of inference
rules of the fuzzy system and the number of inference rules
of the fuzzy control. The number of inference rules can be re-
duced using local approximations of the nonlinear system but
stability of the feedback nonlinear system is not guaranteed.
In this paper we use local approximations to build the MJFS
which represents the class of MJNLS considered. By heuris-
tically choosing regions of the subspace that better represent
the dynamics of the MJNLS we guarantee the convergence
of the solutions reducing the approximation errors.

A fuzzy-model-based control law is used to stabilize the
MJFS and then, the stochastic stability and stabilizability
concepts are used to formulate the control design in the con-
text of LMI’s. The advantage of this approach can be clearly
seen, for instance, we could consider in the fuzzy modeling
a more refined description of the parameter variations in the
nonlinear system. Taking into account this, we give less re-
strictive conditions for stability using a coupled Lyapunov
function resulting in controllers which provide better perfor-
mance.

Another important point concerns the stochastic stability. In
comparison with the conventional techniques in the deter-
ministic sense, stability of all system modes is not even re-
quired. In the proposed approach, when u = 0, stability in
each system mode is given in terms of the matrices (Aij , Π),
i ∈ S, j = 1, 2, . . . , R, that is, stability in each mode is ver-
ified whenever Re{λ[Aij − 1

2
πiI] < 0, πi ≥ 0 whereas in

the conventional techniques, stability in each mode is verified
only if Re{λ[Aij ]} < 0.

Future work include the design of robust fuzzy controllers
to consider in the control design the approximation error be-
tween the fuzzy-model-based system and the nonlinear sys-
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Figure 6: Case 2 - SMIB power system state variables and
control.

tem and the development of a dynamic feedback controller
to consider incomplete information of the system state.
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A LOCAL LINEAR REPRESENTATIONS
FOR THE SMIB POWER SYSTEM

Consider the SMIB power system (38) which is repeated here
for easy reference

ξ̇ = f(ξ + xe, r) + g(ξ + xe, r)υ (39)

where
f(ξ + xe, r) = [f1 f2 f3]

T (40a)

and
g(ξ + xe, r) = [0 0 g3]

T (40b)

are vectorial functions with

f1 = ξ2

f2 = −
D

2H
ξ2 +

ω0

2H
(ξ3 + 0.9)

f3 =
xds

x′
dsT

′
do

[

T ′
do(xd − x′

d)

(

z sin(ξ1 + 2π/5)

xds

)2

ξ2

]

−

(

xds

x′
dsT

′
do

−
cos(ξ1 + 2π/5)

sin(ξ1 + 2π/5)
ξ2

)

(ξ3 + 0.9)

g3 =
xds

x′
dsT

′
do

(

z sin(ξ1 + 2π/5)

xds

)

kc

ξ = x−xe and υ = u−ue the new system coordinates, with
xe = [2π/5 0 0.9]T and ue = 0.

Let mode at time t be i, i.e., r = i, i ∈ S and x̄ be a lin-
earization point not necessarily an equilibrium point. Fol-
lowing Teixeira and Żak (1999), the objective is to obtain
matrices Ai and Bi such that in the vicinity of x̄ we have

f(ξ + xe, i) + g(ξ + xe, i)υ ≈ Aiξ + Biυ (41a)

and

f(x̄ + xe, i) + g(x̄ + xe, i)υ ≈ Aix̄ + Biυ. (41b)

Since υ is arbitrary, we have g(x̄+xe, i) = Bi. The columns
of the matrix Ai are given by the formula

ak = ∇fk(x̄) +
fk(x̄) − x̄T∇fk(x̄)

‖x̄‖
2

x̄ (42)

for x̄ 6= 0 and k = 1, 2, 3 where ∇fk(x̄) : R
n → R

n is the
gradient, a column vector, of fk evaluated at ξ. We can use
function jacobian available in the Symbolic Math Toolbox of
Matlab in order to compute the gradient for the SMIB power
system.

The Teixeira & Żak linearization formula produces linear
representations instead of affine, usually obtained using the
Taylor linearization formula. In order to verify this state-
ment, consider the Taylor linearization formula

Ai = ∇f(x̄) :=
∂f(ξ + xe, i)

∂ξ

∣

∣

∣

∣

ξ=x̄

. (43)

The representation of a function f(·, ·) around x̄ is thus given
by

f(ξ + xe, i) ≈ f(x̄ + xe, i) + Ai(ξ − x̄). (44)

Thus, whenever f(x̄ + xe, i) 6= 0 which occurs if x̄ is not an
equilibrium point, this representation produces affine models
instead of linear models, as mentioned. Hence, using the
Teixeira & Żak linearization formula, we can obtain several
local linear approximations (Aij , Bij), i = 1, . . . , N, j =
1, 2, . . . , R of a nonlinear system in any chosen linearization
points and then build a fuzzy system representation.
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